低热值气体多孔介质燃烧机理与工业化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用多孔介质燃烧技术拓展贫燃极限,提高燃烧器体积热负荷,扩大气体燃料的使用范围,实现燃烧技术的升级及气体资源的充分有效利用,具有重要的研究价值及应用前景。本文致力于低热值气体在多孔介质内的燃烧机理及火焰面移动特性研究,并将研究结果运用于工程系统的设计及开发中。
     第一章中为全文工作背景介绍及文献综述:分析中国燃气资源、低热值气体资源的利用现状,综述国内外多孔介质燃烧理论和技术发展方向和状况。从多孔介质燃烧器内的传热,温度分布及温度测量,火焰面移动及火焰面驻定,火焰面特性及燃烧不稳定现象,以及低热值气体往复式多孔介质燃烧方面对国内外多孔介质燃烧技术的研究进展进行了总结,提出了多孔介质燃烧技术未来几年的发展趋势。并提出了本文的主要研究内容。
     第二章及第三章为实验研究部分:提出包覆与裸露热电偶成对布置同步测量新方法测量多孔介质内气固温度,试验研究多孔介质内温度分布特性,火焰面传播机理及超绝热燃烧机理。搭建堆积小球多孔介质燃烧试验台,通过两侧成对布置裸露热电偶及包覆多孔介质小球的热电偶,对多孔介质燃烧器内气固温度进行同步测量,研究多孔介质燃烧器的内气固温度分布及气固温度变化规律。通过燃烧器的预热过程对裸露热电偶结点在多孔介质孔隙内的位置进行估计,并对热电偶结点布置的不确定因素进行误差分析,得到测量的误差范围。对比不同入口气流速度,不同当量比时的不同气固温度分布及气固温度变化。同时搭建碳化硅泡沫陶瓷多孔介质燃烧试验台,通过对多孔介质燃烧器内的温度进行系统测量,研究不同预混气体入口速度,不同当量比,不同多孔介质孔密度等工况对超绝热燃烧特性,火焰面传播特性及温度分布特性的影响。对火焰面附近的详细轴向温度分布及燃烧器壁面附近的径向温度分布进行分析。并对多孔介质材料的过热损坏规律进行初步分析探究。
     第四章及第五章为数值模拟研究部分:拓展二维双温多孔介质燃烧模型,研究多孔介质内动态二维火焰面特性和火焰面倾斜不稳定现象产生机理及抑制机理。以实验室搭建的圆柱形碳化硅泡沫陶瓷多孔介质燃烧器为物理模型,通过变化多孔介质的孔密度,多孔介质燃烧器的壁面散热损失,入口气流速度,当量比等参数探讨低热值气体在多孔介质燃烧器内的动态二维火焰面特性,研究火焰面传播速度的变化及火焰面传播过程中的火焰面形状的变化,并与实验结果进行对比,验证燃烧模型并进一步深入理解低热值气体在多孔介质内的二维燃烧特性。同时模拟不同工况下长方体形多孔介质燃烧器内的火焰面倾斜现象,对多孔介质内火焰面倾斜现象及机理进行分析,研究火焰面倾斜角度增大或减小的发展过程,研究不同工况条件如当量比,入口流速,多孔介质导热系数,燃烧器尺寸等因素对火焰面倾斜角度变化的影响。通过对火焰面倾斜角度的变化探究火焰面不稳定现象的抑制机理,为多孔介质燃烧器的稳定运行提供理论基础。
     第六章及第七章为工程应用研究部分:设计50,000Nm3/h低热值气体燃烧系统(10~20MW);研发50~221kW中试规模往复式燃气熔炼炉并进行工业试验研究,提供进一步大型化理论与工程基础。在前期工作积累基础上,开发50,000Nm3/h的大型低热值气体往复式多孔介质燃烧系统的设计方法及设计程序,完成低热值气体燃烧系统的炉体设计总图及系统设计图。能源效益及环境效益计算分析表明该燃烧系统的最大热效率最大可以达到88.67%,以温室效应折算该低热值多孔介质燃烧装置一年最大可以减少一台300MWe机组全年C02排放量的15.4%。此外,设计搭建中试规模的往复式多孔介质燃气熔炼炉,并进行初步试验研究。通过对燃烧装置的燃烧状态,阻力波动,温度分布,贫燃极限,金属熔化效率的影响的研究,一方面为中小金属熔炼企业生产过程中的节能减排提供一种较为高效清洁的炉型选择,另一方面在中试规模上对50,000Nm3/h大型低热值气体燃烧系统的设计进行验证,为其优化设计并最终工业化提供实验基础。
     第八章为全文总结部分,对本文的主要研究成果,主要创新点及未来工作展望进行总结。全文工作的主要成果为通过实验研究得到多孔介质内的气固温度分布,气固温度变化,火焰面传播特性及超绝热燃烧特性。通过数值模拟研究得到二维火焰面的动态传播特性,动态变化特性及火焰面倾斜机理。通过低热值气体处理装置的大型化设计深入认识其能源效益及环境效益,通过中试规模的往复式燃气熔炼炉实验研究为中小金属熔炼企业节能减排及大型低热值气体往复式多孔介质燃烧系统的优化设计提供实验基础。
Combustion in a porous medium offers advantages such as high power density, low NOx and CO emission, high thermal efficiency, high flame stability and extended flammability limit. The thesis introduces the combustion characteristic of low calorific gases in porous media combustor and the combustion wave propagation in porous media through experimental and numerical method, and those results are used to design and develop meso-scale and large-scale reciprocal combustion system.
     The first chapter focuses on the background and the literature review. The utilization of natural gases and low calorific gases in China is introduced. The research groups of porous media combustion all over the world and their research areas are summarized. The literature review focuses on the heat transfer in porous media, temperature distribution and temperature measurements, combustion wave propagation and flame stabilization, flame variation and flame instability, and reciprocal combustion system. Several further research trends of porous media combustion are recommended. The motivation and the main work in the thesis are also presented in this chapter.
