健脾止动汤对TS小鼠纹状体多巴胺系统DR、DAT及谷氨酸系统GLT1的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多发性抽动症(Tourette's syndrome, TS)是一种慢性神经精神障碍性疾病,临床表现为不自主的、反复的肌肉抽动引发的运动性抽动(motor tics)和发声性抽动(vocal tics)。从目前的国内外研究进展来看:TS发病是一个较为复杂的多神经递质、多神经通路参与的神经精神障碍性疾病。从单一途径认识和治疗该病往往不能取得良好的临床疗效,这一方面是西医所面临的反复发作,难以治愈的棘手问题,同时也为中医治疗TS提供了广阔的应用前景。导师王素梅教授带领课题组一直致力于该病的基础实验与临床研究,并在“扶土抑木”大法指导下创制了治疗小儿TS的中药组方一一健脾止动汤,临床疗效确切。为进一步探讨该方治疗小儿TS的神经生化学机制及作用靶点,本课题拟在亚氨基二丙腈(IDPN)建立TS小鼠模型基础上,采用动物行为学、高效液相色谱法(HPLC)、酶联免疫吸附(ELISA)、Western blot等方法,对TS模型小鼠刻板行为、脑内纹状体多巴胺(DA)系统及谷氨酸(Glu)系统递质、受体、转运蛋白等指标进行检测,进一步揭示健脾止动汤治疗TS的作用机制。
     本实验分为4个部分:(1)观察并比较TS模型鼠治疗前后刻板行为积分变化;(2)酶联免疫吸附法(ELISA)检测TS模型鼠纹状体DA、高香草酸(HVA)及多巴胺受体D1R、 D2R含量变化;(3)MicroPET技术检测TS模型鼠纹状体内多巴胺转运蛋白(DAT)分布情况;(4)高效液相色谱(HPLC)及Western blot法检测TS模型鼠纹状体Glu含量及谷氨酸转运蛋白GLT1表达水平。
     动物模型建立及分组:
     腹腔注射IDPN,350mg·kg-1,每天1次,连续7天,建立TS小鼠模型。80只雄性ICR小鼠,随机分为空白对照组、模型组、泰必利组、健脾止动汤组,每组20只。
     主要实验结果如下:
     1.健脾止动汤对TS模型鼠刻板行为的影响
     腹腔注射IDPN后,造模小鼠均出现不同程度的头部抽动、旋转等刻板运动。与模型组相比,泰必利组和健脾止动汤组刻板行为平均积分呈显著下降趋势(P<0.05)。其中,健脾止动汤组改善模型小鼠刻板行为的疗效优于泰必利组(P<0.05),但与空白对照组相比,二组刻板行为积分仍处于较高水平(P<0.05)。
     2.健脾止动汤对TS模型鼠纹状体DA、HVA、D1R、D2R含量的影响
     与模型组比较,DA含量在泰必利组、健脾止动汤组和空白对照组中呈高表达(P<0.05);HVA含量各组比较无统计学差异(P>0.05);健脾止动汤组与模型组比较,D1R含量升高(P<0.05);D2R含量各组比较无统计学差异(P>0.05)。
     3.健脾止动汤对TS模型鼠纹状体DAT表达的影响
     MicroPET冠状平扫结果显示,空白对照组小鼠双侧纹状体区示踪物11C-β-CFT呈高亮聚集分布,大体上呈均一对称分布特点,而模型组纹状体区11C-β-CFT呈低密度聚集分布。药物干预后,泰必利组和健脾止动汤组11C-β-CFT重摄取率远大于模型组(P<0.01),且健脾止动汤组重摄取率高于泰必利组(P<0.05)。
     4.健脾止动汤对TS模型鼠纹状体Glu、GLT1含量的影响
     与空白对照组相比,模型组小鼠纹状体Glu显著升高(P<0.05)。药物干预后,泰必利组和健脾止动汤组Glu含量均呈下降趋势,健脾止动汤组下降程度较泰必利组显著(P<0.05),接近于正常水平(P>0.05)。
     与空白对照组相比,模型鼠纹状体GLT1蛋白表达显著升高(P<0.05)。药物干预后,泰必利组、健脾止动汤GLT1表达均较模型组有所下调(P<0.01),但二者间未见显著差异(P>0.05),且二者表达量远高于空白对照组(P<0.01)。
     结论:健脾止动汤针对IDPN诱发的TS模型鼠具有确切的抗抽动疗效。TS模型鼠纹状体DA及Glu系统内存在神经生化学改变。主要表现为:DA及其受体表达紊乱,DAT呈现低表达,Glu及其转运体GLT1含量升高。健脾止动汤可能通过上调TS模型鼠纹状体内DAT,增加突触间隙DA重摄取;降低Glu含量,抑制黑质-纹状体通路的运动兴奋性,从DA和Glu双系统、多靶点来发挥抗抽动的作用。
Tourette syndrome (TS) is a chronic neurobehavioral disorder characterized by involuntary motor and phonic tics. On account of the research advances at home and abroad in recent years, the mechanism of TS relates to complicated and multiple neurotransmitters and neural pathways. It could hardly obtain satisfactory clinical curative effect just from a single viewpoint for perception and treatment. So, on the one hand, its recurrence and refractoriness has become a problem which western medicine has to confront. On the other hand, it provides a broad prospect for traditional Chinese medicine (TCM) that could exert its unique therapeutic advantage. My tutor, Professor Wang sumei accompanied by her team has committed to the basic experiments and clinical research on TS for years. Following the principle of supporting Spleen and inhibiting Liver, she creates the Chinese Medicine Formula "Jian-Pi-Zhi-Dong Decoction (JPZDD)" which has been testified as an effective anti-tics agent in cl inic.
     In order to further exploring the neurochemical mechanism of TS and targets of the formula, this subject aims to induce TS model by iminodipropionitrile (IDPN), basing on the techniques such as the animal ethology, high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA) and Western blot, study the influences of the formula on the stereotyped behavior of TS mice model, and detect the contents of the transmitters, receptors and transporters belonging to the dopamine (DA) and glutamic acid (Glu) systems in the striatum.
     This subject divided into four parts. The first part, the scores of stereotyped behavior of TS model mice before and after diverse administrations were contrast. The second part, the levels of DA, homovanillic acid (HVA), dopamine receptors (D1R, D2R) were detected by means of ELISA. The third part,11C-β-CFT binding which manifests the distribution of Dopamine transporter (DAT) at bilateral striatum was observed. The fourth part, the level of Glu and expression of glutamate transporter (GLT1) were detected by HPLC and Western blot.
