脑内Toll样受体4信号在宫内感染致新生大鼠脑白质损伤中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     早产儿脑白质损伤(white matter damage, WMD)被认为是早产儿最主要也是最重要的脑损伤。WMD的关键性靶细胞是少突胶质前体细胞。最近有学说指出WMD的发病机制中存在少突胶质前体细胞分化障碍。流行病学和动物实验研究均表明宫内感染是早产儿WMD发生的主要因素之一。神经免疫应答反应被认为在宫内感染和早产儿WMD中起重要的介导作用。但具体的分子机制目前还不明确。
     Toll样蛋白的研究是近年来炎症信号传导领域取得的最重要进展。Toll样受体(Toll-like receptor, TLR)激活后通过诱导一系列炎性相关因子的表达调控机体固有性免疫应答,并最终激活适应性免疫应答。研究指出TLR-4信号通路参与缺血性脑梗塞、脑挫伤、帕金森氏病、蛛网膜下腔出血、多发性硬化、缺氧性脑损伤等一系列免疫应答相关性脑损伤的发生。因此有学者提出:神经免疫应答过程中小胶质细胞TLR-4信号的表达启动在脑内防御反应及脑损伤的平衡机制中起重要作用。最新的研究还指出TLR-4信号能直接激活经典的notch1信号通路分子。而Notch1信号通路通过其下游目的基因Hes (Hairy enhancer of split)基因家族(如Hes1、Hes5等)对少突胶质细胞分化起到重要的负性调控作用。
     目前国内外对于TLR-4信号在宫内感染致WMD发生中作用的研究不多,且多集中在离体水平上。过去几年间,我们实验室通过子宫颈内接种大肠杆菌的方式成功建立了宫内感染致新生大鼠WMD的动物模型。基于这一成熟模型,本研究观察宫内感染后仔鼠脑内TLR-4信号分子表达。并通过检测相关下游细胞因子、少突胶质细胞分化负性调控因子,进一步探讨TLR-4信号在宫内感染致WMD中的作用机制。该研究为临床治疗早产儿WMD提供丰富的动物实验信息及依据,为今后相关领域深入研究奠定整体动物实验基础,并为进一步研究早产儿WMD的防治提供新的靶点。
     方法:
     1.实验分组:将孕鼠随机分为对照组、宫内感染组。宫内感染组孕龄15天的孕鼠宫颈左右两侧各注射大肠杆菌稀释液0.2 ml,对照组同孕龄孕鼠注入等量生理盐水。
     2.标本采集:选择17、19、21天胎龄和新生1、3、7、14日龄为观察时点,剖腹取出胎鼠或者随机选取各组新生仔鼠断头处死,取出脑组织置于10%中性甲醛或液氮速冻后-80℃超低温冰箱中冷冻保存。
     3.实验方法:测定各时点仔鼠体重、脑重。应用苏木素-伊红(hematoxylin eosin, HE)染色观察各组新生1、3、7、14日龄大鼠脑室周围白质组织病理变化特点。Western blot检测各时点仔鼠脑组织髓鞘碱性蛋白(myelin basic protein, MBP)、TLR-4和核因子kappa B p65 (nuclear factor-kappa B p65, NF-κB p65)的蛋白表达水平,荧光定量RT-PCR检测各时点仔鼠脑内TLR-4、NF-κB p65、细胞因子肿瘤坏死因子(tumor necrosis factor, TNF)-α.白细胞介素(interieukin, IL)-1β、Notch1、Hes5 mRNA的表达。
     结果:
     1.44只孕鼠活动、进食均正常,无1例发生死亡、早产。仔鼠情况:对照组获取新生仔鼠66只,17、19、21天胎龄仔鼠56、55、58只,死产2只,死胎7只;宫内感染组获取新生仔鼠70只,17天、19天、21天胎龄仔鼠57、58、56只,死产5只,死胎8只。
     宫内大肠杆菌感染的孕鼠子宫壁及胎盘内血管充血、水肿,并见大量中性粒细胞浸润。对照组的孕鼠子宫及病理检测均未见明显的炎症反应。
     2.宫内感染后,各时点胎鼠及1日龄仔鼠体重、脑重下降.
