基于多孔介质燃烧技术的超绝热发动机的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的飞速发展,能源及环境成为当今世界首要关注的两大热点问题,而作为能源消耗和环境污染的主要来源的汽车发动机已得到了全世界研究者的广泛关注,如何实现高效和清洁燃烧已成为国际发动机界的一个最紧迫的课题。在众多的关于发动机的技术革新中,多孔介质发动机作为一种基于全新理念的新型发动机,以其独特的燃烧方式、低排放、低噪音等优越性而受到越来越多的关注。
     本文通过理论分析和数值模拟的方法对多孔介质发动机工作循环及燃烧特性进行研究,在机理实验的基础上考察液体燃料在多孔介质内的燃烧特性。旨在通过理论与实验的研究,深入地了解多孔介质发动机的工作特性,以期推动多孔介质发动机的实用化。
     首先,将已有多孔介质燃烧器中得到的结论应用于多孔介质发动机,建立多孔介质发动机热力学模型,对多孔介质发动机理想循环和不可逆循环中的功效特性及可用能损失等加以分析。
     (1)以经典热力学理论为指导,分别对开式、闭式两种多孔介质发动机的工作循环进行系统的热力学分析。从理论上分析多孔介质发动机的工作过程,讨论理想循环的性能参数如压缩比、极限温度等对发动机效率、循环功的影响,分析循环可用能损失,并将多孔介质回热循环与传统发动机的Otto循环、Diesel循环进行比较。结果表明多孔介质发动机的整体性能水平优于传统发动机,具有效率高、循环功大的特点。
     (2)用有限时间热力学方法分析了闭式多孔介质发动机内多孔介质回热循环的功效特性。在分别考虑热损失和活塞摩擦损失的条件下,推导出循环功与效率的关系及最大功输出时的效率界限等性能关系,并给出了较详尽的数值计算结果,讨论了与燃烧、摩擦相关的参数对功效特性的影响,使得热力学循环分析更为接近实际过程。这对实际多孔介质发动机性能的评估和改进具有重要意义。
     其次,基于目前国际流行并已得到验证的HCCI燃烧模型中单区、多区模型,针对多孔介质发动机的特性,建立适用于多孔介质发动机模拟的单区模型和双区模型。
     (1)以热力学第一定律为基础,应用CHEMKIN化学动力学软件包中的SENKIN模块结合发动机燃烧的零维单区模型,模拟了正庚烷在多孔介质发动机中的燃烧过程。通过修改SENKIN程序,加入Woschni传热模型、多孔介质换热模型和燃烧放热率模型,建立了多孔介质发动机的能量方程。燃烧放热率模型中分别采用代用燃烧规律和正庚烷详细氧化机理两种方式,在正庚烷详细氧化机理中加入了氮氧化物的生成机理。计算了多种工况参数下多孔介质发动机缸内温度、压力变化规律,分别讨论了压缩比、多孔介质温度、体换热系数和过量空气系数等参数对多孔介质发动机燃烧过程的影响。通过比较多孔介质发动机与传统发动机温度、压力的变化规律,证明多孔介质使缸内温度和压力的变化趋于平缓。
     (2)在考虑各区间质量分布和交换、壁面传热、区间质量交换等因素的基础上,结合多孔介质换热模型,建立了开式、闭式多孔介质发动机的准维双区模型,对其燃烧过程进行模拟。程序中耦合了化学反应动力学计算软件包CHEMKINⅢ,两区之间的质量交换基于Komninos等人的多区模型并加以简化,壁面传热模型为针对HCCI发动机而设计的改进的Woschni模型,以异辛烷为燃料,采用为HCCI发动机定制的骨架反应机理模拟燃烧过程。着重讨论进气温度和压力、压缩比、过量空气系数及多孔介质初始温度等运行参数对多孔介质发动机性能的影响。计算结果表明,由于多孔介质的高温及其对混合气的预热作用,促进了液体燃料汽化和燃烧反应发生,多孔介质初始温度和压缩比是决定发动机的压燃着火的重要因素。开式PM发动机,燃油的供油方式及汽化过程对缸内燃料的质量分布有较大的影响;闭式PM发动机,液体燃料的汽化过程完全在多孔介质室内进行,不受喷油时刻、载荷等运行参数的影响,阀门开启的时间决定蒸汽与空气的混合,是决定多孔介质中能否着火的重要因素。
     最后,通过机理实验研究液体燃料在多孔介质内的燃烧特性。鉴于发动机高速瞬态工况不适合用于原理性研究的观察和测量,本文设计了使用液体燃料的多孔介质燃烧器,对多孔介质中的“渗孔液雾自均匀化”和超绝热燃烧进行原理性实验研究。自行设计和制作的实验台包括燃烧器(石英玻璃管)、气体供给系统、燃油供给系统以及测量系统等。该实验台具有研究多孔介质中气体燃烧波传播规律及液体燃烧特性的双重功能。通过气体燃料在多孔介质内的燃烧对多孔介质进行预热,然后将液体燃料喷入多孔介质燃烧器,汽化后燃烧。通过热电偶测量燃烧区的温度分布,讨论混合气流量和当量比对填充床内燃烧波的传播速度和最高温度的影响。
With the rapid development of global economy, the problems of energy crisis and environment pollution have become two focuses of attention. As the main source of petroleum consumption and emissions to atmosphere, automotive engines have received increased attentions, and how to realize high efficiency and clean combustion has become a urgent objective pursued by the entire engine community. Porous medium (PM) engine, as a newborn thing, is characterized with a number of advantages, such as low-pollution, higher-efficiency and extended limits of flammability, and, hence, is receiving more and more attentions.