     The second and third chapters focus on the experimental researches. A novel method was used to measure the gas and solid temperature in porous media combustor. The temperature distribution, combustion wave propagation, excess enthalpy flame was also studied by experimental method. A packed bed porous media combustor system was built, the bare and coated thermocouple junctions were installed in the centerline of the porous combustor and the temperatures of solid phase and bare junctions were recorded simultaneously. The preheating procedure is used to reduce the effect of the junction placement. It is found that the uncertain position of junction have limited influence on the gas phase temperature correction. The temperature profiles measured by thermocouples provide a complete temperature distribution in porous combustor, while a time-based method offers detail gas and solid temperature distributions near the reaction zone. Meanwhile a SiC foam porous media combustor was built, the temperature was measured, and the effects of inlet velocity, equivalence ratio, and pore density on excess enthalpy, combustion wave propagation and the temperature distribution were studied. The damage of porous media caused by over temperature limit was also initially studied.
     The forth and fifth chapters focus on the numerical studies. The two-dimensional and two temperature porous combustion model was used to study the two dimensional flame variation and inclinational instability. A two-dimensional model was developed based on the combustor built in the laboratory to show the combustion wave propagation in the cylindrical porous combustor. The two-dimensional contours of solid temperature are applied to show the combustion wave propagation. The inlet velocity, equivalence ratio, heat losses and pore density were discussed to show the effect on the combustion wave propagation and the flame variation. The results were compared with the experimental results to show accuracy of the model. Meanwhile, the model was modified to show the inclinational instability in porous media. The flame inclination development and reduction with a finite angle during the combustion wave propagation was studied. The mechanism of inclinational instability of filtration combustion was analyzed. The parameters affecting development of the inclinational instability at various conditions were studied. Finally, the regions where the combustion waves could be stabilized and instability grows were obtained in a model porous media combustor.
     The sixth and seventh chapters focus on the industrial applications of porous combustor. A50,000Nm3/h low calorific gas combustion system was designed based on the previous work. The design approach, design program, the drawing of furnace, and the layout of gas system were completed. The results show that the thermal efficiency can be as high as88.67%; the reduction of CO2emission is equal to15.4%of a300MWe coal-fired power plant per year. A meso-scaled reciprocal smelting furnace was built and experimentally studied. The best operational condition, the length of regenerative section, the flammability was obtained based on this reciprocal furnace. These results will be benefit for the design of large-scaled reciprocal smelting furnace and low calorific gas combustion system.
     The eighth chapter focuses on the conclusions of the work, the main results were presented, and the innovation and the future work were discussed. The gas and solid temperature distribution, temperature variation, combustion wave propagation, and excess enthalpy was experimentally studied, the two-dimensional flame propagation, flame variation mechanism, and inclinational instability mechanism was numerically studied. The economic benefit and environmental benefit of the large-scaled low calorific gas combustion system was industrially studied, the experiments of meso-scaled reciprocal smelting furnace would be benefit for increasing the thermal efficiency of metal smelting industry and for design of large-scaled reciprocal porous combustion system.
引文
[1]U.S Energy information administration.2010 [cited; Available from: http://www.eia.doe.gov/aer/overview.html
    [2]BP Statistical review of world energy.2010 [cited; Available from: http://www.bp.com/statisticalreview
    [3]中国统计年鉴2010.北京:中国统计出版社.2010.
    [4]国家能源局.2010年能源经济形势及2011年展望.2011.
    [5]娄马宝.低热值气体燃料(高炉煤气)的利用.燃气轮机技术.2000;13(3):16-18.
    [6]戴彦德.燃气资源合理采集科学利用空排燃气.中国节能服务导刊.2005;7:25-27.
    [7]政府间气候变化委员会.2006年IPCC的国家温室气体清单指南(中文版).全球环境战略研究所;2006.
    [8]樊奇,羌宁.挥发性有机废气净化技术研究进展.四川环境.2005;24(4):40-44.
    [9]国家发改委.节能中长期专项规划.北京;2004.
    [10]李洪.煤矿瓦斯综合利用的实践与探索.中国煤层气.2006;4:21-23.
    [11]詹道平,宁平.利用钢铁行业副产煤气制取有机化工产品的建议.云南化工2006;33(2):44-48,52.
    [12]张丽.浅谈瓦斯气的开发和利用.煤.2007;16(1):31,37.
    [13]张琦,蔡九菊,吴复忠,庞兴露,葛红.高炉煤气在冶金工业的应用研究.工业炉.2007;29(1):9-12.
    [14]万嘉瑜,郑成航,吴磊,张骁翔.贵州六盘水煤层气开采利用现状及前景展望.杭州:浙江大学;2008.
    [15]王盈,朱吉钦.低浓度甲烷流向变换催化燃烧的研究.燃料化学学报.2005;33(6):760-762.
    [16]Hayes RE, et al, editor. Introduction to Catalytic Combustion. Reading, UK:Gordon and Breach Science Publishers; 1997.
    [17]牛学坤.流向变换催化燃烧空气净化过程的模型化研究.北京:北京化工大学;2003.
    [18]吴学成,程乐鸣,王恩宇,骆仲泱,岑可法.多孔介质中的预混燃烧发展现状.电站系统工程.2003;19(1):37-41.
    [19]Mujeebu MA, Abdullah MZ, Abu Bakar MZ, Mohamad AA, Muhad RMN, Abdullah MK. Combustion in porous media and its applications-A comprehensive survey. Journal of Environmental Management.2009;90(8):2287-2312.
    [20]王关晴.往复式热循环多孔介质燃烧系统特性研究与数值模拟.杭州:浙江大学;2008.
    [21]Dobrego KV, Gnesdilov NN, Lee SH, Choi HK. Lean combustibility limit of methane in reciprocal flow filtration combustion reactor. International Journal of Heat and Mass Transfer.2008;51 (9-10):2190-2198.