     Eighty ICR mice (male, aged4weeks,18±2g) were housed10per cage in an air-conditioned animal room with12h light/dark cycle, allowed access to water and food ad libitum, maintained in a constant temperature20±2℃and humidity50±5%, fed for1w before generating TS model. After1w, mice were randomly divided into the saline group (control group)(n=20) and the TS model group (n=60). The former were intraperitoneal ly injected (i. p.) with saline (0.9%)(15ml·kg-1); the later were injected with IDPN (350mg·kg-1, i.p.) once a day for7consecutive days. IDPN mice model group were further divided into3groups:IDPN group (n=20), Tiapride (Tia) group (n=20), and JPZDD group (n=20). The et ho logical score between each group was balanced referring to the evaluating grade of stereotypy. The saline and IDPN groups were gavaged with saline (0.9%) at20ml·kg-1, the group with Tia at50mg·kg-1, and the group with JPZDD at20g·kg□1respectively once a day for8consecutive weeks.
     The results show as followed:
     1. The effect of JPZDD on the stereotyped behavior of TS model mice.
     TS model mouse induced by IDPN showed abnormal stereotypes in different degrees. Remarkably, severity of stereotypes in either Tia or JPZDD group decreased significantly as compared to IDPN alone group (P<0.05). Comparison between administrated groups showed the average score of JPZDD was lower than Tia (P<0.05) at the end of experiment although it was still higher than that of saline group (P<0.05).
     2. The effect of JPZDD on the contents of DA, HVA, D1R, D2R in the striatum of TS model mice.
     Compared with IDPN group, the level of DA in the other3groups were highly expressed (P<0.05); the levels of HVA and D2R in4groups showed no differences (P>0.05); Compared with IDPN group (P>0.05), the level of D1R in JPZDD group rose obviously (P<0.05).
     3. The effect of JPZDD on the expression of DAT in the striatum of TS model mice.
     Coronal scans manifested by PET imaging showed high tracer accumulation at bilateral striatum regions in saline group with uniform distribution and symmetric morphous. Marked fuzzy images and low accumulation of11C-β-CFT were observed in TS model mice. After8w, the uptake ratio of11C-β-CFT was significantly higher in both Tia and JPZDD treated groups than that in IDPN group (P<0.01). Furthermore, the uptake ratio of11C-β-CFT in JPZDD group was significantly higher than that in Tia group (P<0.05).
     4. The effect of JPZDD on the levels of Glu, GLT1in the striatum of TS model mice.
     Compared with saline group, the levels of Glu and GLT1in IDPN group were highly expressed (P<0.05). They declined to lower levels in administrative groups. Hereinto, the expression of Glu in JPZDD group down-regulated more obviously than that in IDPN group (P<0.05), and the level of GLT1in Tia and JPZDD groups decreased more apparently compared with IDPN group (P<0.01), but still higher than that in saline group (P<0.01).
     Taken together, JPZDD is an effective formula for treating TS and it is probable that the changes of neurobiochemistry involving DA and Glu systems exist in the stria tum of TS model mice. They mainly manifes ted as:abnormal expressions of DA and DRs; the lower expression of DAT and higher levels of Glu and GLT1. JPZDD may up-regulate the DAT expression in the striatum which indirectly reinforces the recapture of DA back to the presynaptic membrane. It also decreases the content of Glu which direct ly inhibit the motor excitability during substantial nigra-striatum pathway. It may further reflect the anti-tics effect of JPZDD owes to double systems and multiple targets.
引文
[1]Bloch MH, Leckman JF. Clinical course of Tourette syndrome [J]. J Psychosom Res,2009,67(6):497-501.
    [2]Robertson MM. The prevalence and epidemiology of Gilles de la Tourette syndrome part 1:the epidemiological and prevalence studies[J]. J Psychosom Res,2008,65 (5):461-472.
    [3]Stern JS, Burza S, Robertson MM. Gilles de la Tourette's syndrome and its impact in the UK[J]. Postgrad Med J,2005,81 (951):12-19.
    [4]Cavanna AE, Eddy C, Rickards HE. Cognitive functioning in Tourette syndrome [J]. Discov Med,2009,8 (43):191-195.
    [5]Harvey S. Singer, Karen Minzer. Neurobiology of Tourette's syndrome: concepts of neuroanatomic localization and neurochemical abnormalities[J]. Brain and Development,2003,25(1):S70-S84.
    [6]Haber SN, Kim KS, Ma illy P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning[J]. J Neurosci,2006,26(23):8368-8376.
    [7]Scahill L, Erenberg G, Berlin CM Jr, et al. Contemporary assessment and pharmacotherapy of Tourette syndrome[J]. NeuroRx,2006,3(2):192-206.
    [8]Kenney C, Hunter C, Jankovic J. Long-term tolerability of tetrabenazine in the treatment of hyperkinetic movement disorders [J]. Mov Disord,2007, 22(2):193-197.
    [9]Wolgin DL. Amphetamine stereotypy, the basal ganglia, and the "selection problem"[J]. Behav Brain Res,2012,231 (2):297-308.
    [10]Anderson GM, Leckman JF, Cohen DJ. Neurochemical and neuropeptide systems. In:Tourette's syndrome Tics, Obsessions, Compulsions—Developmental Psychopathology and Clinical Care. Leckman JF, Cohen DJ (eds). New York: John Wiley and Sons,1998,261-281.
    [11]Lv H, Li A, Liu F, Ma H, Yao B. Effects of gastrodin on the dopamine system of Tourette's syndrome rat models[J]. Biosci Trends,2009,3(2):58-62.
    [12]Gilbert DL, Dure L, Sethuraman G, et al. Tic reduction with pergolide in a randomized controlled trial in children [J]. Neurology,2003, 60(4):606-611.
    [13]Anca MH, Giladi N, Korczyn AD. Ropinirole in Gilles de la Tourette syndrome [J]. Neurology,2004,62 (9):1626-1627.
    [14]Steeves TD, Ko JH, Kideckel DM, et al. Extrastriatal dopaminergic dysfunction in tourette syndrome[J]. Ann Neurol,2010,67(2):170-181.
    [15]Minzer K, Lee O, Hong JJ, et al. Increased prefrontal D2 protein in Tourette syndrome:a postmortem analysis of frontal cortex and striatum[J]. J Neurol Sci,2004,219(1-2):55-61.
    [16]Yoon DY, Gause CD, Leckman JF, Singer HS. Frontal dopaminergic abnormality in Tourette syndrome:a postmortem analysis [J]. J Neurol Sci,2007, 255(1-2):50-56.
    [17]Li LB, Chen N, Ramamoorthy S, et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter[J]. J Biol Chem, 2004,279(20):21012-21020.
    [18]Cragg SJ, Rice ME. DAncing past the DAT at a DA synapse [J]. Trends Neurosci, 2004,27(5):270-277.