     This thesis presents a theoretical analysis of cycle characteristic and numerical study on the ignition and combustion process of PM engines, and presents the investigation on combustion of liquid fuel in prous media based on the mechanism experimental. The principal aim of this work has been to have a primary recognition about the working characteristics of PM engine, and resolve the key problem of liquid fuel evaporation and combustion in porous medium, with the purpose of providing some theoretical foundations for its application.
     Firstly, thermodynamic models of porous medium engine are set up based on the knowledge gained from previous studies on porous medium burners, and characteristics of work and efficiency as well as the availability analysis of both ideal cycle and irreversible cycle in porous medium engine are discussed.
     (1) Based on the classical thermodynamics theory, systematic analysis of theworking cycle is conducted for two types of porous medium engine, i.e. one with closed PM chamber and other with open PM chamber. The general performances of the porous medium engines are theoretically analyzed, and the influences of compression ratio, limit temperatures and volume expansion ratio etc on net work and efficiency of the ideal heat regenerative cycle in the PM engines are discussed, and availabilities in the working process are derived. Comparison of the heat regenerative cycle of the PM engine with the Otto cycle and Diesel cycle shows that performance of the PM engine is prior to the conventional engine, the PM engine can improve net work output at a little expense of thermal efficiency.
     (2) Finite-time thermodynamic analysis is applied to evaluate the thermodynamic performance of the irreversible heat regenerative cycle in the PM-engine with closed PM chamber. The irreversibility of heat transfer between the working fluid and cylinder wall, and the friction loss due to piston movement are taken into account in the real PM heat regenerative cycle. The relationship between the net work output and thermal efficiency, and corresponding limit conditions for the PM engine are derived, in which the effect of heat losses through the cylinder wall is took into account. According to detailed numerical computations, effects of combustion and heat transfer on the cycle are also discussed. The results obtained here could provide significant guidance for the performance evaluation and improvement of practical PM-engines.
     Secondly, available combustion models, which are suitable for HCCI engines, are modified and applied to investigate the ignition and combustion characteristics of the PM engine. A simulation system including a single-zone model and a two-zone model for porous medium engine is developed, which could rapidly bring accurate information for the prediction of ignition point.
     (1) Based on the First thermodynamic Law, the SENKIN code of the CHEMKIN chemical kinetics package, combined with a zero-dimensional single-zone model of engine combustion, was used to simulate the combustion process of a PM engines fueled by n-heptane. The code has been modified to incorporate the Woschni heat transfer correlation, a model of heat transfer within porous medium and heat release rate models to build the energy balance equation. A substitutional combustion rate model and a detailed chemical kinetics mechanism with detailed chemistry mechanism of NO_x formation are used to calculate the heat release rate, separately. Evolutions of pressure and temperature in the PM engine are calculated under various working conditions. Influences of operating parameters, e.g. compression ratio, the initial temperature and volumetric heat transfer coefficient of the porous medium, the excess air ratio etc on the combustion process of the PM engine are discussed. Comparison of the PM engine with conventional engines shows that PM can relax the evolution of the in-cylinder temperature and pressure.
     (2) The combustion processes of both permanent and periodical contact PM engines were simulated by a quasi-dimensional two-zone model, considering the influences of the mass distribution, heat transfer from the cylinder wall, mass exchange between zones and the heat transfer in porous medium. A computer program was developed and coupled with the chemical kinetics package Chemkin III. The mass exchange model is adopted and simplified from the model of Komninos based on the assumption of uniform pressure throughout both zones. Wall heat losses were predicted with an improved Woschni model for the HCCI process by Chang. The e PM enginewas fueled with iso-octane and a skeletal kinetic mechanism for iso-octane oxidation was used for the chemistry simulation. Influences of operating parameters, e.g. intake temperature and pressure, the initial temperature of PM, compression ratio, the excess air ratio etc on the performance of the PM engine were emphatically discussed. It is found out that the porous medium, acting as a heat recuperator, can preheat the mixture and significantly enhance the evaporation of liquid fuel, which promotes the ignition and combustion in the cylinder; and that the initial PM temperature and the compression ratio are critical factors controlling the compression ignition of the mixture.