    [22]Jugjai S, Sawananon A. The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank. Fuel.2004;83(17-18):2369-2379.
    [23]Glassman I. Combustion.3rd edition ed. San Diego, California:Academic Press; 1996.
    [24]Weinberg FJ. Combustion Temperatures-Future. Nature.1971;233:239-241.
    [25]Egerton A, Gugan K, Weinberg F.J. The mechanism of smoldering in cigarettes. Combustion and Flame.1963;7:73.
    [26]Takeno T, Sato K, Hase K. A theoretical study on an excess enthalpy flame. In:Institute TC, editor. Eighteenth Symposium (International) on combustion. Pittsburgh; 1980. p.465-471.
    [27]Wood S, Harris AT. Porous burners for lean-burn applications. Progress in Energy and Combustion Science.2008;34(5):667-684.
    [28]Pickenacker O, Wawrzinek K; Trimis D; PritzkowW. E. C. Innovative ceramic materials for porous-medium burners, Ⅱ. Interceram:International Ceramic Review. 1999;48(6):424-433.
    [29]Incera Garrido G, Patcas FC, Lang S, Kraushaar-Czarnetzki B. Mass transfer and pressure drop in ceramic foams:A description for different pore sizes and porosities. Chemical Engineering Science.2008;63(21):5202-5217.
    [30]Howell JR, Hall MJ, Ellzey JL. Combustion of hydrocarbon fuels within porous inert media. Progress in Energy and Combustion Science.1996;22(2):121-145.
    [31]Babkin VS, Drobyshevich VI, Laevskii IM, Potytniakov SI. On the Mechanism of Combustion Wave-Propagation in a Porous-Medium during the Gas Filtration. Doklady Akademii Nauk Sssr.1982;265(5):1157-1161.
    [32]Korzhavin AA, Bunev VA, Abdullin RK, Babkin VS. Flame Zone in Gas Combustion in an Inert Porous-Medium. Combustion Explosion and Shock Waves.1982;18(6):628-631.
    [33]Babkin VS, Korzhavin AA, Bunev VA. Propagation of Premixed Gaseous Explosion Flames in Porous-Media. Combustion and Flame.1991;87(2):182-190.
    [34]Korzhavin AA, Bunev VA, Babkin VS. Flame propagation in porous media wetted with fuel. Combustion Explosion and Shock Waves.1997;33(3):306-314.
    [35]Kakutkina NA, Babkin VS. Types of standing waves generated by gas combustion in inert porous media. Chemical Physics Reports.1997;16(9):1551-1562.
    [36]Korzhavin AA, Bunev VA, Babkin VS. Dynamics of gaseous combustion in closed systems with an inert porous medium. Combustion and Flame.1997;109(4):507-520.
    [37]Minaev SS, Potytnyakov SI, Babkin VS. Combustion Wave Instability in the Filtration Combustion of Gases. Combustion Explosion and Shock Waves.1994;30(3):306-310.
    [38]Kakutkina NA, Babkin VS. Propagation of spherical gas filtration combustion waves in inert porous media. Combustion Explosion and Shock Waves.1999;35(1):53-59.
    [39]Minaev SS, Potytnyakov SI, Babkin VS. Thermal-Stability of Distorted Gas Flame in Porous-Media. Combustion Explosion and Shock Waves.1994;30(6):761-763.
    [40]Laevsky YM, Babkin VS. Mechanism of the Increase in the Combustion Rate of a Gaseous Mixture in Inert Porous Media. Proceedings of the Ninth Asia-Pacific International Symposium on Combustion and Energy Utilization.2008:147-153.
    [41]Laevskii YM, Babkin VS. Stabilized Gas Combustion Wave in an Inert Porous Medium. Combustion Explosion and Shock Waves.2008;44(5):502-508.
    [42]Laevsky YM, Babkin VS. On the theory of a travelling hybrid wave. Combustion Science and Technology.2001;164:129-144.
    [43]Mital R, Gore JP, Viskanta R. A study of the structure of submerged reaction zone in porous ceramic radiant burners. Combustion and Flame.1997;111(3):175-184.
    [44]Nasr K, Ramadhyani S, Viskanta R. An Experimental Investigation on Forced-Convection Heat-Transfer from a Cylinder Embedded in a Packed-Bed. Journal of Heat Transfer-Transactions of the Asme.1994;116(1):73-80.
    [45]Nasr K, Viskanta R, Ramadhyani S. An Experimental Evaluation of the Effective Thermal-Conductivities of Packed-Beds at High-Temperatures. Journal of Heat Transfer-Transactions of the Asme.1994; 116(4):829-837.
    [46]Fu X, Viskanta R, Gore JP. A model for the volumetric radiation characteristics of cellular ceramics. International Communications in Heat and Mass Transfer.1997;24(8):1069-1082.
    [47]Zhdanok SA, Dobrego KV, Futko SI. Flame localization inside axis-symmetric cylindrical and spherical porous media burners. International Journal of Heat and Mass Transfer. 1998;41(22):3647-3655.
    [48]Fu X, Viskanta R, Gore JP. Prediction of effective thermal conductivity of cellular ceramics. International Communications in Heat and Mass Transfer.1998;25(2):151-160.
    [49]吕兆华,孙思诚.多孔介质中预混火焰燃烧速率的预示.燃烧科学与技术.1998;4(3):242-246.
    [50]吕兆华Matthews RD分段多孔介质燃烧器二次进气燃烧排放研究.燃烧科学与技术.2000;6(2):124-128.
    [51]董帅.预混气体在惰性多孔介质内燃烧的实验和数值模拟初步研究沈阳:东北大学;2008.
    [52]钟凡.天燃气在多孔陶瓷板辐射器中预混燃烧的数值模拟哈尔滨:哈尔滨工业大学;2006.