     3.7、14日龄仔鼠脑室周围白质部位HE染色可见:对照组脑白质组织结构正常,染色清晰;宫内感染组脑白质染色淡,结构稀疏呈筛网状改变。
     4.对照组14日龄仔鼠脑组织出现MBP表达,宫内感染组14日龄仔鼠脑组织MBP表达减少甚至消失。
     5.宫内感染后TLR-4及其下游信号分子NF-κB p65表达在17日胎龄及1、3、7日龄仔鼠脑内同步化上调。
     6.宫内感染后19、21天胎龄仔鼠脑内TNF-α表达上调。
     7.宫内感染后Notchl及其下游信号分子Hes5表达在19日胎龄及1、3、7日龄仔鼠脑内同步化上调。
     结论:
     1.宫内感染可使胎鼠体重、脑重下降。
     2.TLR-4信号可能参与宫内感染致WMD的发生。
     3.TLR-4信号可能通过调控细胞因子的的表达部分介导宫内感染后WMD的发生。
     4.TLR-4信号在宫内感染致脑白质病变的发生中的作用可能部分源于激活的Notchl信号阻碍少突胶质细胞前体分化。
Objective:
     White mater damage (WMD) in the premature babies is considered as the most common and important form of injury to the preterm brain. Preoligodendrocyte (preOLs) is the key target cell of WMD. Recently, arrest of preOLs differentiation was reported to be involved in WMD. The epidemiologic evidence and study on animal models supported the view that one of the most important factors that associated with WMD appeared to be intrauterine infection. Neural immune response has long been considered to play an important role in the WMD induced by intrauterine infection. But the exact molecular mechanism is still unclear.
     The identification and the study of Toll-like protein is one of the most advances in the field of inflammatory signal transduction. Activation of TLRs recruits downstream signaling proteins, results in transcription of genes encoding inflammation-associated molecules. TLRs control innate immune response and finally initiate adaptive immune response. A series of studies pointed out that TLR-4 signal pathway was involved in many brain injury associated with immune response such as ischemic stroke, Parkinson disease, multiple sclerosis, and so on. Thus, some researchers proposed a key role of the activation of TLR-4 signal pathway in the balancing mechanism of the hurt and the defense in brain upon stimulation. What is more, some studies confirmed lately that activation of TLR-4 signal pathway can directly induce expression of canonical notch target genes. Notch1 signal pathway disturbs the differentiation of oligodendrocytes by inducing the expression of the downstream target genes such as Hairy enhancer of split gene 5 (Hes5).
     Now, few researches focused the effect of TLR-4 signal on the WMD induced by intrauterine infection especially in vivo level. In past several years, our laboratory has successfully established an animal model of neonatal rat WMD induced by intrauterine infection after endocervical inoculation with Escherichia coli (E. coli) suspension. On the basis of this stable animal model, we observed the expression of TLR-4 signal molecules in the developing brain (including fetal rats and neonatal rats) after intrauterine infection in our present study. To make further efforts to investigate the potential mechanism by which TLR-4 signal contributes to the development of the WMD after intrauterine infection, we detected the expression of TLR-4 associated downstream cytokines and negative regulatory factors during preOLs maturation. This study may offer lots of experimental information and evidence on the clinical diagnosis and treatment of preterm WMD, may constitute a solid experimental basis in "in vivo" level for further study in correlative field, and may provide new targets for the future treatment and prevention of preterm WMD.
     Methods:
     1. Group:All rats were randomly divided into control group and intrauterine infection group.In the intrauterine infection group, pregnant rats at 15 days of gestation were inoculated endocervically with 0.4 mL of E.coli suspension. While in the control group, the rats were injected endocervically with 0.4 mL of sterile saline solution instead.
     2. Sample collection:The developing rats(including fetuses delivered by cesarean section and neonates) were sacrificed by decapitation at embryonic day 17(E17), E19, E21 and postnatal day 1 (P1),P3 and P7, P14, and the brains were fixed in neutral formaldehyde or stored at-80℃freezer.
     3. Experimental methods:The body weight and brain weight of all the developing rat in both groups were recorded. Hematoxylin-eosin (HE) staining determined the cerebral WMD of neonatal rats at P1, P3, P7 and P14. Western blot analysis were used for evaluation of myelin basic protein(MBP), TLR-4 and nuclear factor-kappa B p65 (NF-κB p65) protein levels in developing rat brains at E17, E19, E21, P1, P3, P7, P14. Real-time quantitative RT-PCR was used to analyze TLR-4, NF-κB p65, tumor necrosis factor (TNF)-a, interleukin (IL)-1β, as well as Notch 1, Hes5 mRNA expression in developing rat brains at E17, E19, E21, P1, P3 and P7.