    [19]Faraone SV, Pliszka SR, Olvera RL, et al. Efficacy of Adderall and methylphenidate in attention deficit hyperactivity disorder:A reanalysis using drug-placebo and drug-drug response curve methodology[J]. J Child Adolesc Psychopharmacol,2001,11(2):171-180.
    [20]Daniels GM, Amara SG. Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters[J]. J Biol Chem,1999,274(50):35794-35801.
    [21]Loder MK, Melikian HE. The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines[J]. J Biol Chem,2003,278(24):22168-22174.
    [22]Gulley JM, Zahniser NR. Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic receptor ligands [J]. Eur J Pharmacol,2003,479 (1-3):139-152.
    [23]Mortensen OV, Amara SG. Dynamic regulation of the dopamine transporter[J]. Eur J Pharmacol,2003,479 (1-3):159-170.
    [24]Fleckenstein AE, Haughey HM, Metzger RR, et al. Differential effects of psychostimulants and related agents on dopaminergic and serotonergic transporter function[J]. Eur J Pharmacol,1999,382(1):45-49.
    [25]Saunders C, Ferrer JV, Shi L, et al. Amphetamine-induced loss of human dopamine transporter activity:An internalization-dependent and cocaine-sensitive mechanism[J]. Proc Natl Acad Sci U S A,2000, 97(12):6850-6855.
    [26]Daws LC, Callaghan PD, Moron JA, et al. Cocaine increases dopamine uptake and cell surface expression of dopamine transporters [J]. Biochem Biophys Res Commun,2002,290(5):1545-1550.
    [27]Little KY, Elmer LW, Zhong H, Scheys JO, Zhang L. Cocaine induction of dopamine transporter trafficking to the plasma membrane [J]. Mol Pharmacol, 2002,61(2):436-445.
    [28]Lonart G, Johnson KM. Inhibitory effects of nitric oxide on the uptake of [3H] dopamine and[3H] glutamate by striatal synaptosomes[J]. J Neurochem, 1994,63(6):2108-2117.
    [29]Mayfield RD, Maiya R, Keller D, et al. Ethanol potentiates the function of the human dopamine transporter expressed in Xenopus oocytes[J]. J Neurochem,2001,79(5):1070-1079.
    [30]Zhang L, Reith ME. Regulation of the functional activity of the human dopamine transporter by the arachidonic acid pathway[J]. Eur J Pharmacol, 1996,315(3):345-354.
    [31]Ciliax BJ, Heilman C, Demchyshyn LL, et al. The dopamine transporter: Immunochemical characterization and localization in brain[J]. J Neurosci, 1995,15(3):1714-1723.
    [32]Malison RT, McDougle CJ, van Dyck CH, et al.[1231] beta-CIT SPECT imaging of striatal dopamine transporter binding in Tourette's disorder [J]. Am J Psychiatry,1995,152(9):1359-1361.
    [33]Heinz A, Knable MB, Wolf SS, et al. Tourette's syndrome:[I-123] beta-CIT SPECT correlates of vocal tic severity [J]. Neurology,1998, 51(4):1069-1074.
    [34]Mu ller-Vahl KR, Berding G, Brucke T, et al. Dopamine transporter binding in Gilles de la Tourette syndrome[J]. J Neurol,2000,247 (7):514-520.
    [35]Serra-Mestres J, Ring HA, Costa DC, et al. Dopamine transporter binding in Gilles de la Tourette syndrome:a [1231] FP-CIT/SPECT study [J]. Acta Psychiatr Scand,2004,109 (2):140-146.
    [36]Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K. The vesicular monoamine transporter is not regulated by dopaminergic drug treatments[J]. Eur J Pharmacol,1995,294 (2-3):577-583.
    [37]Albin RL, Koeppe RA, Bohnen NI, et al. Increased ventral striatal monoaminergic innervation in Tourette syndrome[J]. Neurology,2003, 61 (3):310-315.
    [38]Meyer P, Bohnen NI, Minoshima S, et al. Striatal presynaptic monoaminergic vesicles are not increased in Tourette's syndrome[J]. Neurology,1999, 53(2):371-374.
    [39]Albin RL, Koeppe RA, Wernette K, et al. Striatal[11C] dihydrotetrabenazine and [11C]methylphenidate binding in Tourette syndrome[J]. Neurology,2009, 72(16):1390-1396.
    [40]Ben-Dor DH, Zimmerman S, Sever J, et al. Reduced platelet vesicular monoamine transporter density in Tourette's syndrome pediatric male patients [J]. Eur Neuropsychopharmacol,2007,17(8):523-536.
    [41]Ernst M, Zametkin AJ, Jons PH, et al. High presynaptic dopaminergic activity in children with Tourette's disorder[J]. J Am Acad Child Adolesc Psychiatry, 1999,38(1):86-94.
    [42]Rabey JM, Oberman Z, Graff E, Korczyn AD. Decreased dopamine uptake into platelet storage granules in Gilles de la Tourette disease[J]. Biol Psychiatry,1995,38 (2):112-115.
    [43]Kumar R, Lang AE. Coexistence of tics and parkinsonism:evidence for non-dopaminergic mechanisms in tic pathogenesis[J]. Neurology,1997, 49(6):1699-1701.
    [44]Wolf SS, Jones DW, Knable MB, et al. Tourette syndrome:prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding[J]. Science,1996,273(5279):1225-1227.
    [45]Minzer K, Lee O, Hong JJ, Singer HS. Increased prefrontal D2 protein in Tourette syndrome:a postmortem analysis of frontal cortex and striatum[J]. J Neurol Sci,2004,219(1-2):55-61.
    [46]Hwang WJ, Yao WJ, Fu YK, Yang AS. [99mTc] TRODAT-1/[1231] IBZM SPECT studies of the dopaminergic system in Tourette syndrome[J]. Psychiatry Res,2008, 162(2):159-166.
    [47]Gilbert DL, Christian BT, Gelfand MJ, et al. Altered mesolimbocortical and thalamic dopamine in Tourette syndrome [J]. Neurology,2006, 67(9):1695-1697.
    [48]Buse J, Schoenefeld K, Munchau A, Roessner V. Neuromodulation in Tourette syndrome:Dopamine and beyond[J]. Neurosci Biobehav Rev,2012, S0149-7634.
    [49]Singer HS. The neurochemistry of Tourette syndrome. In:Martino D, Leckman J (Eds.). Tourette Syndrome. New York:Oxford University Press.
    [50]Singer HS, Szymanski S, Giuliano J, et al. Elevated intrasynaptic dopamine release in Tourette's syndrome measured by PET[J]. Am J Psychiatry,2002, 159(8):1329-1336.
    [51]Grace AA. Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia[J]. J Neural Transm Gen Sect,1993, 91(2-3):111-134.
    [52]Millan MJ, Peglion JL, Vian J, et al. Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297:1. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy [J]. J Pharmacol Exp Ther,1995, 272(2):885-898.