     For the permanent contact PM engine, the modes of fuel supply and the progress of fuel evaporation influence the mass distribution in the cylinder greatly. However, for the periodical contact PM engine, the evaporation process of liquid fuel occurs in the PM chamber, which is decoupled from the cylinder and is almost independent of other operating factors such as spray timing, power output etc. The mixing of fuel vapor and air is controlled by the timing of the PM valve opening, which is the critical factor determining ignitiontiming.
     Finally, the dissertation presents an experimental study of evaporation enhancementand combustion characteristics of liquid fuel spray aided by porous media. A set of experimental system for combustion of liquid fuel in porous media was built up to study the mechanism of the "in-pore spray" and the superadiabatic combustion in porous medium. The combustion system consists of a combustor (quartz glass tube), a gas supply system, a fuel supply system, a measurement system and so on. The expermental system can be employed for studying the combustion characteristics of both gaseous and of liquid fuels.
     The PM was preheated by combustion of gaseous fuel for a short time, and then liquid fuel (diesel) was sprayed into the porous medium combustor, where evaporation and combustiton happened. Temperature distributions in the combustion zone are measured with thermocouples, furthermore, the influences of mixture speed and equivalence ratio on the combustion wave speed and the maximum combustion temperature in the packed bed are discussed.
引文
[1]金晶,世界及中国能源结构,能源研究与信息,2003,19(1):20-26
    [2]Onishi S,Jo S H,Shoda K et al.Active Thermo-Atmosphere Combustion(Atac)-a New Combustion Process for Internal Combustion Engines.SAE Paper 790501,1979.
    [3]Najt P M,Foster D E.Compression-Ignited Homogeneous Charge Combustion.SAE Paper 830264,1983.
    [4]Dae Sik Kim,Chang Sik Lee,Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR,Fuel 85(2006) 695-704
    [5]D.Yap,S.M.P,A.Megaritis,Natural gasHCCIengine operation with exhaust gas fuel reforming,International Journal of Hydrogen Energy 31(2006) 587-595
    [6]Xing-Cai Lu~(¨*),Wei Chen,Zhen Huang,A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR.Part 2.Effect of operating conditions and EGR on HCCI combustion,Fuel 84(2005) 1084-1092
    [7]F.J.Weinberg,Combustion Temperature:The Future?.Nature,1971,233:239-241.
    [8]Hardesty,D.R.,and Weinberg,F.J.Burners producing large excess enthalpies.Combustion Science and Technology,1974,Vol.8:201-214.
    [9]Hanamura K,Echigo R.Superadiabatic Combustion in A Porous Medium.Int.J.Heat Mass Transfer,1993,36(13):3201-3209.
    [10]Jeong YS,Lee SM.,Kim NK.,Hwang JM.,Chae JO..A study on combustion characteristics of superadiabatic combustion in porous media.KSME International Journal,1998,12(4):680-687.
    [11]Sumrerng Jugjai and Amom Somjetlerteharoen,Multimode Heat Transfer in Cyclic Flow Reversal Combustion in A Porous Medium.Int.J.Energy Res.,1999,23:183-206.
    [12]Weinberg F.,Heat-recirculating burners:Principles and some recent development.Combustion Science and Technology,1996.Vol.121:3-22.
    [13]Takeno T,Sato K,An excess enthalpy flame theory,Combustion Science and Technology,1979.20:73-84.
    [14]63 Kotani Y,Takeno T,An experimental study on stability and combustion characteristics of an excess enthalpy flame,Nineteenth Symposium(International) on Combustion,1982,The Combustion Institute:1503-1509.
    [15]Takeno T,Sato K,Hase K,A theoretical study on an excess enthalpy flame,The Eighteenth Symposium(Int.) on Combustion,1981,TheCombustion Institute;465.472.
    [16]Kotani Y,Behabahani F,Takeno T,An excess enthalpy flame combustor for extended flow ranges,Twentieth Symposium(Int.) on Combustion,1954,The Combustion Institute:2025-2033
    [17]145 Min D K,Shin H,D,Laminar premixed flame stabilized inside a honeycomb ceramic,International Journal of Heat and Mass Transfer.1991.34(2):341-356.
    [18]Yoshizawa Y,Sasaki K,Echigo R;Analytical study of the structure of radiation controlled flameinternational Journal of Neat and Mass Transfer,1988 31(2):311-319.
    [19]Yoshizawa Y,Sasald K,and Echigo R.Analytical Study of the Structure of Radiation Controlled Flame.International Journal of Heat and Mass Transfer,1988,31(2):311-319
    [20]Sathe S.B.,Kulkari,M.R.et al.An experimental and Theoretical Study of Porous Radiant Burner Performance.23rd Symposium(International) on Combustion.Pittsburgh,PA,1990:1011-1018.