     Results
     1. Forty-four dams had normal food intake and activity, and none died or delivered immature fetuses after inoculation. In the control group,66 neonatal rats,56 fetal rats of E17,55 fetal rats of E19,58 fetal rats of E21 were collected. There were 7 stillborn fetuses,2 stillborn neonates in the control group. In the intrauterine infection group,70 neonatal rats,57 fetal rats of E17,58 fetal rats of E19,56 fetal rats of E21 were collected. There were 7 stillborn fetuses,2 stillborn neonates in the intrauterine infection group. Inflammation of the uterus and the placenta was induced after intrauterine E. coli inoculation, but all cases of the control group had no histologic evidence of intrauterine infection.
     2. After intrauterine infection, the body weight and brain weight of E17, E19, E21 fetal rats and P1 neonatal rats significantly decreased.
     3. HE staining procedures revealed clear staining and normal structure of periventricular white matter from P7, P14 rats of the control group. Weak staining and focal rarefaction of periventricular white matter were shown in P7, P14 rats of the the intrauterine infection group.
     4. The expression of cerebral MBP was detected in P14 rats of the control group, while the expression of MBP in the brain of P14 rats decreased or disappeared after intrauterine infection.
     5. The expressions of cerebral TLR-4 and downstream signal molecule NF-κB p65 increased significantly in phase after intrauterine infection at E17, P1, P3, P7.
     6. The expression of cerebral TNF-a mRNA was up-regulated at P19, P21 after intrauterine infection.
     7. The expressions of cerebral Notchl and downstream signal molecule Hes5 increased significantly in phase after intrauterine infection at E19, P1, P3, P7.
     Conclusion:
     1. Intrauterine infection decreased the body weight, the brain weight of fetal rats.
     2. TLR-4 signal might play a certain role in the development of the WMD induced by intrauterine infection.
     3. TLR-4 signal might contribute to the development of the WMD after intrauterine infection partly by regulating the expression of certain cytokines such as TNF-a.
     4. TLR-4 signal might contribute to the development of the WMD after intrauterine infection partly by activating Notchl signal that arrested the differentiation of preoligodendrocytes.
引文
[1]. Marlow N, Wolke D, Bracewell MA, Samara M. Neurologic and developmental disability at six years of age after extremely preterm birth[J]. N Engl J Med 2005; 352:9-19.
    [2]. Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR. The EPICure study:associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth[J]. Arch Dis Child 2005;90:F134-F140.
    [3]. Marlow N, Hennessy EM, Bracewell MA, Wolke D. Motor and executive function at 6 years of age after extremely preterm birth[J]. Pediatrics 2007; 120:793-804.
    [5]. Dyet LE, Kennea N, Counsell SJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment[J]. Pediatrics 2006; 118:536-48.
    [6]. Hack M, Taylor HG, Drotar D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age[J]. Pediatrics 2005; 116:333-41.
    [7]. Michael O'shea T, Dammann O. Antecedents of cerebral palsy in very low-birth weight infants[J]. Clin Perinatol,2000,27:285-301.
    [8].Kurumatani T, Kudo T, Ikura Y, et al. White matter changes in the Gerbil brain under chronic cerebral hypoperfusion[J]. Stroke,1998,29:1058-1062.
    [9]. Volpe JJ. Cerebral white matter injury of the premature infant-more common than you think[J]. Pediatrics 2003; 112:176-9.
    [10].Inder TE, Anderson NJ, Spencer C, et al. White matter injury in the premature infant:a comparison between serial cranial sonographic and MR findings at term[J]. AJNR Am J Neuroradiol,2003,24:805-809.
    [11]. Back SA, Volpe JJ. Cellular and molecular pathogenesis of periventricularwhite matter injury[J]. Ment Retard Dev Disabil Res Rev.1997; 3:96-107.
    [12]. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev.2001 Apr; 81(2):871-927.
    [13]. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Lateoligodendrocyte progenitors coincide with the developmental window ofvulnerability for human perinatal white matter injury[J]. J Neurosci.2001; 21:1302-1312
    [14]. Riddle A, Luo N, Manese M, Beardsley D, Green L, Rorvik D, Kelly K, Barlow C, Kelly J, Hohimer A, Back S. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury[J]. Journal of Neuroscience 2006; 26:3045-3055.
    [15]. Pang Y, Cai Z, Rhodes PG. Effect of tumor necrosis factor-alpha on developing optic nerve oligodendrocytes in culture [J]. J Neurosci Res.2005 Apr 15; 80(2):226-34.
    [16]Back SA, Gan XD, Li Y, Rosenberg PA, Volpe JJ.1998. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion [J]. J Neurosci 18:6241-6253.