    [53]孙凤艳.医学神经生物学[M].上海:上海科学技术出版社,2008:118,119,140.
    [54]Leckman JF, Goodman WK, Anderson GM, et al. Cerebrospinal fluid biogenic amines in obsessive compulsive disorder, Tourette's syndrome, and healthy controls [J]. Neuropsychopharmacology,1995,12(1):73-86.
    [55]Chappell P, Leckman J, Goodman W, et al. Elevated cerebrospinal fluid corticotrophin-releasing factor in Tourette's syndrome:comparison to obsess ive compulsive disorder and normal controls[J]. Biol Psychiatry,1996, 39(9):776-783.
    [56]Corbett BA, Mendoza SP, Baym CL, Bunge SA, Levine S. Examining cortisol rhythmicity and responsivity to stress in children with Tourette syndrome [J]. Psychoneuroendocrinology,2008,33 (6):810-820.
    [57]Comings DE, Gade-Andavolu R, Gonzalez N, et al. Additive effect of three noradrenergic genes (ADRA2a, ADRA2C, DBH) on attention-deficit hyperactivity disorder and learning disabilities in Tourette syndrome subjects[J]. Clin Genet,1999,55 (3):160-172.
    [58]Cohen DJ, Young JG, Nathanson JA, Shaywitz BA. Clonidine in Tourette's syndrome[J]. Lancet,1979,2 (8142):551-553.
    [59]Scahill L, Chappell PB, Kim YS, et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder [J]. Am J Psychiatry,2001, 158(7):1067-1074.
    [60]Bloch MH, Panza KE, Landeros-Weisenberger A, Leckman JF. Meta-analysis: treatment of attention-deficit/hyperactivity disorder in children with comorbid tic disorders[J]. J Am Acad Child Adolesc Psychiatry,2009, 48(9):884-893.
    [61]Anderson GM, Leckman JF, Cohen, DJ:Neurochemical and neuropeptide systems. In:Tourette's Syndrome Tics, Obsessions, Compulsions-Developmental Psychopathology and Clinical Care. Leckman JF, Cohen DJ (eds). New York: John Wiley and Sons,1998,261-281.
    [62]Niesler B, Frank B, Hebebrand J, Rappold G. Serotonin receptor genes HTR3A and HTR3B are not involved in Gilles de la Tourette syndrome [J].Psychiatr Genet,2005,15 (4):303-304.
    [63]Dehning S, Muller N, Matz J, et al. A genetic variant of HTR2C may play a role in the manifestation of Tourette syndrome [J]. Psychiatr Genet,2010, 20(1):35-38.
    [64]Bruggeman R, van der Linden C, Buitelaar JK, et al. Risperidone versus pimozide in Tourette's disorder:a comparative double-blind parallel-group study [J]. J Clin Psychiatry,2001,62(1):50-56.
    [65]Gaffney GR, Perry PJ, Lund BC, et al. Risperidone versus pimozide in Tourette's disorder:a comparative double-blind parallel-group study[J]. J Am Acad Child Adolesc Psychiatry,2002,41 (3):330-336.
    [66]Karam-Hage M, Ghaziuddin N. Olanzapine in Tourette's disorder[J]. J Am Acad Child Adolesc Psychiatry,2000,39(2):139.
    [67]Sandor P, Stephens RJ. Risperidone treatment of aggressive behavior in children with Tourette syndrome [J]. J Clin Psychopharmacol,2000, 20(6):710-712.
    [68]Ercan-Sencicek AG, Stillman AA, Ghosh AK, et al. L-Histidine Decarboxylase and Tourette's Syndrome[J]. N Engl J Med,2010,362(20):1901-1908.
    [69]Fernandez TV, Sanders SJ, Yurkiewicz IR, et al. Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism[J]. Biol Psychiatry,2012,71(5):392-402.
    [70]Lei J, Deng X, Zhang J, et al. Mutation screening of the HDC gene in Chinese Han patients with Tourette syndrome[J]. Am J Med Genet B Neuropsychiatr Genet,2012,159B (1):72-76.
    [71]Ito C, Onodera K, Watanabe T, Sato M. Effects of histamine agents on methamphetamine-induced stereotyped behavior and behavioral sensitization in rats[J]. Psychopharmacology (Berl),1997,130 (4):362-367.
    [72]Nowak P, Noras L, Jochem J, et al. Histaminergic activity in a rodent model of Parkinson's disease [J]. Neurotox Res,2009,15 (3):246-251.
    [73]Kaneko T, Akiyama H, Nagatsu I, Mizuno N. Immunohistochemical demonstration of glutaminase in catecholaminergic and serotoninergic neurons of rat brain [J]. Brain Res,1990,507 (1):151-154.
    [74]Sulzer D, Joyce MP, Lin L, et al. Dopamine neurons make glutamatergic synapses in vitro[J]. J Neurosci,1998,18 (12):4588-4602.
    [75]Yang CR, Seamans JK, Gorelova N. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex [J]. Neuropsychopharmacology,1999,21 (2):161-194.
    [76]Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons[J]. Proc Natl Acad Sci USA,2001,98 (1):301-306.
    [77]Jackson ME, Frost AS, Moghaddam B. Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens[J]. J Neurochem,2001,78(4):920-923.
    [78]Taber MT, Fibiger HC. Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat:modulation by metabotropic glutamate receptors [J]. J Neurosci,1995,15(5 Pt. 2):3896-3904.
    [79]Daly DA, Moghaddam B. Actions of clozapine and haloperidol on the extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats[J]. Neurosci Lett,1993,152(12):61-64.
    [80]Morari M,O'Connor WT, Ungerstedt U, Fuxe K. Dopamine Dl and D2 receptor antagonism differentially modulates stimulation of striatal neurotransmitter levels by N-methyl-D-aspartic acid[J]. Eur J Pharmacol, 1994,256(1):23-30.
    [81]Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum[J]. Eur J Neurosci, 2001,13 (6):1071-1077.
    [82]Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens[J]. Annu Rev Neurosci, 2000,23:185-215.
    [83]Cepeda C, Levine MS. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum[J]. Dev Neurosci,1998,20(1):1-18.
    [84]Cepeda C, Hurst RS, Altemus KL, et al. Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice[J]. J Neurophysiol,2001,85 (2):659-670.
    [85]Hnasko TS, Chuhma N, Zhang H, et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo [J]. Neuron,2010, 65(5):643-656.
    [86]Anderson GM, Pollak ES, Chatterjee D, et al. Postmortem analysis of subcortical monoamines and amino acids in Tourette syndrome[J]. AdvNeurol, 1992,58:123-133.