    [21]Sathe S B,Peck R E,Tong T W,A numerical analysis of heat transfer and combustion in porous radiant burners,international Journal of Heat and Mass Transfer,1990,33(6):1331-1338.
    [22]Tong T W,Sathe S B,Heat transfer characteristics of porous radiant burners,Journal of Heat Transfer.1991.113:423-428.
    [23]Fu X,and Viskanta R.A Model for the Volumetric Radiation Characteristics of Cellular Ceramics Int.Comm.Heat Mass Transfer,1997,24(8):1069-1082
    [24]Fu X,Viskanta R,Gore J P,Modeling of thermal performance of a porous radiant burner,ASME HTD.Proceedings of the ASME Heat Transfer Division 1998.361(2):11-19.
    [25]W.M.Mathis AND J.Ellzey,Flame stabilization,operating range and emissions for ametlaane/air porous burner.Combustion Science and Technology,2003,175:825-839.
    [26]Amanda J.B,G.Diepven,J.L.Ellzey,Numerical study of the effects of material properties on flame stabilization in a porous burner,Combustion and Flame 134(2003) 369-379
    [27]Kayal T.K,J.L.Ellzey,Chakravarty M.,Modeling of triclde flow liquid fuel combustion in inert porous medium,International Journal of Heat and Mass Transfer 2006;49:975-983
    [28]Hanamura K,Echigo R,Zhdanok S A,Superadiabatic combustion in a porous medium,International Journal of Heat and Mass Transfer,1993,36(13):3201-3209.
    [29]Yoshida H.,Yun J.H.and Echigo R.Transient characteristics of combined conduction,convection and radiation heat transfer in porous media.Int.J.Heat Mass Transfer.1990,Vol.33,No.5:847-857.
    [30]Pfefferle W c,Pfefferle L D.Catalytically stabilized combustion.Prog.Energy Combustion Science,1989,12:25-41.
    [31]Khanna R,Goel R,and Ellzey J L.Measurements of Emissions and Radiation for Methane Combustion within a Porous Medium Burner.Combustion Science and Technology,1994,99:133-142
    [32]Norbury J,Byrne H.The effects of radiation on combustion in porous media.Mathematical and computer modeling.Volume:24,Issue:8,October,1996,pp.89-94.
    [33]Kendall R M,Desjardin S T,Sullivan J D.Basic Research on Radiant Burners.Annual Report(Jan.1989-March 1990)Report No.GRI-90 / 0325,Gas Research Institute,Chicago,IL,1990.
    [34]吕兆华,Matthews R D.分段多孔介质燃烧器二次进气燃烧排放研究.燃烧科学与技术,2000,6,(2):124-128.
    [35]王恩宇,程乐鸣,骆仲泱,倪明江,岑可法,天然气在渐变型多孔介质中的预混燃烧实验研究,燃烧科学与技术,2004,10(1):1-6
    [36]邓洋波,解茂昭,多孔介质内往复流动下超绝热燃烧的实验研究,燃烧科学与技术,2004,10(1):82-87
    [37]Maozhao Xie,Yangbo Deng.Experimental Study on Superadiabatic Combustion in Porous Media with reciprocating Flow.Proceedings of the 4th Asia-Pacific Conference on Combustion Aspacc.Nanjing:2003.35-39
    [38]杜礼明,解茂昭,预混合燃烧系统中多孔介质作用的数值研究.大连理工大学学报,2004,44(1):70-75
    [39]史俊瑞,解茂昭.考虑弥散效应的多孔介质中超绝热燃烧的数值模拟.工程热物理学报,2006,27(3):515-518。主办单位:中国工程热物理学会。
    [40]史俊瑞,解茂昭,周磊.往复流多孔介质燃烧器的二维数值模拟与结构改进.燃烧科学与计算(已录用).主办单位:天津大学。EI检索期刊。
    [41]赵治国,解茂昭,王翠华.油雾碰撞高温壁面的油滴分裂及与热壁间换热研究,热能动力工程,2006,21(6):589-602.
    [42]赵平辉,陈义良,刘明侯等,多孔介质内层流预混燃烧的数值模拟,燃烧科学与技术,2006,12(1):46-50
    [43]赵平辉,叶桃红,丁敏,陈义良等,多孔介质燃烧器的辐射输出效率和污染物,燃烧科学与技术,2007,13(6):549-553
    [44]姜海,赵平辉,张根煊,陈义良等,堆积床内丙烷/空气预混燃烧的实验与数值研究,工程热物理学报,2007,18(2):157-160
    [45]F.Durst,m Weclas,A new type of internal combustion engine based on the porous-medium combustion technique.
    [46]Kaplan M,Hall M J,The combustion of liquid fuels within a porous media radiant burner,Experimental Thermal and Fluid Science,1995 11(1):13-20.
    [47]Tseng C.J,Howell J R,Combustion of liquid fuels in a porous ceramic burner,Combustion Science and Technology,1996,112:141-161.