    [17].Billiards SS, Haynes RL, Folkerth RD, Borenstein NS, Trachtenberg FL, Rowitch DH, Ligon KL, Volpe JJ, Kinney HC. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia[J]. Brain Pathol.2008 Apr;18(2):153-63. Epub 2008 Jan 3.
    [18]. Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A, Craig A,Struve J, Sherman LS, Back SA. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury.Ann Neurol[J].2008 Apr;63(4):520-30.
    [19]. French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB. Oxidative stress disrupts oligodendrocyte maturation [J].J Neurosci Res.2009 Nov 1; 87(14): 3076-87.
    [20]. Pang Y, Campbell L, Zheng B, Fan L, Cai Z, Rhodes P. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development.Neuroscience[J].2010 Mar 17;166(2):464-75. Epub 2009 Dec.
    [21]. Dammann O, Leviton A. Maternal intrauterine infection, cytokine, and brain damage in the preterm newborn[J]. Pediatr Res,1997,42(1):1-8.
    [22]. Yoon BH, Romero R, Kim CJ, et al. Amniotic fluid interleukin-6:A sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity[J]. Am J Obstet Gynecol,1995,172:960-970.
    [23].Wu YW, Colford JM. Chorioamnioitis as a risk factor for cerebral palsy. A meta-analysis[J]. JAMA,2000,284(11):1417-1424.
    [24]. Hagberg H, Peebles D, Mallard C. Models of white matter injury:comparison of infectious, hypoxic-ischemic, and excitotoxic insults[J].Ment Retard Dev Disabil Res Rev.2002;8(1):30-8.
    [25]. Wang X, Rousset CI, Hagberg H, Mallard C. Lipopolysaccharide-induced inflammation and perinatal brain injury [J]. Semin Fetal Neonatal Med.2006 Oct; 11(5):343-53. Epub 2006 Jun 21.
    [26]. Shen Y, Yu HM, Yuan TM, Gu WZ, Wu YD.Erythropoietin attenuates white matter damage, proinflammatory cytokine and chemokine induction in developing rat brain after intra-uterine infection [J].Neuropathology.2009
    [27]. Pang Y, Cai Z, Rhodes PG. Effect of tumor necrosis factor-alpha on developing optic nerve oligodendrocytes in culture[J].J Neurosci Res.2005 Apr 15; 80(2):226-34.
    [28]. Sherwin C, Fern R. Acute lipopolysaccharide-mediated injury in neonatal white matter glia:role of TNF-alpha, IL-lbeta, and calcium[J].J Immunol.2005 Jul 1:175(1):155-61.
    [29].Kannan S, Saadani-Makki F, Muzik O, Chakraborty P, Manger TJ, Janisse J, Romero R and Chugani DC. Microglial activation in perinatal rabbit brain induced by intrauterine inflammation:detection with 11C-(R)-PK11195 and small-animal PET[J]. J Nucl Med 2007;48(6):946-954
    [30].Fan LW, Pang Y, Lin S, Rhodes PG, Cai Z. Minocycline attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain[J]. Neuroscience.2005; 133(1):159-68.
    [31]. Pang Y, Rodts-Palenik S, Cai Z, Bennett WA and Rhodes PG. Suppression of glial activation is involved in the protection of IL-10 on maternal E. coli induced neonatal white matter injury. Brain Res Dev Brain Res[J].2005; 157(2):141-149.
    [32].Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC. Development of microglia in the cerebral white matter of the human fetus and infant[J]. Oct; 29(5):528-35. Epub 2009 Mar 3.
    [33]. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response[J]. Nature.2000 Aug 17;406(6797):782-7.
    [34]. Takeda K, Akira S. TLR signaling pathways[J].Semin Immunol.2004 Feb;16(1): 3-9. Review.
    [35]. Tang SC, Arumugam TV, Xu X, Chen A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits[J]. Proc Natl Acad Sci U S A 2007;104(34):13798-13803
    [36]. Marbus T, Hansson S, Amer-Wahlin I, Hellstrom-Westas L, Saugstad OD, Ley D. Cerebral inflammatory response after fetal asphyxia and hyperoxic resuscitation in newborn sheep[J]. Pediatr Res 2007;62(1):71-77
    [37]. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke[J]. Circulation.2007 Mar 27; 115(12):1599-608.