    [53]郑中青.天然气在惰性多孔介质内预混燃烧的数值模拟研究上海:上海交通大学;2007.
    [54]张义贵.徽尺度多孔介质中燃烧的电容层析成像应用研究北京:中国科学院研究生院(工程热物理研究所);2008.
    [55]陈晓婷.外界辐射对浸没在多孔介质中液体燃料燃烧特性的实验研究北京:中国科学院研究生院(工程热物理研究所);2007.
    [56]Ellzey JL, Goel R. Emissions of CO and NO from a two stage porous media burner. Combustion Science and Technology.1995; 107(1-3):81-91.
    [57]Khanna V, Goel R, Ellzey JL. Measurements of Emissions and Radiation for Methane Combustion within a Porous-medium Burner. Combustion Science and Technology. 1994;99(1-3):133-142.
    [58]Henneke MR, Ellzey JL. Modeling of filtration combustion in a packed bed. Combustion and Flame.1999;117(4):832-840.
    [59]Barra AJ, Ellzey JL. Heat recirculation and heat transfer in porous burners. Combustion and Flame.2004;137(1-2):230-241.
    [60]Mathis WM, Ellzey JL. Flame stabilization, operating range, and emissions for a methane/air porous burner. Combustion Science and Technology.2003;175(5):825-839.
    [61]Barra AJ, Diepvens G, Ellzey JL, Henneke MR. Numerical study of the effects of material properties on flame stabilization in a porous burner. Combustion and Flame. 2003;134(4):369-379.
    [62]Smucker MT, Ellzey JL. Computational and experimental study of a two-section porous burner. Combustion Science and Technology.2004; 176(8):1171-1189.
    [63]Vogel BJ, Ellzey JL. Subadiabatic and superadiabatic performance of a two-section porous burner. Combustion Science and Technology.2005;177(7):1323-1338.
    [64]Elverum PJ, Ellzey JL, Kovar D. Durability of YZA ceramic foams in a porous burner. Journal of Materials Science.2005;40(1):155-164.
    [65]Fay M, Dhamrat R, Ellzey JL. Effect of porous reactor design on conversion of methane to hydrogen. Combustion Science and Technology.2005;177(11):2171-2189.
    [66]Dhamrat RS, Ellzey JL. Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor. Combustion and Flame.2006;144(4):698-709.
    [67]Dixon MJ, Schoegl I, Hull CB, Ellzey JL. Experimental and numerical conversion of liquid heptane to syngas through combustion in porous media. Combustion and Flame.2008;154(1-2):217-231.
    [68]Schoegl I, Ellzey JL. A mesoscale fuel reformer to produce syngas in portable power systems. Proceedings of the Combustion Institute.2009;32:3223-3230.
    [69]Schoegl I, Ellzey JL. Superadiabatic combustion in conducting tubes and heat exchangers of finite length. Combustion and Flame.2007;151:142-159.
    [70]Saveliev AV, Kennedy LA, Fridman AA, Puri IK. Structures of multiple combustion waves formed under filtration of lean hydrogen-air mixtures in a packed bed. Twenty-Sixth Symposium (International) on Combustion.1996:3369-3375
    [71]Drayton MK, Saveliev AV, Kennedy LA, Fridman AA, Li YE. Syngas production using superadiabatic combustion of ultra-rich methane-air mixtures. Twenty-Seventh Symposium (International) on Combustion.1998:1361-1367.
    [72]Kennedy LA, Saveliev AV, Fridman AA, Drayton MK. Superadiabatic partial oxidation of methane in reciprocal and counterflow porous burners. Heat Transfer.1998,7:391-396
    [73]Kennedy LA, Bingue JP, Saveliev AV, Fridman AA, Foutko SI. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. Proceedings of the Combustion Institute.2000;28:1431-1438.
    [74]Kennedy LA, Saveliev AV, Bingue JP, Ridman AA. Filtration combustion of a methane wave in air for oxygen-enriched and oxygen-depleted environments. Proceedings of the Combustion Institute.2003;29:835-841.
    [75]Porshnev PI, Fridman AA, Saveliev A, Bingue JP, Kennedy LA. Hydrogen production by superadiabatic combustion of hydrogen sulfide. Cht'01:Advances in Computational Heat Transfer Ii, Vols 1 and 2, Proceedings 2001:373-379
    [76]Bingue JP, Saveliev AV, Fridman AA, Kennedy LA. Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide. International Journal of Hydrogen Energy.2002;27(6):643-649.
    [77]Bingue JP, Saveliev AV, Fridman AA, Kennedy LA. Hydrogen sulfide filtration combustion: comparison of theory and experiment. Experimental Thermal and Fluid Science. 2002;26(2-4):409-415.
    [78]Bingue JP, Saveliev A, Kennedy LA. Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion. International Journal of Hydrogen Energy.2004;29(13):1365-1370.
    [79]Slimane RB, Lau FS, Khinkis M, Bingue JP, Saveliev AV, Kennedy LA. Conversion of hydrogen sulfide to hydrogen by superadiabatic partial oxidation:thermodynamic consideration. International Journal of Hydrogen Energy.2004;29(14):1471-1477.
    [80]Toledo M, Bubnovich V, Saveliev A, Kennedy L. Hydrogen production in ultrarich combustion of hydrocarbon fuels in porous media. International Journal of Hydrogen Energy.2009;34(4):1818-1827.
    [81]Contarin F, Saveliev AV, Fridman AA, Kennedy LA. A reciprocal flow filtration combustor with embedded heat exchangers:numerical study. International Journal of Heat and Mass Transfer.2003;46(6):949-961.
    [82]Contarin F, Barcellos WM, Saveliev AV, Kennedy LA. Energy extraction from a porous media reciprocal flow burner with embedded heat exchangers. Journal of Heat Transfer-Transactions of the Asme.2005;127(2):123-130.
    [83]Bingue JP, Saveliev AV, Kennedy LA. NO reburning in ultrarich filtration combustion of methane. Proceedings of the Combustion Institute.2007;31:3417-3424.