    [48]Tseng C-J,Liquid fuel combustion in porous ceramic burners,PhD thesis,The University of Texas at Austin,Austin,TX,USA,1995.
    [49]Itaya Y,Suzuki T,Hasatani M,and Saotome M.Combustion Characteristics of a Liquid Fuel in a Porous Burner.ASME,New York,NY,USA 3,1995.
    [50]Hitoshi.T,Tomohiro.S,Performance of flammability of kerosene and NO x emission in the porous burner,Fuel,1998,77(3):165-171
    [51]Jugjai S,Wongpanit N,Laoketkan T,and Nokkaew S.The Combustion of Liquid Fuels Using a Porous Medium.Experimental.Thermal and Fluid Science,2002,26(1):15-23
    [52]Jugjai S,and Polmart N.Enhancement of Evaporation and Combustion of Liquid Fuels through Porous Media.Experimental Thermal and Fluid Science,2003,27(8):901-909
    [53]Hall M J,Peroutka X N,A porous media burner for reforming methanol for fuel cell Dowered electric vehicles.Society of Automotive Engineers,1995.Paper No.:950095.
    [54]Fuse T,Arald Y,Kobayashi N,and Hasatani M.Combustion Characteristics in Oil-Vaporizing Sustained by Radiant Heat Reflux Enhanced with Higher Porous Ceramics.Fuel,2003,82(11):1411-1417
    [55]Tseng C J,and Howell J R.Liquid Fuel Combustion within Porous Inert Media,in Heat Transfer with Combined Modes.D.E.Beasley and K D.Cole,Eds,ASME HTD,1994,299:63-69
    [56]Kayal T K,and Chakravarty M.Modeling of Trickle Flow Liquid Fuel Combustion in Inert Porous Medium.International Journal of Heat and Mass Transfer,2006,49(5-6):975-983
    [57]Kayal T K,and Chakravarty M.Combustion of Liquid Fuel inside Inert Porous Media:An Analytical Approach.International Journal of Heat and Mass Transfer,2005,48(2):331-339
    [58]Haack D P.Mathematical Analysis of Radiatively Enhanced Liquid Droplet Vaporization and Liquid Fuel Combustion within a Porous Inert Medium The University of Texas at Austin,1993.
    [59]Martynenko V V,Echigo R,and Yoshida H.Mathematical Model of Self-Sustaining Combustion in Inert Porous Medium with Phase Change under Complex Heat Transfer.International Journal of Heat and Mass Transfer,1998,41(1):117-126
    [60]赵治国,解茂昭.泡沫陶瓷中燃油喷雾液滴蒸发混合的数值研究,燃烧科学与技术,2006,12(3):233-237.
    [61]赵治国,解茂昭.多孔介质发动机燃烧过程的多维数值研究,内燃机学报,2007年,25(4):339-344
    [62]Ruiz,F.,"The Regenerative Internal Combustion Engine,part 1:Theory",AIAA paper 88-3063,also Journal of Propulsion and Power,vol.6,No.2,pp.203-208,1990.
    [63]F.Ruiz and S.Sepka "New Experiments and Computations on the Regenerative Engine." SAE Paper No 930063.Detroit,1993.
    [64]Ferrenberg A.The Single Cylinder Regenerated Ice.1990.
    [65]Ferrenberg A.Low Heat Regenerated Engine:A Superior Alternative to Turbocompounding.1994.
    [66]Ferrenberg A.Progress in the Development of the Regenerated Diesel Engines.1996.
    [67]Park C-W,and Kaviany M.Evaporation-Combustion Affected by in-Cylinder,Reciprocating Porous Regenerator.Journal of Heat Transfer,2002,124(1):184-194
    [68]Hanamura K,Miyairi Y,and Echigo R.Reciprocating Heat Engine with Superadiabatic Combustion in Porous Meida.1995.
    [69]周玉明,胡健丽,内燃机的废气再循环技术,内燃机,2004,8(4):40-44
    [70]朱昌吉,刘忠长,许允,废气再循环对车用柴油机性能与排放的影响,汽车工程,2004,26(2):145-148
    [71]平银生,张逸敏,利用EGR降低柴油机排放的研究,内燃机工程,2000,4:6-10.
    [72]Durst F,and Weclas M.A New Type of Internal Combustion Engine Based on the Porous-Medium Combustion Technique.Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2001,215(1):63-81
    [73]M Weclas,Strategy for intelligent Internal Combustion engine with homogeneous combustion in cylinder,ISSN 1616-0762 Sonderdmck Schriftenreihe der Georg-Simon-Ohm-Fachhochschule N(u|¨)rnberg Nr.26,April 2004
    [74]Geva E,Kosloff R.A quantum-mechanical heat engine operating in finite-time:a model consisting of spin-1/2 systems as the working fluid.J,Chem.Phys,1992,96:3054-3067.