    [38]. Ma CX,Yin WN, Cai BW, He M, Wu J, Wang JY, Zeng Y, Ding JL, You C. Activation of TLR4/NF-kappaB signaling pathway in early brain injury after subarachnoid hemorrhage [J]. Neurol Res.2009 Aug 21. [Epub ahead of print]
    [39]. Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats:possible involvement of TLR4/NF-kappaB pathway[J].Exp Neurol.2009 Apr;216(2):398-406. Epub 2009 Jan 7.
    [40]. van Noort JM. Toll-like receptors as targets for inflammation, development and repair in the central nervous system[J].Curr Opin Investig Drugs 2007;8 (l):60-65
    [41]. Martin Baron. An overview of the Notch signalling pathway [J]. Seminars in Cell & Dev Biol 2003;14:113-119
    [42]. Ohtsuka T, Sakamoto M, Guillemot F,Kageyama R. Roles of the basic helix-loop-helix genes Hesl and Hes5 in expansion of neural stem cells of the developing brain[J]. J Biol Chem,2001; 276:30467-304 74
    [43]. Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N, Matsuno K, Nakamura K, Weinmaster G, Okano H, Nakafuku M. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor[J]. J Biol Chem. 2001 Nov 30; 276(48):45031-40. Epub 2001 Sep 19.
    [44].崔庆超,李爱萍.Notch-Delta信号系统与寡突胶质细胞的发育.神经解剖学杂志[J].2007,23:337-340
    [45]. Grandbarbe L, Bouissac J, Rand M, Hrabe de Augelis M, Artavanis-Tsakonas S, Mohier E. Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process[J]. Development.2003 Apr;130:1391-140
    [46]. Park H-C, Appel B. Delta-Notch signaling regulates oligodendrocyte specification [J].Development.2003 August; 130:3747-3755.
    [47]. Grandbarbe L, Michelucci A, Heurtaux T, Hemmer K, Morga E, Heuschling P. Notch signaling modulates the activation of microglial cells [J]. Glia.2007 Nov 15;55(15):1519-30.
    [48]. Cao Q, Lu J, Kaur C, Sivakumar V, Li F, Cheah PS, Dheen ST, Ling EA. Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells [J]. Glia.2008 Aug 15; 56(11):1224-37.
    [49]. Hu X, Chung AY, Wu I, Foldi J, Chen J, Ji JD, Tateya T, Kang YJ, Han Gessler M, Kageyama R, Ivashkiv LB.Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways[J]. Immunity.2008 Nov 14; 29(5):691-703. Epub 2008 Oct 30.
    [50]. Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity [J]. Nat Immunol.2001 Aug;2(8):675-80.
    [51]. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T. The Toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS[J]. J Neurosci 2002; 22(7):2478-2486
    [52]. Lee SC, Liu W, Dickson DW, et al. Cytokine production by human fetal microglia and astrocytes[J]. J Immunol,1993,150:2659-2667.
    [53].Hui-Min YU,Tian-Ming YUAN, Wei-Zhong GU, Jian-Ping LI. Expression of glial fibrillary acidic protein in developing rat brain after intrauterine infection[J]. Neuropathology 2004; 24(2):136-143
    [54]. Tian-Ming YUAN, Hui-Min YU, Wei-Zhong GU, Jian-Ping LI. White matter damage and chemokine induction in developing rat brain after intrauterine infection [J]. J Perinat Med 2005; 33(5):415-422
    [55].Ying SHEN, Hui-Min YU, Tian-Ming YUAN, Wei-Zhong GU, Yi-Dong WU. Intrauterine infection induced oligodendrocyte injury and inducible nitric oxide synthase expression in developing rat brain[J]. J Perinat Med 2007; 35(3):203-209
    [56]. Sheiner E, Mazor-Drey E, Levy A. Asymptomatic bacteriuria during pregnancy. J ,Matern Fetal Neonatal Med [J].2009 May; 22(5):423-7. [56].
    [57]. Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, Chi JG. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits [J]. Am J Obstet Gynecol.1997 Oct; 177(4):797-802.
    [58]. Debillon T, Gras-Leguen C, Verielle V, Winer N, Caillon J, Roze JC, Gressens P.Intrauterine infection induces programmed cell death in rabbit periventricular white matter[J]. Pediatr Res.2000 Jun; 47(6):736-42.
    [59]. Wang X, Hagberg H, Zhu C, Jacobsson B, Mallard C.Effects of intrauterine inflammation on the developing mouse brain[J].Brain Res.2007 May 4;1144:180-5. Epub 2007 Jan 30.
    [60]. Bell MJ, Hallenbeck JM. Effects of intrauterine inflammation on developing rat brain [J]. J Neurosci Res.2002 Nov 15; 70(4):570-9.