    [84]Marbach TL, Agrawal AK. Experimental study of surface and interior combustion using composite porous inert media. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme.2005;127(2):307-313.
    [85]Marbach TL, Agrawal AK. Heat-recirculating combustor using porous inert media for mesoscale applications. Journal of Propulsion and Power.2006;22(1):145-150.
    [86]Marbach TL, Sadasivuni V, Agrawal AK. Investigation of a miniature combustor using porous media surface stabilized flame. Combustion Science and Technology. 2007;179(9):1901-1922.
    [87]Newbum ER, Agrawal AK. Liquid fuel combustion using heat re-circulation through annular porous media. Proceedings of the ASME Turbo Expo 2005.2005; 2:435-441
    [88]Vijaykant S, Agrawal AK. Liquid fuel combustion within silicon-carbide coated carbon foam. Experimental Thermal and Fluid Science.2007;32(1):117-125.
    [89]Newburn ER, Agrawal AK. Liquid fuel combustion using heat recirculation through annular porous media. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme.2007;129(4):914-919.
    [90]ASadasivuni V, Agrawal AK. A novel meso-scale combustion system for operation with liquid fuels. Proceedings of the Combustion Institute.2009;32:3155-3162.
    [91]Alavandi SK, Agrawal AK. Experimental study of combustion of hydrogen-syngas/methane fuel mixtures in a porous burner. International Journal of Hydrogen Energy.2008;33(4):1407-1415.
    [92]Alavandi SK, Agrawal AK. Lean premixed combustion of carbon-monoxide-hydrogen-methane fuel mixtures using porous inert media. Proceedings of the ASME Turbo Expo 2005,2005; 2:427-434.
    [93]Trimis D, Durst F. Combustion in a porous medium-advances and applications. Combustion Science and Technology.1996;121(1-6):153-&.
    [94]Talukdar P, Mishra SC, Trimis D, Durst F. Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field. Journal of Quantitative Spectroscopy& Radiative Transfer.2004;84(4):527-537.
    [95]Avdic F, Adzic M, Durst F. Small scale porous medium combustion system for heat production in households. Applied Energy.2010;87(7):2148-2155.
    [96]Pickenacker O, Trimis D. Experimental study of a staged methane/air burner based on combustion in a porous inert medium. Journal of Porous Media.2001;4(3):197-213.
    [97]Brenner G, Pickenacker K, Pickenacker O, Trimis D, Wawrzinek K, Weber T. Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media. Combustion and Flame.2000;123(1-2):201-213.
    [98]Durst F, Weclas M. A new type of internal combustion engine based on the porous-medium combustion technique. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering.2001;215(D1):63-81.
    [99]Al-Hamamre Z, Diezinger S, Talukdar P, Von Issendorff F, Trimis D. Combustion of low calorific gases from landfills and waste pyrolysis using porous medium burner technology. Process Safety and Environmental Protection.2006;84(B4):297-308.
    [100]Al-Hamamre Z, Al-Zoubi A, Trimis D. Numerical investigation of the partial oxidation process in porous media based reformer. Combustion Theory and Modelling. 2010;14(1):91-103.
    [101]Bakry A, Al-Salaymeh A, Al-Muhtaseb AH, Abu-Jrai A, Durst F. Novel Flame Stabilization Technique in Porous Inert Media (PIM) Combustion under High Pressure and Temperature. Energy & Fuels.2010;24:274-287.
    [102]Bakry A, Al-Salaymeh A, Al-Muhtaseb AH, Abu-Jrai A, Trimis D. CO and NOx emissions in porous inert media (PIM) burner system operated under elevated pressure and inlet temperature using a new flame stabilization technique. Chemical Engineering Journal. 2010;165(2):589-596.
    [103]Bakry A, Al-Salaymeh A, Al-Muhtaseb AH, Abu-Jrai A, Trimis D, Durst F. Low-Emission Premixed Porous Inert Media (PIM) Burner System Fueled with Vegetable (Rapeseed) Oil Using a Flow Velocity Flame Stabilization Technique. Energy & Fuels.2010;24:288-294.
    [104]Bakry A, Al-Salaymeh A, Al-Muhtaseb AH, Abu-Jrai A, Trimis D. Adiabatic premixed combustion in a gaseous fuel porous inert media under high pressure and temperature: Novel flame stabilization technique. Fuel.2011;90(2):647-658.
    [105]Bubnovich VI, Zhdanok SA, Dobrego KV. Analytical study of the combustion waves propagation under filtration of methane-air mixture in a packed bed. International Journal of Heat and Mass Transfer.2006;49(15-16):2578-2586.
    [106]Bubnovich V, Toledo M. Analytical modelling of filtration combustion in inert porous media. Applied Thermal Engineering.2007;27(7):1144-1149.
    [107]Moraga NO, Rosas CE, Bubnovich VI, Solaria NA. On predicting two-dimensional heat transfer in a cylindrical porous media combustor. International Journal of Heat and Mass Transfer.2008;51(1-2):302-311.
    [108]Bubnovich V, Henriquez L, Gnesdilov N. Numerical study of the effect of the diameter of alumina balls on flame stabilization in a porous-medium burner. Numerical Heat Transfer Part a-Applications.2007;52(3):275-295.
    [109]Toledo M, Bubnovich V. Flame stabilization in a porous burner at the interface of two sections of alumina spheres. EEESD'07:Proceedings of the 3rd IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development.2007:168-171.
    [110]Bubnovich V, Toledo M, Henriquez L, Rosas C, Romero J. Flame stabilization between two beds of alumina balls in a porous burner. Applied Thermal Engineering. 2010;30(2-3):92-95.
    [111]Zhdanok SA, Dobrego KV, Futko SI. Effect of porous media transparency on spherical and cylindrical filtrational combustion heaters performance. International Journal of Heat and Mass Transfer.2000;43(18):3469-3480.