    [75]Klein S A.An explanation for observed compression ratios in internal combustion engines.Trans ASME J Enging Gas Turbine Pow,1991,113(4):511-513.
    [76]Bilal A.Akash,Effect of heat transfer on the performance of an air standard Diesel cycle,Int.Comm.Heat Maw Tmnsfe,2001,.28(1):87-95,
    [77]Orlov V N,Berry R S.Power and efficiency limits for internal combustion engines via methods of finite-time thermodynamics.J Appl Phys,I993,74(7):4317-4322.
    [78]Rocha J.A,Gonzalez T.D,et al,Otto and Diesel Engine Models with cylic varialibity.Revista Mexciana,de FISICA,2002,48(3):228-234
    [79]Ghatak.A,Chakraborty.S,Effect of external irreversibility and variable thermal properties of working fluid on thermal performance of Dual internal combustion engine cycle,Heat transfer engineering,received
    [80]De Vos A.Endoreversible thermo-economics.Energy Convers Manage 1995;36(1):1-5.
    [81]S.C.Kaushik,Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat engines,Energy Convers.Mgmt 2001 42:295-312
    [82]S.C.Kaushik,S.Kumar,Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses,Energy,2000,25:989-1003
    [83]陈丽璇,严子浚,有限时间热力学:现代热力学理论的一个新分支,自然杂志,1987,10(11):825-829
    [84]严子浚,发展中的有限时间热力学,物理同胞,1992,3:1-4
    [85]严子浚,卡诺热机的最佳效率与功率关系,工程热物理学报,1985,6(1):1-6
    [86]陈金灿,严子浚,有限压比时卡诺热机的最佳效率与功率关系,厦门大学学报,1989,28(3):255-260
    [87]严子浚,η~λP最大时卡诺热机的η和P,厦门大学学报,1986,25(3):279-28632,66-68,117,136-138
    [88]Chen J.C,Yan Z.J,The effect of heat transfer law onthe performance of a two heat source endoreversible cycle,J.Chem.Phys.,1989,99(7):3740-3743
    [89]不可逆卡诺热机的最佳效率与供热率间的关系,厦门大学学报,1991,30(1):25-28
    [90]Jincan Chen,Yingru Zhao,Jizhou He,Optimization criteria for the important parameters of an irreversible Otto heat-engine,Applied Energy 2006,83:228-238
    [91]Yingru Zhao,Bihong Lin,Jincan Chen,Performance analysis and parametric optimum design of an irreversible Diesel heat engine,Energy Conversion and Management 2006,47:3383-3392
    [92]Y.Zhao,J.Chen,An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis,International Journal of Thermal Sciences 2007:46 605-613
    [93]解茂昭,一种新概念内燃机-基于多孔介质燃烧技术的超绝热发动机[J],热科学与技术20033:189-194
    [94]李军,陈林根,孙丰瑞,广义不可逆卡诺热机的有限时间火用经济性能分析,太阳能学报,2004,25(6):861-866
    [95]Lingen Chen,Jianping Zhou,Ecological optimization for generalized irreversible Camot engines,Applied Energy 2004,77:327-338
    [96]朱克华,陈林根,孙丰瑞,空气标准奥托循环的有限时间热力学分析,电站系统工程,1997,13(1)5-7
    [97]Chen,heat transfer effects on the net work output and efficiency characteristic an air-stand Otto cycle,Energy Convers.Mgmt 1998;39:643-48
    [98]吴锋,陈林根,孙丰瑞,不可逆Otto发动机的热力学优化,电站系统工程,1999,1:10-13
    [99]Yanlin Ge,Lingen Chen,Fengrui Sun,Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid,International Journal of Thermal Sciences 2005,44:506-511
    [100]Chen L,Zen F,Sun F.Heat transfer effect s on the net work output and power as function of efficiency for air standard Diesel cycle.The Int.J.Energy,1996,21(12):1201-1205.
    [101]L.Chen,Sun FR,Optimal performance of an irreversible dual-cycle,Applied Energy 2004;79:3-14
    [102]郑彤,陈林根,孙丰瑞,不可逆Dual循环的功率效率特性,内燃机学报,2002,20(5):408-411
    [103]Yanlin Ge,Lingen Chen,Fengrui Sun,Reciprocating heat-engine cycles,Applied Energy 81(2005)397-408
    [104]Wenhua Wang,Lingen Chen,Fengrui Sun,The effect of fi-iction on the performance of an air standard dual cycle,Exergy,an International Journal2002,2:340-344
    [105]戈延林,陈林根,孙丰瑞,工质变比热和传热损失对Diesel循环性能的影响,海军工程大学学报,2005,17(6):21-25
    [106]戈延林,陈林根,孙丰瑞,工质变比热对不可逆Otto循环性能的影响,工程热物理学报,2005,26:9-12
    [107]戈延林,陈林根,孙丰瑞,工质变比热条件下内燃机循环普适特性,工程热物理学报,2006,27(2):196-198
    [108]Aoyama T,Hattori Y,Mizuta J i et al.An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine.SAE Paper 960081,1996.