    [61]. Kumral A, Baskin H, Yesilirmak DC, Ergur BU, Aykan S, Gene S, Gene K, Yilmaz O,Tugyan K, Giray O, Duman N, Ozkan H.Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain[J]. Neonatology.2007; 92(4):269-78. Epub 2007 Jul 11
    [62]. Rousset CI, Chalon S, Cantagrel S, Bodard S, Andres C,Gressens P, Saliba E. Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats[J]. Pediatr Res. 2006 Mar;59(3):428-33.
    [63]. Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M. Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology [J].2005 May; 48(6):903-17.
    [64]. Eklind S, Hagberg H, Wang X, Savman K, Leverin AL, Hedtjarn M, Mallard C. Effect of lipopolysaccharide on global gene expression in the immature rat brain[J].Pediatr Res.2006 Aug;60(2):161-8.
    [65]. Pang Y, Zheng B, Fan LW, Rhodes PG, Cai Z. IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway [J].Glia.2007 Aug 15; 55(11):1099-107
    [66]. Harju K, Glumoff V, Hallman M. Ontogeny of Toll-like receptors Tlr2 and Tlr4 in mice[J].Pediatr Res.2001 Jan;49(1):81-3.
    [67]. Harju K, Ojaniemi M, Rounioja S, Glumoff V, Paananen R, Vuolteenaho R, Hallman M.Expression of toll-like receptor 4 and endotoxin responsiveness in mice during perinatal period[J].Pediatr Res.2005 May;57(5 Pt 1):644-8. Epub 2005 Feb 17.
    [68]. Salminen A, Paananen R, Vuolteenaho R, Metsola J, Ojaniemi M, Autio-Harmainen H, Hallman M. Maternal endotoxin-induced preterm birth in mice:fetal responses in toll-like receptors, collectins, and cytokines[J].Pediatr Res. 2008 Mar;63(3):280-6.
    [69].Xia Y, Yamagata K, Krukoff TL. Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS[J]. Brain Res.2006 Jun 20; 1095(1):85-95.
    [70]. Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury[J]. Eur J Neurosci.2001 Mar; 13(6):1101-6.
    [71].郭菲,汪泱,王共先,等.内毒素/脂多糖对小鼠腹腔巨噬细胞膜Toll样受体2及4表达的影响.中华烧伤杂志,2005;21:380-382.
    [72]. Kubo Y, Fukuishi N, Yoshioka M, Kawasoe Y, Iriguchi S, Imajo N, Yasui Y, Matsui N, Akagi M.Bacterial components regulate the expression of Toll-like receptor 4 on human mast cells.Inflamm Res.2007 Feb; 56(2):70-5.
    [73]Okumura A, Hayakawa F, Kato T, Kuno K, Watanabe K.Correlation between the serum level of endotoxin and periventricular leukomalacia in preterm infants[J]. Brain Dev.1999 Sep; 21(6):378-81
    [74]. Hartz AM, Bauer B, Fricker G, Miller DS. Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide [J]. Mol Pharmacol.2006 Feb; 69(2):462-70. Epub 2005 Nov 8.
    [75]. Chakravarty S, Herkenham M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines [J]. J Neurosci.2005 Feb 16; 25(7):1788-96.
    [76]..Yanowitz TD, Jordan JA, Gilmour CH, Towbin R, Bowen A, Roberts JM, Brozanski BS.Hemodynamic disturbances in premature infants born after chorioamnionitis:association with cord blood cytokine concentrations [J]. Pediatr Res.2002 Mar; 51 (3):310-6
    [77]. Dalitz R, Harding SM. Rees and M.L. Cock, Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin:possible factors in white matter injury after acute infection[J]. J Soc. Gynecol Investig.10 (2003), pp.283-290.
    [78].Ock J, Jeong J, Choi WS, Lee WH, Kim SH, Kim IK, Suk K. Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia[J]. J Neurosci Res.2007 Jul; 85(9):1989-95.
    [79].Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge:heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex [J]. J Immunol. 2000 Jan 15;164(2):558-61.
    [80].Tsan MF, Gao B. Endogenous ligands of Toll-like receptors[J]. J Leukoc Biol.2004 Sep; 76(3):514-9. Epub 2004 Jun 3.
    [81]. Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury [J]. Eur J Neurosci.2001 Mar; 13(6):1101-6.