    [87]Anderson GM, Pollak ES, Chatterjee D, et al. Brain monoamines and amino acids in Gilles de la Tourette's syndrome:a preliminary study of subcortical regions[J]. Arch Gen Psychiatry,1992,49(7):584-586.
    [88]Singer HS, Morris C, Grados M. Glutamatergic modulatory therapy for Tourette syndrome[J]. Med Hypotheses,2009,74(5):862-867.
    [89]McGrath MJ, Campbell KM, Parks CR, Burton FH. Glutamatergic drugs exacerbate symptomatic behavior in a transgenic model of comorbid Tourette's syndrome and obsessive compulsive disorder[J]. Brain Res,2000,877(1):23-30.
    [90]Barr CL, Wigg KG, Pakstis AJ, et al. Genome scan for linkage to Gilles de la Tourette syndrome[J]. Am J Med Genet,1999,88(4):437-445.
    [91]Adamczyk A, Gause CD, Sattler R, et al. Genetic and functional studies of a missense variant in a glutamate transporter, SLC1A3, in Tourette syndrome [J]. Psychiatr Genet,2011,21 (2):90-97.
    [92]Ghanizadeh A. Methionine sulfoximine as a novel hypothesized treatment for Tourette's syndrome[J]. J Neurol Sci,2010,293 (1-2):126.
    [93]Ghoddoussi F, Galloway MP, Jambekar A, et al. Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS[J]. J Neurol Sci,2010,290(12):41-47.
    [94]Leckman JF, Peterson BS, Anderson GM, et al. Pathogenesis of Tourette's syndrome[J]. J Child Psychol Psychiatry,1997,38(1):119-142.
    [1]朱先康,韩新民,王敏华,等. “定抽颗粒”治疗小儿多发性抽动症30例临床观察[J].江苏中医药,2009,41(2):37-38.
    [2]张霞,史英杰,刘鑫.涤痰化瘀法治疗小儿多发性抽动症32例临床观察[J].四川中医,2009,27(3):87-88.
    [3]胡天成,周江.抽动秽语综合征辨证论治探讨[J].中国中西医结合儿科学,2009,1(1):15-16.
    [4]王志学,李安源.李安源教授治疗小儿多发性抽动症的学术思想[J].云南中医中药杂志,2011,32(8):11-13.
    [5]刘奔.叶冬兰治疗儿童多发性抽动症经验[J].山东中医杂志,201 0,29(85):343-344.
    [6]李华,王霞芳.王霞芳从肝论治儿童多发性抽动症经验[J].陕西中医,2011,33(12):1644-1646.
    [7]刘波.张天文从肝论治小儿多发性抽动症[J].实用中医内科杂志,2012,26(8):11-12.
    [8]齐金娜,刘虹.陈宝义教授从肝脾论治小儿抽动障碍经验[J].长春中医药大学学报,2012,28(1):60-61.
    [9]于作洋.刘弼臣从肺论治小儿抽动-秽语综合征经验[J].中国中医药信息杂志,2006,13(4):81.
    [10]李香玉,原晓风.从肺论治小儿疾病理论探析[J].世界中西医结合杂志,2012,7(9):745-746.
    [111胡细佑,吴远华,朱广旗.朱广旗教授治疗小儿抽动症经验[J].内蒙古中医药,2012,18:126.
    [12]姚奇鹏. 疏肝健脾法防治小儿抽动秽语综合征 [J]. 河南中医,2011,31(3):220-221.
    [13]符顺丹,孙丽平.孙丽平教授治疗小儿多发性抽动症经验[J].中国中西医结合儿科学,2012,4(6):510-511.
    [14]任晓峰,曾鸿鹄.陈运生教授治疗儿童多发性抽动症经验[J].中医儿科杂志,2009,5(4):1-2.
    [15]朱薇,封玉琳.封玉琳标本兼顾治疗抽动-秽语综合征经验[J].长春中医药大学学报,2012,28(5):802-803.
    [16]田慧,李宜瑞,刘振.滋肾调肝法治疗注意缺陷多动障碍共患抽动障碍46例临床观察[J].中医儿科杂志,2011,7(3):26-28.
    [17]孔祥勇,孙云廷,王延飞,王庚.从肠胃积滞论治小儿抽动症[J].光明中医,2006,21(6):48.
    [18]隆红艳,张骠.从脑髓神机失调角度认识小儿多发性抽动症的关键病机[J].辽宁中医杂志,2012,39(1):73-75.
    [19]张霞,史英杰.史英杰辨治小儿多发性抽动症经验[J].北京中医药,2009,28(1):20-21.
    [20]晋黎,马融,胡思源等.熄风止动片治疗小儿多发性抽动症肝风内动挟痰证的临床研究[J].现代药物与临床,2010,25(2):148-151.
    [21]张新建,朱希伟.益脑止痉颗粒治疗小儿多发性抽动症97例疗效观察[J].中国中西医结合儿科学,2011,3(5):398-399.
    [22]王芬,彭清华,张明亮.蝉蜕钩藤饮治疗小儿抽动症临床研究[J].山东中医杂志,2011,30(4):231-232.
    [23]刘玉凤,王雪峰,刘焯.文静汤治疗小儿多发性抽动症30例临床疗效观察[J].中医儿科杂志,2010,6(3):35-37.
    [24]李华伟,马丙祥,冯斌等.补脾止痉汤治疗小儿多发性抽动症的临床研究[J].中医学报,2011,26(160):1091-11093.
    [25]张骠,孔群,林节等.静安口服液为主治疗小儿多发性抽动症的临床研究[J].南京中医药大学学报,2008,24(3):156-159.
    [26]朱先康,韩新民,王敏华.定抽颗粒治疗小儿多发性抽动症的临床及实验研究[J].中华中医药杂志,2011,26(2):399-402.
    [27]刘慧林,夏淑文,周德安.周德安针药结合治疗儿童抽动障碍临床经验[J].北京中医药,2010,29(12):898-900.
    [28]刘丽,李晓陵,王丰等.头部电针治疗抽动秽语综合征临床研究[J].中医药学报,2010,38(5):128-131.
    [29]孙晓华.推拿配合静神止痉汤治疗小儿多发性抽动症(心肝火旺型)疗效观察[J].中国中西医结合儿科学,2010,2(6):554-555.
    [30]何乐中,黄克勤,李俊纬,钱拉拉.针刺配合耳穴贴压治疗儿童多发性抽动症29例[J].浙江中医杂志,2012,47(12):907.
    [31]薛斌,樊玲.四步法治疗小儿面部抽动症15例[J].河南中医,2013,33(2):272-273.
    [32]王华富.心理与中医结合治疗儿童多发性抽动症30例体会[J].中医临床研究,2011,3(21):41,43.
    [33]杨自金.硫必利与氟哌啶醇治疗Tourette综合征疗效及安全性[J].临床儿科杂志,2012,30(11):1051-1053.