    [109]Franke A,Richter M,Aldén M et al.Optical Diagnostics Applied to a Naturally Aspirated Homogeneous Charge Compression Ignition Engine.SAE Paper 1999-01-3649,1999.
    [110]张晓宇,苏万华,裴毅强et al.Bump环强化柴油混合过程的数值模拟研究.内燃机学报,2005,23(1):1-9.
    [111]黄豪中,苏万华,一个新的用于HCCI发动机燃烧研究的正庚烷化学反应动力学简化模型.内燃机学报,2005,23(1):43-51.
    [112]梁霞,尧命发.二甲基醚均质压燃化学动力学简化模型的研究.内燃机学报,2005,23(4):329-335.
    [113]王志,帅石金,王建昕,高辛烷值燃料HCCI燃烧特性的变参数研究.内燃机学报,2004,22(1):17-26.
    [114]Najt P M,Foster D E,Compression-Ignited Homogeneous Charge Combustion.SAE Paper 830264,1983.
    [115]Aceves S M,Smith J R,Westbrook C K et al.Compression Ratio Effect on Methane HCCI Combustion.Journal of Engineering for Gas Turbines and Power,1999,121(3):569-574.
    [116]Chen R,Milovanovic N.A Computational Study into the Effect of Exhaust Gas Recycling on Homogeneous Charge Compression Ignition Combustion in Internal Combustion Engines Fuelled with Methane.International Journal of Thermal Sciences,2002,41(9):805-813.
    [117]Flowers D,Aceves S,Westbrook C K et al.Detailed Chemical Kinetic Simulation of Natural Gas HCCI Combustion:Gas Composition Effects and Investigation of Control Strategies.Journal of Engineering for Gas Turbines and Power,2001,123(2):433-439.
    [118]罗马吉,陈志,黄震等,EGR对二甲醚HCCI着火过程的数值模拟研究.汽车工程,2005,27(4):309-403.
    [119]Fiveland S B,Assanis D N.A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies.SAE Paper 2000-01-0332,2000.
    [120]Ogink R,Golovitchev V.Gasoline HCCI Modeling:Computer Program Combining Detailed Chemistry and Gas Exchange Processes.SAE Paper 2001-01-3614,2001.
    [121]Agrell F,Angstr(o|¨)m H-E,Eriksson Bet al.Transient Control of HCCI through Combined Intake and Exhaust Valve Actuation.SAE Paper 2003-01-3172,2003.
    [122]Xu H,Fu H,Williams H et al.Modelling Study of Combustion and Gas Exchange in a HCCI(CAI)Engine.SAE Paper 2002-01-0114,2002.
    [123]Milovanovic N,Chen R,Turner J.Influence of the Variable Valve Timing Strategy on the Control of a Homogeneous Charge Compression(HCCI) Engine.SAE Paper 2004-01-1899,2004.
    [124]Wong Y K,Karim G A.A Kinetic Examination of the Effects of Recycled Exhaust Gases on the Autoignition of Homogeneous N-Heptane-Air Mixtures in Engines.SAE Paper 2000-01-2037,2000.
    [125]Annand W J D.Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines.Proceedings of IMechE,1963,177:973-990.
    [126]Woschni G.Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine.SAE Paper 670931,1967.
    [127]Chang J,G(u|¨)ralp O,Filipi Z et al.New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux.SAE Paper 2004-01-2996,2004.
    [128]Easley W L,Agarwal A,Lavoie G A.Modeling of HCCI Combustion and Emissions Using Detailed Chemistry.SAE Paper 2001-01-1029,2001.
    [129]Orlandini I,Kulzer A,Weberbauer F et al.Simulation of Self Ignition in HCCI and Partial HCCI Engines Using a Reduced Order Model.SAE Paper 2005-01-0159,2005.
    [130]Ogink R,Golovitchev V.Gasoline HCCI Modeling:An Engine Cycle Simulation Code with a Multi-Zone Combustion Model.SAE Paper 2002-01-1745,2002.
    [131]Aceves S M,Flowers D L,Westbrook C K et al.A Multi-Zone Model for Prediction of HCCI Combustion and Emissions.SAE Paper 2000-01-0327,2000.
    [132]Fiveland S B,Assanis D N.Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects.SAE Paper 2001-01-1028,2001.
    [133]Fiveland S B,Assanis D N.Development and Validation of a Quasi-Dimensional Model for HCCI Engine Performance and Emissions Studies under Turbocharged Conditions.SAE Paper 2002-01-1757,2002.
    [134]Eng J A,Leppard W R,Sloane T M.The Effect of Di-Tertiary Butyl Peroxide(Dtbp) Addition to Gasoline on HCCI Combustion.SAE Paper 2003-01-3170,2003.