    [82].Mallard C, Welin AK, Peebles D, Hagberg H, Kjellmer I.White matter injury following systemic endotoxemia or asphyxia in the fetal sheep[J].Neurochem Res. 2003 Feb;28(2):215-23.
    [83]. Wang X, Hagberg H, Nie C, Zhu C, Ikeda T, Mallard C. Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia [J]. J Neuropathol Exp Neurol.2007 Jun;66(6):552-61.
    [84]. Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, Eriksson K, Hagberg H, Mallard C. Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner [J]. J Immunol.2009 Dec 1; 183(11):7471-7. Epub 2009 Nov 16.
    [85].Baud O, Ville Y, Zupan V, Boithias C, Lacaze-Masmonteil T, Gabilan JC, Frydman R, Dehan M. Are neonatal brain lesions due to intrauterine infection related to mode of delivery[J]? Br J Obstet Gynaecol.1998 Jan; 105(1):121-4.
    [86]. Kadhim H, Tabarki B, VerellenQ, et al. Inflammatory cytokines in the pathogenesis of periventricular leukomalacia [J]. Neurology,2001,56:1278-1284.
    [87]. Gomez R, Romero R, Ghezzi F, et al. The fetal inflammatory response syndrome [J].Am J Obstet Gynecol,1998,179(1):194-202.
    [88]. Yoon BH, Jun JK, Romero R, et al. Amniotic fluid inflammatory cytokine (interleukin-6, interleukin-1, tumor necrosis factor-α), neonatal brain white matter lesions, and cerebrral palsy [J]. Am J Obstet Gynecol,1997,177(1):19-26.
    [89]. Dammann O, Hagberg H, Leviton A. Is periventricular leukomalacia an axonopathy as well as an oligopathy[J]. Pediatr Res,2001,49:453-457.
    [90]. McLaurin J, D'Souza S, Stewart J, Blain M, Beaudet A, Nalbantoglu J, Antel JP.Effect of tumor necrosis factor alpha and beta on human oligodendrocytes and neurons in culture[J].Int J DevNeurosci.1995 Jun-Jul;13(3-4):369-81.
    [91]. Cammer W. Effects of TNF-α on immature and mature oligodendrocytes and their progenitors in vitro[J]. Brain Res,2000,864:213-219
    [92]. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. Interleukin-lbeta promotes oligodendrocyte death through glutamate excitotoxicity[J].2003 Ann Neurol. May;53(5):588-95.
    [93].Cai Z, Pang Y, Lin S, Rhodes PGDifferential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat[J]. Brain Res.2003 Jun 13;975(1-2):37-47.
    [94]. Yesilirmak DC, Kumral A, Baskin H, Ergur BU, Aykan S, Genc S, Genc K, Yilmaz O, Tugyan K, Giray O, Duman N, Ozkan H.Activated protein C reduces endotoxin-induced white matter injury in the developing rat brain[J]. Brain Res. 2007 Aug 20; 1164:14-23. Epub 2007 May 23.
    [95]. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration[J]. Pediatr Res.2000 Jan; 47(1):64-72.
    [96]. Taylor DL, Pirianov G, Holland S, McGinnity CJ, Norman AL, Reali C, Diemel LT, Gveric D, Yeung D, Mehmet H. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia[J].J Neurosci Res.2010 Jan 20. [Epub ahead of print]
    [97]. Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA.Notch receptor activation inhibits oligodendrocyte differentiation[J]. Neuron.1998 Jul; 21(1):63-75.
    [98]. Givogri MI, Costa RM, Schonmann V, SilvaAJ, Campa[J]gnoni AT, Bongarzone ER.Central nervous system myelination in mice with deficient expression of Notchl receptor[J]. J Neurosci Res.2002 Feb 1;67(3):309-20.
    [99]. Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, Suter U, Nave KA, Mantei N.Notchl control of oligodendrocyte differentiation in the spinal cord[J].J Cell Biol.2002 Aug 19;158(4):709-18. Epub 2002 Aug 19.
    [100]. Liu Z, Hu X, Cai J, Liu B, Peng X, Wegner M, Qiu M.Induction of oligodendrocyte differentiation by Olig2 and Sox 10:evidence for reciprocal interactions and dosage-dependent mechanisms[J]. Dev Biol.2007 Feb 15; 302(2):683-93. Epub 2006 Oct 10.
    [101]. Gokhan S, Marin-Husstege M, Yung SY, Fontanez D, Casaccia-Bonnefil P, Mehler MF. Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression[J]. J Neurosci.2005 Sep 7;25(36):8311-21.