    [112]Dobrego KV, Kozlov IM, Zhdanok SA, Gnesdilov NN. Modeling of diffusion filtration combustion radiative burner. International Journal of Heat and Mass Transfer. 2001;44(17):3265-3272.
    [113]Dobrego KV, Gnesdilov NN, Kozlov IM, Bubnovich VI, Gonzalez HA. Numerical-investigation of the new regenerator-recuperator scheme of VOC oxidizer. International Journal of Heat and Mass Transfer.2005;48(23-24):4695-4703.
    [114]Gnesdilov NN, Dobrego KV, Kozlov IM, Shmelev ES. Numerical study and optimization of the porous media VOC oxidizer with electric heating elements. International Journal of Heat and Mass Transfer.2006;49(25-26):5062-5069.
    [115]Gnesdilov NN, Dobrego KV, Kozlov IM. Parametric study of recuperative VOC oxidation reactor with porous media. International Journal of Heat and Mass Transfer. 2007;50(13-14):2787-2794.
    [116]Dobrego KV, Kozlov IM, Bubnovich VI, Rosas CE. Dynamics of filtration combustion front perturbation in the tubular porous media burner. International Journal of Heat and Mass Transfer.2003;46(17):3279-3289.
    [117]Dobrego KV, Zhdanok SA, Zaruba AI. Experimental and analytical investigation of the gas filtration combustion inclination instability. International Journal of Heat and Mass Transfer. 2001;44(11):2127-2136.
    [118]Dobrego KV, Zhdanok SA. Theory of thermohydrodynamic instability of the front of filtration combustion of gases. Combustion Explosion and Shock Waves. 1999;35(5):476-482.
    [119]Dobrego KV, Gnezdilov NN, Lee SH, Choi HK. Methane partial oxidation reverse flow reactor scale up and optimization. International Journal of Hydrogen Energy. 2008;33(20):5501-5509.
    [120]Dobrego KV, Gnesdilov NN, Lee SH, Choi HK. Overall chemical kinetics model for partial oxidation of methane in inert porous media. Chemical Engineering Journal. 2008;144(1):79-87.
    [121]Jugjai S, Somjetlertcharoen A. Multimode heat transfer in cyclic flow reversal combustion in a porous medium. International Journal of Energy Research.1999;23(3):183-206.
    [122]Jugjai S. Experimental study on cyclic flow reversal combustion in a porous medium. Combustion Science and Technology.2001; 163:245-260.
    [123]Jugjai S, Wongveera S, Teawchaiitiporn T, Limbwornsin K. The surface combustor-heater with cyclic flow reversal combustion. Experimental Thermal and Fluid Science. 2001;25(3-4):183-192.
    [124]Jugjai S, Nungniyom V. Cyclic operation of porous combustor-heater (PCH). Fuel. 2009;88(3):553-559.
    [125]Jugjai S, Wongpanit N, Laoketkan T, Nokkaew S. The combustion of liquid fuels using a porous medium. Experimental Thermal and Fluid Science.2002;26(1):15-23.
    [126]Jugjai S, Polmart N. Enhancement of evaporation and combustion of liquid fuels through porous media. Experimental Thermal and Fluid Science.2003;27(8):901-909.
    [127]Jugjai S, Phothiya C. Liquid fuels-fired porous combustor-heater. Fuel. 2007;86(7-8):1062-1068.
    [128]Jugjai S, Pongsai C. Liquid fuels-fired porous burner. Combustion Science and Technology. 2007; 179(9):1823-1840.
    [129]王恩宇.气体燃料在渐变型多孔介质中的预混燃烧机理研究.杭州:浙江大学;2004.
    [130]褚金华.渐变型多孔介质燃烧器的研究与开发.杭州:浙江大学;2005.
    [131]李姮.多孔介质预混燃烧中的气固温度分布及传热特性研究.杭州:浙江大学;2006.
    [132]凌忠钱.多孔介质内超绝热燃烧及硫化氢高温裂解制氢的试验研究和数值模拟.杭州:浙江大学;2008.
    [133]王子兴.多孔介质燃烧器内硫化氢超绝热部分氧化分解制氢的研究.杭州:浙江大学;2006.
    [134]李昊.往复式多孔介质燃烧器的实验研究.杭州:浙江大学;2004.
    [135]李涛.低热值预混气在往复式多孔介质中燃烧实验研究.杭州:浙江大学;2010.
    [136]史俊瑞.多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究.大连:大连理工大学;2008.
    [137]杜礼明.稀薄预混气体在多孔介质中超绝热燃烧的研究.大连:大连理工大学;2003.
    [138]马世虎.往复流动下预混合气体在多孔介质中超绝热燃烧的数值模拟.大连:大连理 工大学;2004.
    [139]邓洋波.多孔介质内往复流动下超绝热燃烧的实验和数值模拟研究大连:大连理工大学;2004.
    [140]刘宏升.基于多孔介质燃烧技术的超绝热发动机的基础研究大连:大连理工大学;2008.
    [141]周磊.大涡模拟在燃油喷雾过程及多孔介质发动机中应用的研究大连:大连理工大学;2010.
    [142]史俊瑞,解茂昭,韩春福,李军,李刚.多孔介质燃烧-换热器的二维数值研究化工学报.2009;5(60):1116-20.
    [143]东明.大孔隙率多孔介质内湍流流动和质量弥散的数值研究大连:大连理工大学;2009.
    [144]马坤.多孔介质中湍流流动的数值模拟大连:大连理工大学;2009.
    [145]芦宁.甲烷在多孔介质中过滤燃烧制取氢气的数值模拟大连:大连理工大学;2007.
    [146]Zhang G, Cai X, Liu M, Lin B, Chen Y, Wang L. Characteristic analysis of low-velocity gas filtration combustion in an inert packed bed. Combustion Theory and Modelling. 2006;10(4):683-700.