    [34]朱秋暹.利培酮与泰必利治疗小儿多发性抽动症的效果比较[J].吉林医学,2012,33(30):6502-6503.
    [35]姚阳,麻宏伟,卢瑶等.氟西汀和氟哌啶醇对DOI诱导头部抽动的小鼠模型的作 用[J].中国当代儿科杂志,2007,9(5):469-471.
    [36]仲崇丽,崔永华,郑毅.奎硫平合并舍曲林治疗成人Tourette综合征临床观察[J].临床精神医学杂志,201 0,20(4):256-257.
    [37]阳中明,蔡昌群.氟西汀治疗强迫症对照研究的Meta分析[J].临床合理用药,2012,5(7C):18-19.
    [38]陈汉华.帕罗西汀与氯丙咪嗪治疗强迫症的临床效果比较[J].当代医学,2012,18(35):23-24.
    [39]刘严,张华,刘可智等.氟伏沙明合并利培酮治疗儿童强迫症的随机对照研究[J].中国健康心理学杂志,2012,20(10):1460-1462.
    [40]刘俊德,李峥,李幼辉.舍曲林联合小剂量利培酮治疗难治性强迫症临床研究[J].中国实用神经疾病杂志,2012,15(8):24-26.
    [41]周延安.可乐定治疗Tourette综合征的临床疗效观察[J].中国实用儿科杂志,1996,11(2):98.
    [42]周延安,饶立德,黄新芳.可乐定透皮控释制剂治疗抽动秽语综合征的临床观察[J].中国实用儿科杂志,2001,16(7):446.
    [43]杜亚松,李华芳,钟佑等.可乐定透皮贴剂治疗抽动障碍的随机、双盲、安慰剂对照、多中心临床试验[J].2006,18(4):193-198.
    [44]康华,张月芳,焦富勇等.可乐定透皮贴剂治疗儿童抽动-秽语综合征的疗效观察[J].中国当代儿科杂志,2009,11(7):537-539.
    [45]刘平,吴惧,周文智等.可乐定治疗共患注意缺陷多动障碍的抽动障碍患儿的临床疗效[J].儿科药学杂志,2012,18(6):18-20.
    [46]徐光洪,齐培,王伟松.可乐定合并盐酸托莫西汀对Tourette综合征共病注意缺陷多动障碍的疗效观察[J].中国神经精神疾病杂志,2011,37(3):175,191.
    [47]陈智敏,雷庆华.阿立哌唑与氟哌啶醇治疗抽动障碍的对照研究[J].中国民康医学,2012,24(4):402.
    [48]赵怀安,张勤峰,孙梦月.阿立哌唑治疗Tourette综合征的临床研究[J].中国健康心理学杂志,2012,20(12):1782-1783.
    [49]梁国安,姚桂飞.妥泰治疗儿童多发性抽动症的疗效观察[J].2010,26(22):4192-4193.
    [50]邵明玉,李海波,刘洋等.托吡酯治疗儿童抽动-秽语综合征56例临床分析[J].2012,29(12):1124-1125.
    [51]张义.五氟利多暗服药与氟哌啶醇治疗Tourette综合征对照研究[J].中国药房,2007,18(23):1083-1084.
    [52]于欣,刘国凤.肌苷、赖氨肌醇维B12口服溶液治疗抽动障碍的效果[J].中国社区医师·医学专业,2012,14(3):107.
    [53]潘丽雯,梁惠慈,肖华.肌苷治疗2-4岁幼儿暂时性抽动障碍的疗效观察[J].实用医学杂志,2012,28(3):515-516.
    [54]刘志刚,潘志伟.丙戊酸钠治疗儿童难治性多发性抽动症的疗效[J].实用医学杂志,2012,28(9):1570-1571.
    [55]Hong L, Anyuan L, Hongbo M, et al. Effects of Ningdong granule on the dopamine system of Tourette's syndrome rat models[J]. Journal of Ethnopharmacology, 2009,124(3):488-492.
    [56]朱先康,韩新民,王敏华.定抽颗粒治疗小儿多发性抽动症的临床及实验研究[J].中华中医药杂志,2011,26(2):399-402.
    [57]崔霞,王素梅.健脾止动汤对多发性抽动症模型鼠自主活动的影响及其作用机制的研究[J].北京中医药大学学报(中医临床版),2011,18(1):1-4.
    [58]马碧涛,吴敏.不同组方的速效祛风止动方对抽动障碍大鼠行为的影响[J].中国中医药信息杂志,2011,18(1):38-41.
    [59]吴敏,马碧涛,王树霞等.祛风止动精简方对抽动障碍大鼠行为的影响[J].中国中西医结合杂志,2011,31(10):1361-1372.
    [60]隆红艳,张骠.静安口服液对小儿多发性抽动症模型大鼠脑内多巴胺转运体分布的影响[J].中国实验方剂学杂志,2011,17(21):182-183.
    [61]隆红艳,严如华,张骠.静安口服液对小儿多发性抽动症模型大鼠脑及血浆氨基酸含量的影响[J].中国中医药科技,2010,17(4):304-305.
    [62]刘岩,卫利,陈美娟等.Delphi法在儿童多发性抽动症脾虚痰聚证证候标准筛选中的应用[J].四川中医,2011,29(3):71-73.
    [63]王素梅,吴力群,郑军等.刘弼臣诊治小儿多发性抽动症临证经验与规律的数据化整理[J].北京中医药,2008,27(12):937-939.
    [64]吴敏,肖光华,马碧涛等.基于因子分析的儿童抽动障碍中医证候规律研究[J].中医杂志,2010,51(6):147-149.
    [65]郝宏文.王素梅扶土抑木法治疗多发性抽动症经验[J].中国中医药信息杂志,2010,17(3):86.
    [66]王素梅,吴力群,崔霞.平肝健脾化痰法治疗儿童多发性抽动症285例[J].辽宁中医杂志,2006,33(11):1431-1432.
    [67]吴力群,王素梅,崔霞.六君子汤合泻青丸加味治疗儿童多发性抽动症临床观察[J].四川中医,2006,24(10):103-104.
    [68]崔霞,王素梅,吴力群.中西医结合治疗儿童多发性抽动症30例疗效观察[J].中国中医药现代远程教育,2007,5(12):41-42.
    [69]王素梅,陈自佳,吴力群等.复方中药对多发性抽动症模型鼠行为的影响[J].北京中医药,2010,29(1):65-66.
    [70]卫利,王素梅,岳广欣等.健脾止动汤对多发性抽动症模型鼠纹状体多巴胺通路的影响[J].中国中医药信息杂志,2009,16(12):38-40.
    [1]王素梅,吴力群,崔霞.平肝健脾化痰法治疗儿童多发性抽动症285例[J].辽宁中医杂志,2006,33(11):1431-1432.