    [102]. Dugas JC, Tai YC, Speed TP, Ngai J, Barres BA. Functional genomic analysis of oligodendrocyte differentiation[J].J Neurosci.2006 Oct 25;26(43):10967-83.
    [103]. Wei Q, Miskimins WK, Miskimins R. Sox10 acts as a tissue-specific transcription factor enhancing activation of the myelin basic protein gene promoter by p27Kipl and Spl[J].J Neurosci Res.2004 Dec 15;78(6):796-802.
    [104]. Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH, Osborne BA.Notch signaling is activated by TLR stimulation and regulates macrophage functions[J]. Eur J Immunol.2008 Jan;38(1):174-83.
    [105]. Taylor DL, Pirianov G, Holland S, McGinnity CJ, Norman AL, Reali C, Diemel LT, Gveric D, Yeung D, Mehmet H. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia[J]. J Neurosci Res.2010 Jan 20. Epub ahead of print
    [1]Ostrow JD,Pascolo L,Tiribellt C.Reassessment of the Unbound Concentrations of Unconjugated Bilirubin in Relation to Neurotoxicity In Vitro [J]. Pediatr Res,2003,54(1):98-104.
    [2]Silva RF,Rodrigues CM,Brites D.Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid [J]. J Hepatol.2001,34(3):402-408.
    [3]Falcao AS,Fernandes A,Brito MA,et al.Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells [J].Neurobiol Dis,2005,20(2):199-206.
    [4]Genc S,Genc K,Kumral A,et al.Bilirubin is cytotoxic to rat oligodendrocytes in vitro[J]. Brain Res,2003,985(2):135-141.
    [5]Rodrigues CM,Sola S,Brites D.Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons[J].Hepatology,2002,35(5):1186-1195.
    [6]Hanko E,Hansen TW,Almaas R,et al.Synergistic protection of a general caspase inhibitor and MK-801 in bilirubin-induced cell death in human NT2-N neurons[J].PediatrRes,2006,59(1):72-77.
    [7]Grojean S,Koziel V,Vert P,et al.Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons[J].Exp Neurol,2000,166(2):334-341.
    [8]McDonald JW,Shapiro SM,Silverstein FS,et al.Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn rat model[J].Exp Neurol,1998,150(1):21-29.
    [9]Rodrigues CM,Sola S,Silva R,et al.Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization[J].Mol Med,2000,6(11):936-46.
    [10]Silva RF,Mata LR,Gulbenkian S,et al.Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes:role of concentration and pH[J].Biochem Biophys Res Commun,1999,265(1):67-72.
    [11]Gordo AC,Falcao AS,Fernandes A,et al.Unconjugated bilirubin activates and damages microglia[J].J Neurosci Res,2006,84(1):194-201.
    [12]Rodrigues CM,Sola S,Brito MA,et al.Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria[J].J Hepatol,2002,36(3):335-341.
    [13]Crompton M.The mitochondrial permeability transition pore and its role in cell death [J]. Biochem J,1999,341(Pt 2):233-249.
    [14]Oakes GH,Bend JR.Early steps in bilirubin-mediated apoptosis in murine hepatoma (Hepa 1clc7) cells are characterized by aryl hydrocarbon receptor-independent oxidative stress and activation of the mitochondrial pathway[J].J Biochem Mol Toxicol,2005,19(4):244-255.
    [15]Fernandes A,Silva RF,Falcao AS,et al.Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS[J].J Neuroimmunol,2004,153(1-2):64-75.
    [16]Fernandes A,Falcao AS,Silva RF,et al.Inflammatory signalling pathways involved in astroglial activation by unconjugated bilirubin[J].J Neurochem,2006,96(6): 1667-1679.
    [17]Lin S,Wei X,Bales KR,et al.Minocycline blocks bilirubin neurotoxicity and prevents hyperbilirubinemia-induced cerebellar hypoplasia in the Gunn rat[J].Eur J Neurosci,2005,22(1):21-27.
    [18]Hanko E,Tommarello S,Watchko JF,et al.Administration of drugs known to inhibit P-glycoprotein increases brain bilirubin and alters the regional distribution of bilirubin in rat brain[J].Pediatr Res,2003,54(4):441-445.
    [19]Watchko JF,Daood MJ,Hansen TW.Brain bilirubin content is increased in P-glycoprotein-deficient transgenic null mutant mice[J].Pediatr Res,1998, 44(5):763-766.
    [20]Gennuso F,Fernetti C,Tirolo C,et al.Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrpl)[J].Proc Natl Acad Sci U S A,2004,101(8):2470-2475.