    [135]Aceves S M,Martinez-Frias J,Flowers D L et al.A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion.SAE Paper 2001-01-3612,2001.
    [136]Komninos N P,Hountalas D T,Kouremenos D A.Development of a New Multi-Zone Model for the Description of Physical Processes in HCCI Engines.SAE Paper 2004-01-0562,2004.
    [137]Komninos N P,Hountalas D T,Kouremenos D A.Description of in-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model.SAE Paper 2005-01-0171,2005.
    [138]Kusaka J,Tsuzuki K-i,Daisho Y et al.A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined with Detailed Kinetics.SAE Paper 2002-01-1750,2002.
    [139]Noel L,Maroteaux F,Ahmed A.Numerical Study of HCCI Combustion in Diesel Engines Using Reduced Chemical Kinetics of N-Heptane with Multidimensional CFD Code.SAE Paper 2004-01-1909,2004.
    [140]Agarwal A,Assanis D.Multi-Dimensional Modeling of Ignition,Combustion and Nitric Oxide Formation in Direct Injection Natural Gas Engines SAE Paper 2000-01-1839,2000.
    [141]Kong S C,Marriott D,Reitz D R.Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD.SAE Paper 2001-01-1026,2001.
    [142]S.A.Sepka and F.Ruiz,"Combustion Initiated by a Porous Ceramic Regenerator in a Reciprocating Engine Environment." AIAA Journal of Propulsion and Power,vol.13,No.2,pp.213-217,1997.
    [143]Angulo2Brown F,Fernandez2Betanzos J,Diaz2Pico C A.Compression ratio of an optimized Otto2cycle model[J].Eur.J.Phys.,1994,15(1):38 - 42.
    [144]孟祥慧,王锡斌,蒋德明,预测二甲醚发动机燃烧性能的准维多区燃烧模型,西安交通大学学报,2003;37(1):60-63
    [145]Patel A,Kong S C,Reitz R D.Development and Validation of Reduced Reaction Mechanism for HCCI Engine Simulation.SAE Paper 2004-01-0558,2004.
    [146]Curran H J,Gaffuri P,Pitz W J et al.A Comprehensive Modeling Study of N-Heptane Oxidation.Combustion and Flame,1998,114(1-2):149-177.
    [147]Gregory P.Smith D M G,Michael Frenklach,Nigel W.Moriarty,Boris Eiteneer,Mikhail Goldenberg,C.Thomas Bowman,Ronald K.Hanson,Soonho Song,William C.Gardiner,and Zhiwei Qin.Gri-Mech 3.0.http://www.me.berkeley.edu/gri_mech/
    [148]Lutz A E,Kee R J,Miller J A.Senkin:A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis Sandia National Laboratories SAND87-8248,1997.
    [149]Amanda J.Barra,Janet L.Ellzey,Heat recirculation and heat transfer in porous burners,Combustion and Flame 137(2004) 230-241
    [150]Mozurkewich M,Berry R S.Optimal paths for ther-modynamic systems:the ideal Otto cycle.J Appl Phys,1982,53(1):342-242.
    [151]解茂昭,内燃机计算燃烧学,大连,大连理工大学出版社,2005:151-157
    [151]Lucie Koopmans,Direct gasoolin injection in the negative valve overlap of a homogeneous charge compression ignition engine,SAE Paper 2003-01-1854(2003).
    [152]贾明,解茂昭,均质压燃发动机燃烧特性的详细反应动力学模型,内燃机学报,2004,22(2):122-128.
    [153]贾明,解茂昭.均质压燃发动机燃烧和排放的多区模型模拟,燃烧科学与技术,2005,11(3):261-267.
    [154]Jia,M,Xie,M,A chemical kinetics model of iso-octane oxidation for HCCI engines,Fuel,2006 85(17):2593-2604
    [155]Kee R J,Rupley F M,Meeks E et al.CHENKIN-Ⅲ:A Fortran Chemical Kinetics Package for the Analysis of Gasphase Chemical and Plasma Kinetics.Sandia National Laboratories Report No.SAND96-8216,1996.
    [156]林杰伦,内燃机工作过程数值计算,北京,国防工业出版社1986,34-35
    [157]Amnéus P,Mauss F,Kraft Met al.Nox and N2o Formation in HCCI Engines SAE Paper 2005-01-0126,2005.
    [158]Dec J E,.A Parametric Study of HCCI Combustion - the Sources of Emissions at Low Loads and the Effects of Gdi Fuel Injection.SAE Paper 2003-01-0752,2003.
    [159]Sj(o|¨)berg M,Dec J E.Comparing Enhanced Natural Thermal Stratification against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates.SAE Paper 2004-01-2994,2004.
    [160]anaka S,Ayala F,Keck J C.A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine.Combustion and Flame,2003,133(4):467-481.