    [2]吴力群,王素梅,崔霞.六君子汤合泻青丸加味治疗儿童多发性抽动症临床观察[J].四川中医,2006,24(10):103-104.
    [3]崔霞,王素梅,卫利等.健脾止动汤对多发性抽动症模型鼠自主活动的影响及其作用机制的研究[J].北京中医药大学学报(中医临床版),2011,18(1):1-4.
    [4]王素梅,陈自佳,吴力群等.复方中药对多发性抽动症模型鼠行为的影响[J].北京中医药,2010,29(1):65-66.
    [5]Singer HS. Neurobiology of Tourette syndrome [J]. Neurol Clin,1997, 15(2):357-379.
    [6]Singer HS, Butler IJ, Tune LE, Seifert WE Jr, Coyle JT. Dopaminergic dsyfunction in Tourette syndrome [J]. Ann Neurol,1982,12 (4):361-366.
    [7]Singer HS, Hahn IH, Moran TH. Abnormal dopamine uptake sites in postmortem striatum from patients with Tourette's syndrome[J]. Ann Neurol,1991, 30 (4):558-562.
    [8]郝伟红,欧阳颖.肌苷对Tourette综合征大鼠脑组织多巴胺D2受体和多巴胺转运蛋白的影响[J].实用儿科临床杂志,2011,26(8):613-615.
    [9]卫利,王素梅,岳广欣等.健脾止动汤对多发性抽动症模型鼠纹状体多巴胺通路的影响[J].中国中医药信息杂志,2009,16(12):38-40.
    [10]Herzberg I, Valencia-Duarte AV, Kay VA, et al. Association of DRD2 variants and Gilles de la Tourette syndrome in a family-based sample from a South American population isolate[J]. Psychiatr Genet,2010,20(4):179-183.
    [11]Steeves TD, Ko JH, Kideckel DM, et al. Extrastriatal dopaminergic dysfunction in tourette syndrome [J]. Ann Neurol,2010,67(2):170-181.
    [12]Iida K, Iwata E, Asanuma M, et al. Effects of repeated cyclosporin A dministration on Iminodipropionitrile-induced dyskinesia and TRE-/CRE-binding activities in rat brain[J]. Neurosci Res,1998,30(2):185-193.
    [13]Albin RL, Koeppe RA, Bohnen NI, et al. Increased ventral striatal monoaminergic innervation in Tourette syndrome[J]. Neurology,2003, 61(3):310-315.
    [14]Jijun L, Zaiwang L, Anyuan L, et al. Abnormal expression of dopamine and serotonin transporters associated with the pathophysiologic mechanism of Tourette syndrome[J]. Neurol India,2010,58 (4):523-529.
    [1]Winter C, Heinz A. Tourette Syndrome as a Neurotransmitter Disorder [J]. Encyclopedia of Neuroscience,2009,1035-1040.
    [2]Rickards H. Functional neuroimaging in Tourette syndrome[J]. J Psychosom Res,2009,67(6):575-584.
    [3]Wong DF, Brasi□ JR, Singer HS, et al. Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome:clues from an in vivo neurochemistry study with PET [J]. Neuropsychopharmacology,2008, 33(6):1239-1251.
    [4]Wallace TL, Gudelsky GA, Vorhees CV. Methamphetamine-induced neurotoxicity alters locomotor activity, stereotypic behavior, and stimulated dopamine release in the rat [J]. J Neurosci,1999,19 (20):9141-9148.
    [5]Zahniser NR, Sorkin A. Trafficking of dopamine transporters in psychostimulant actions[J]. Semin Cell Dev Biol,2009,20(4):411-417.
    [6]Jones SR, Gainetdinov RR, Wightman RM, Caron MG. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter [J]. J Neurosci, 1998,18(6):1979-1986.
    [7]Roessner V, Plessen KJ, Rothenberger A, et al. European clinical guidelines for Tourette syndrome and other tic disorders. Part Ⅱ:pharmacological treatment[J]. Eur Child Adolesc Psychiatry,2011,20 (4):173-196.
    [8]Bressan RA, Jones HM, Pilowsky LS. Atypical antipsychotic drugs and tardive dyskinesia:relevance of D2 receptor affinity [J]. J Psychopharmacol,2004, 18(1):124-127.
    [9]王瑞民,王庆胜,郭喆等.多巴胺转运蛋白PET成像在建立帕金森病大鼠模型中的作用[J].中国医学影像学杂志,2008,16(1):1-4.
    [10]张锦明,田嘉禾,郭喆等.在线自动化制备多巴胺转运蛋白显像剂11C-β-CFT[J].中华核医学杂志,2005,25(3):142-145.
    [11]Stuss DT, Alexander MP. Executive functions and the frontal lobes:a conceptual view[J]. Psychol Res,2000,63 (3-4):289-298.
    [12]Kates WR, Frederikse M, Most of sky SH, et al. MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome[J]. Psychiatry Res,2002,116 (1-2):63-81.
    [13]Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation:from pathophysiology to therapeutics [J]. Adv Drug Deliv Rev,2008, 60(13-14):1527-1533.
    [14]Feigin A, Kurlan R, McDermott MP, et al. A controlled trial of deprenyl in children with Tourette's syndrome and attention deficit hyperactivity disorder [J]. Neurology,1996,46(4):965-968.
    [15]Duan K, Y. Tang Y. Effects of total alkaloids from Pinellia ternate on learning, memory and oxidative stress in Parkinson's disease rat models [J]. Acta Laboratorium Animalis Scientia Sinica,2012,20(2):49-52.
    [16]Ruan Q, He XX, Hu YY, Li F. Effects of different components of Ligusticum chuanxiong Hort of ferulic acid and ligustrazine on the nervous system of mice[J]. Chinese Journal of Hospital Pharmacy,2007,27(8):1087-1090.
    [17]Zhang ZQ, Tian JY, Zhang J. Studies on the antioxidative activity of polysaccharides from radix saposhnikoviae [J]. Journal of Chinese Medicinal Materials,2008,31(2):268-272.
    [18]Yu L, Zhang Y, Ma R, et al. Potent protection of ferulic acid against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain[J]. European Neuropsychopharmacology,2006,16(3):170-177.
    [19]Xu DD, Hoeven R, Rong R, Cho WC. Rhynchophylline Protects Cultured Rat Neurons against Methamphetamine Cytotoxicity [J]. Evid Based Complement Alternat Med,2012,636091.
    [20]Peng C, Xie X, Wang L, Guo L, Hu T. Pharmacodynamic action and mechanism of volatile oil from Rhizoma Ligustici Chuanxiong Hort. on treating headache [J]. Phytomedicine,2009,16(1):25-34.