    [147]Zhao PH, Ye TH, Jiang H, Chen YL. Study of the mechanisms of the flame propagation and stabilization in porous media. Science in China Series E-Technological Sciences. 2008;51(7):871-881.
    [148]赵平辉,叶桃红,姜海,陈义良.多孔介质内火焰传播与驻定机理的研究.中国科学(E辑:技术科学).2008;38(05):746-754.
    [149]姜海.多孔介质内预混气体燃烧的实验和数值研究合肥:中国科技大学;2008.
    [150]张根垣.基于多孔介质内燃烧的微小型化学推进系统的数值研究合肥:中国科技大学:2006.
    [151]林博颖.惰性多孔介质内的液雾燃烧合肥:中国科技大学;2008.
    [152]马培勇.外置瑞士卷多孔介质燃烧器特性研究合肥:中国科技大学;2010.
    [153]何贤钊.内置多孔介质Swiss-roll燃烧器的点火启动和热能利用研究合肥:中国科技大学;2010.
    [154]李永玲.甲烷在内置多孔介质卷式反应器内富燃制氢的数值研究合肥:中国科技大学:2010.
    [155]Hsu pF, Howell. J. R.. Measurements of Thermal Conductivity and Optical of Porous Partially Stabilized Zirconia Experimental Heat Transfer.1993(5):293-313.
    [156]Hsu PF, Howell JR, Matthews RD. A Numerical Investigation of Premixed Combustion within Porous Inert Media. Journal of Heat Transfer-Transactions of the Asme. 1993;115(3):744-750.
    [157]王关晴,黄曙江,丁宁,罗丹,黄雪峰,刘彦,徐江荣.泡沫陶瓷多孔介质有效导热特性研究.中国电机工程学报.2010;30(11):73-8.
    [158]Wakao N, Kaguei S. Heat and mass transfer in packed beds. New York:Gordon and Breach Science Publications; 1982.
    [159]Younis LB, Viskanta R. Experimental-Determination of the Volumetric Heat-Transfer Coefficient between Stream of Air and Ceramic Foam. International Journal of Heat and Mass Transfer.1993;36(6):1425-1434.
    [160]Fu X, R V, Gore JP. Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics. Experimental Thermal and Fluid Science.1998;17(4):285-293.
    [161]Kamiuto K, Yee SS. Heat transfer correlations for open-cellular porous materials. International Communications in Heat and Mass Transfer.2005;32(7):947-953.
    [162]Pereira JMC, Mendes MAA, Trimis D, Pereira JCF. Quasi-ID and 3D TPOX porous media diffuser reformer model. Fuel.2010;89(8):1928-1935.
    [163]Kaviany M. Principles of Heat Transfer in Porous Media. Second Edition ed. New York: Springer; 2002.
    [164]赵平辉,朱旻明,张根垣,陈义良,姜海.双层多孔介质燃烧器的数值模拟.计算物理.2006;23(06):679-684.
    [165]赵平辉,陈义良,刘明侯,丁敏,张根烜.多孔介质内层流预混燃烧的数值模拟.燃烧科学与技术.2006;12(01):46-50.
    [166]Shi JR, Xie MZ, Liu H, Li G, Zhou L. Numerical simulation and theoretical analysis of premixed low-velocity filtration combustion. International Journal of Heat and Mass Transfer.2008;51 (7-8):1818-1829.
    [167]马世虎解茂昭,邓洋波.多孔介质往复流动燃烧的一维数值模拟.热能动力工程.2004;19(4):384-388.
    [168]解茂昭,马坤,芦宁,史俊瑞.甲烷在多孔介质中过滤燃烧制氢的数值模拟.热科学与技术.2009;8(1):69-73.
    [169]王关晴程乐鸣,郑成航,骆仲泱,岑可法.往复热循环多孔介质“超焓燃烧”特性.化工学报.2009;60(2):435-442.
    [170]王关晴,程乐鸣,徐江荣,骆仲泱,岑可法.往复热循环多孔介质燃烧点火特性数值模拟.中国电机工程学报.2009;29(8):26-33.
    [171]Mendes MAA, Pereira JMC, Pereira JCF. On the stability of ultra-lean H-2/CO combustion in inert porous burners. International Journal of Hydrogen Energy.2008;33(13):3416-3425.
    [172]Keshtkar MM, Nassab SAG. Theoretical analysis of porous radiant burners under 2-D radiation field using discrete ordinates method. Journal of Quantitative Spectroscopy & Radiative Transfer.2009; 110(17):1894-1907.
    [173]Zhdanok S, Kennedy LA, Koester G. Superadiabatic combustion of methane air mixtures under filtration in a packed bed. Combustion and Flame.1995;100(1-2):221-231.
    [174]Lee YI, Shin HD, Baek SW. Experimental and numerical study on the laminar premixed flame stabilized inside a honeycomb ceramic. Combustion Science and Technology. 1996;112:75-&.
    [175]Rumminger MD, Dibble RW, Heberle NH, Crosley DR. Gas temperature above a porous radiant burner:Comparison of measurements and model predictions. In:Burgess AR, Dryer FL, editors.26th International Symposium on Combustion; 1996 Jul 28-Aug 02; Naples, Italy:Combustion Institute; 1996; 1755-1762.
    [176]吕兆华,王志武,孙思诚,丁建平.多孔陶瓷燃烧器火焰温度的测定.发电设备.1997;8-9(Z1):35-40.
    [177]李姮,程乐鸣,骆仲泱,岑可法.多孔介质预混燃烧气固温度分布特性试验研究.浙江大学学报(工学版).2007;41(12):2069-2072.
    [178]Kiefer J, Weikl MC, Seeger T, von Issendorff F, Beyrau F, Leipertz A. Non-intrusive gas-phase temperature measurements inside a porous burner using dual-pump CARS. Proceedings of the Combustion Institute.2009;32(2):3123-3129.