    [21]Wang YH, Liang S, Xu DS, et al. Effect and mechanism of senkyunolide I as an ant i-migraine compound from Ligust icum chuanxiong[J]. J Pharm Pharmacol, 2011,63(2):261-266.
    [22]Berridge KC, Aldridge JW, Houchard KR, Zhuang X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice:a model of obsessive compulsive disorder and Tourette's[J]. BMC Biol,2005,3:4.
    [23]Rivest R, Falardeau P, Di Paolo T. Brain dopamine transporter:gender differences and effect of chronic haloperidol [J]. Brain Res,1995, 692 (1-2):269-272.
    [24]Ogawa N, Mizukawa K, Haba K, Sato H. Neurotransmitter and receptor alterations in the rat persistent dyskinesia model induced by iminodipropionitrile[J]. Eur Neurol,1990,30 Suppl 1:31-40.
    [1]刘智胜.小儿多发性抽动症[M].北京:人民卫生出版社,2002:32,44,49,83,119.
    [2]汤梅兰.临床神经生理学基础[M].广东:广东科技出版社,1987:35.
    [3]Canales JJ, Graybiel AM. A measure of striatal function predicts motor stereotypy[J]. Nature Neuroscience,2000,3:377-383.
    [4]Ting JT, Feng GP. Glutamatergic Synaptic Dysfunction and Obsessive Compulsive Disorder[J]. Current Chemical Genomics,2008,2:62-75.
    [5]Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder[J]. Psychiatr Clin North Am,2000, 23 (3):563-586.
    [6]Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S. Glutamatergic dysfunction in OCD[J]. Neuropsychopharmacology,2005,30 (9):1735-1740.
    [7]李东亮,张朝.基础神经生物学[M].北京:人民军医出版社,2006:213-214.
    [8]Nordstrom EJ, Burton FH. A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry [J]. Mol Psychiatry,2002, 7:617-625.
    [9]Greenberg BD, Ziemann U, Cora-Locatelli G, et al. Altered cortical excitability in obsessive-compulsive disorder[J]. Neurology,2000, 54:142-147.
    [10]Ziemann U, Paulus W, Rothenberger A. Decreased motor inhibition in Tourette' s disorder:evidence from transcranial magnetic stimulation[J]. Am J Psychiatry,1997,154:1277-1284.
    [11]Edgley SA, Lemon RN. Experiments using transcranial magnetic brain stimulation in man could reveal important new mechanisms in motor control [J]. J Physiol (Lond),1999,521:565.
    [12]Rosenberg DR, MacMaster FP, Keshavan MS, et al. Decrease in caudate glutamatergic concentrations in pediatric obsessive compulsive disorder patients taking paroxetine[J]. J Am Acad Child Adolesc Psychiatry,2000, 39:1096-1103.
    [13]李伟红,庄晓燕,高素华等.谷氨酸对大鼠纹状体神经元活动的影响[J].数理医药学杂志,2007,20(4):524-526.
    [14]Centers for Disease Control and Prevention. Prevalence of Diagnosed Tourette Syndrome in Persons Aged 6-17 Years-United States, Morbidity and Mortality Weekly Report. June 5,2009,58(21):581-585.
    [15]张晓华,李勇杰,庄平.苍白球切开术治疗抽动秽语综合征的初步探讨[J].中华外科杂志,2005,43(9):608-611.
    [16]Shahed J, Poysky J, Kenney C, Simpson R, Jankovic J. GPi deep brain stimulation for Tourette syndrome improves tics and psychiatric comorbidities[J]. Neurology,2007,68:159-160.
    [17]Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1 [J]. Eur J Pharmacol,2008,578 (2-3):171-176.
    [18]Grant P, Lougee L, Hirschtritt M, Swedo SE. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder[J]. J Child Adolesc Psychopharmacol,2007, 17 (6):761-767.
    [19]Diamond BI, Reyes MG, Borison R. A new animal model for Tourette syndrome [J]. Adv Neurol,1982,35:221-225.
    [20]Roessner V, Plessen KJ, Rothenberger A, et al. European clinical guidelines for Tourette syndrome and other tic disorders. Part II:pharmacological treatment [J]. Eur Child Adolesc Psychiatry,2011,20(4):173-196.
    [21]Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia-therapeutic implications [J]. Eur Arch Psychiatry Clin Neurosci,1999,249 (Suppl 4):37-43.
    [22]Kegeles LS, Abi-Dargham A, Zea-Ponce Y, et al. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia[J]. Biol Psychiatry,2000,48 (7):627-640.
    [23]Cheon KA, Ryu YH, Namkoong K, et al. Dopamine transporter density of the basal ganglia assessed with [123I] IPT SPECT in drug-naive children with Tourette's disorder[J]. Psychiatry Res,2004,130 (1):85-95.
    [24]Serra-Mestres J, Ring HA, Costa DC, et al. Dopamine transporter binding in Gilles de la Tourette syndrome:a [123I] FP-CIT/SPECT study[J]. Acta Psychiatr Scand,2004,109 (2):140-146.
    [25]Sassi M, Porta M, Servello D. Deep brain stimulation therapy for treatment-refractory Tourette's syndrome:A review[J]. Acta Neurochirurgica (Wien),2011,153(3):639-645.
    [26]McGrath MJ, Campbell KM, Parks CR, et al. Glutamatergic drugs exacerbate symptomatic behavior in a transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder[J]. Brain Res,2000,877 (1):23-30.
    [27]杨娜,隋峰,姜廷良.神经性疾病相关的谷氨酸转运体研究进展[J].中国实验方剂学杂志,2011,17(4):255-258.
    [28]Rothstein JD. Excitotoxicity hypothesis[J]. Neurology,1996,47(4 Suppl 2):S19-25.
    [29]Adamczyk A, Gause CD, Sattler R, et al. Genetic and functional studies of a missense variant in a glutamate transporter, SLC1A3, in Tourette syndrome [J]. Psychiatr Genet,2011,21(2):90-97.
    [30]Rasmussen B, Unterwald EM, Rawls SM. Glutamate transporter subtype 1 (GLT-1) activator ceftriaxone attenuates amphetamine-induced hyperactivity and behavioral sensitization in rats [J]. Drug Alcohol Depend,2011,118(2-3): 484-488.
    [31]崔霞,卫利,吴力群等.健脾止动汤对多发性抽动症模型鼠自主活动的影响及其作用机制的研究[J].北京中医药大学学报(中医临床版),2011,18(1):1-4.
    [32]Toth E, Lajtha A, Vizi ES. Effects of iminodipropioni trile on cerebral amino acid levels[J]. Brain Res Bull,1997,44(6):715-718.
    [33]朱先康,韩新民,王敏华.定抽颗粒治疗小儿多发性抽动症的临床及实验研究[J].中华中医药杂志,2011,26(2):399-402.