    [179]Zhou XY, Pereira JCF. Comparison of four combustion models for simulating the premixed combustion in inert porous media. Fire and Materials.1998;22(5):187-197.
    [180]Mishra SC, Steven M, Nemoda S, Talukdar P, Trimis D, Durst F. Heat transfer analysis of a two-dimensional rectangular porous radiant burner. International Communications in Heat and Mass Transfer.2006;33(4):467-474.
    [181]Foutko SI, Shabunya SI, hdanok SA, Kennedy LA. Superadiabatic combustion wave in a diluted methane-air mixture under filtration in a packed bed. Symposium (International) on Combustion.1996;26(2):3377-3382.
    [182]Zhdanok S, Kennedy LA, Koester G. Superadiabatic Combustion of Methane Air Mixtures under Filtration in a Packed-Bed. Combust Flame.1995; 100(1-2):221-231.
    [183]Kennedy LA, Saveliev AV, Bingue JP, Fridman AA. Filtration combustion of a methane wave in air for oxygen-enriched and oxygen-depleted environments. Proceedings of the Combustion Institute.2002;29(1):835-841.
    [184]Catapan RC, Oliveira AAM, Costa M. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner. Experimental Thermal and Fluid Science. 2011;35(1):172-179.
    [185]王恩宇,程乐鸣,褚金华,施正展,骆仲泱,岑可法.渐变型多孔介质中燃气燃烧特性试验研究.工程热物理学报2005;26(06):1037-1040.
    [186]王恩宇,程乐鸣,骆仲泱,岑可法.渐变型多孔介质中预混燃烧温度分布试验.热科学 与技术2003:2(1):64-69.
    [187]Yang HL, Minaev S, Geynce E, Nakamura H, Maruta K. Filtration Combustion of Methane in High-Porosity Micro-Fibrous Media. Combustion Science and Technology 2009;181(4):654-669.
    [188]Bizzi M, Saracco G, Specchia V. Steady-state multiplicity, flashback, and control issues in CH4 radiant burners. Aiche Journal 2004;50(9):2276-2286.
    [189]Lari K, Nassab SAG. Transient thermal characteristics of porous radiant burners. Iranian Journal of Science and Technology Transaction B-Engineering 2007;31(B4):407-420.
    [190]Xiong TY, Khinkis MJ, Fish FF. Experimental-Study of a High-Efficiency, Low-Emission Porous Matrix Combustor-Heater. Fuel 1995;74(11):1641-1647.
    [191]Hackert CL, Ellzey JL, Ezekoye OA. Combustion and heat transfer in model two-dimensional porous burners. Combustion and Flame.1999; 116(1-2):177-191.
    [192]Fursenko R, Minaev S, Maruta K, Nakamura H, Yang H. Characteristic regimes of premixed gas combustion in high-porosity micro-fibrous porous media. Combustion Theory and Modelling.2010;14(4):571-581.
    [193]Saveliev AV, Kennedy LA, Fridman AA, Puri IK. Structures of multiple combustion waves formed under filtration of lean hydrogen-air mixtures in a packed bed. Twenty-Sixth Symposium (International) on Combustion; 1996; 3369-3375.
    [194]Kim SG, Yokomori T, Kim NI, Kumar S, Maruyama S, Maruta K. Flame behavior in heated porous sand bed. Proceedings of the Combustion Institute.2007;31:2117-2124.
    [195]Mendes MAA, Pereira JMC, Pereira JCF. A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media. Combustion and Flame. 2008;153(4):525-539.
    [196]Shi JR, Xie MZ, Li G, Liu H, Liu JT, Li HT. Approximate solutions of lean premixed combustion in porous media with reciprocating flow. International Journal of Heat and Mass Transfer.2009;52(3-4):702-708.
    [197]Hoffmann JG, Echigo R, Yoshida H, Tada S. Experimental study on combustion in porous media with a reciprocating flow system. Combustion and Flame.1997;111(1-2):32-46.
    [198]李昊,程乐鸣,王恩宇,褚金华,骆仲泱,岑可法.往复式多孔介质燃烧器温度分布的试验研究.浙江大学学报(工学版).2005;39(8):1184-1188.
    [199]MEGTEC. Energy from Coal Mine Ventilation Air Methane.2011 [cited; Available from:http://www.megtec.com/energy-from-coal-mine-ventilation-methane-p-682-1-en.html
    [200]Mattus R. MEGTEC with VOCSIDIZER贵州:20087-17
    [201]科学利用煤矿瓦斯让瓦斯变成摇钱树.人民日报.20084-17.
    [202]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998.
    [203]McEnally CS, Koylu UO, Pfefferle LD, Rosner DE. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples. Combustion and Flame.1997;109(4):701-720.
    [204]Heitor MV, Moreira ALN. Thermocouples and Sample Probes for Combustion Studies. Progress in Energy and Combustion Science.1993;19(3):259-278.
    [205]Kays WM, Crawford ME, Weigand B. Convective Heat and Mass Transfer. The 4th edition ed. New York:McGraw-Hill,2005.
    [206]Whitaker S. Forced Convection Heat-Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed-Beds and Tube Bundles. Aiche Journal 1972;18(2):361-372.
    [207]Churchill SW, Bernstein M. Correlating Equation for Forced-Convection from Gases and Liquids to a Circular-Cylinder in Cross-Flow. Journal of Heat Transfer-Transactions of the Asme.1977;99(2):300-306.
    [208]Delalic N, Mulahasanovic D, Ganic EN. Porous media compact heat exchanger unit experiment and analysis. Experimental Thermal and Fluid Science.2004;28(2-3):185-192.
    [209]Shkadinsky KG, Shkadinskaya GV, Matkowsky BJ. Filtration combustion in moving media: One and two reaction zone structures. Combustion and Flame.1997; 110(4):441-461.
    [210]Turns SR. An Introduction to Combustion:Concepts and Applications. Boston:McGraw-Hill,1996.