玉米抗纹枯病分子标记辅助选择与表型选择的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米纹枯病是世界上玉米产区广泛发生、严重危害玉米产量的病害之一。现已成为影响西南地区玉米生产最严重的病害。多年来玉米抗纹枯病育种主要靠表型鉴定选择,而近年来发展起来的分子标记辅助育种,也停留在标记鉴定、定位、作图等基础环节上,在育种中的应用还很不够。因此,本研究针对玉米纹枯病危害日益严重、纹枯病抗源又极为匮乏以及选育方法极待完善的现状,利用抗玉米纹枯病低代育种群体,采用常规遗传育种研究和现代分子生物学技术相结合的方法,对抗性表型变异、农艺性状相关性、标记辅助选择育种等方面,进行了较为系统的探索研究,以期为玉米纹枯病育种提供一定的理论依据。取得的主要结果如下:
     1.接种鉴定结果表明,CML270的病情指数为13.59%,按抗感程度划分标准,属于高抗玉米纹枯病自交系;478的病情指数为83.62%,按抗感程度划分标准,属于高感纹枯病自交系;F1的病情指数为48.96%,介于P1、P2之间,表现为中抗-中感。由此可以看出,两亲本间在抗感程度上存在明显的差异,进一步验证了CML270为高抗玉米纹枯病自交系。
     2.单点方差分析结果表明,病斑高、株高和穗位高等性状在基因型间的差异均达极显著水平,说明玉米纹枯病受基因型影响。两地联合方差分析表明,地点间差异表现为极显著,说明环境对玉米纹枯病的影响极为明显;家系间、家系×地点差异表现为显著,说明家系间和家系×地点对病情指数影响明显。而地点内区组间差异不显著,说明同一试验地点内不同区组对纹枯病病情指数无明显影响。由此可以看出,玉米纹枯病病情指数受环境影响要比基因型及基因型与环境互作影响大得多。
     3.F_(2:4)群体的病情指数与部分农艺性状的相关分析结果表明,病情指数与穗位高呈极显著负相关,说明玉米穗位较高相应病情指数较低;穗位较低病情指数相应较高。因此,在抗玉米纹枯病育种中,通过对穗位高的适度选择,可能有助于提高玉米对纹枯病的抗性。
     4.穗高/株高与田间抗性鉴定比较表明,郫县点田间抗性鉴定中共筛选出37个中抗以上的家系,这些中选家系的穗位高/株高大多都在0.32~0.53之间,且多数(26个)家系穗位高/株高在0.40以上。雅安点筛选出38个中抗以上的家系,穗位高/株高在0.29~0.44之间,多数(31个)家系穗位高/株高在0.35以上。两点比较结果均与相关分析结果基本一致。充分说明,利用穗位高/株高进行表型选择对提高抗玉米纹枯病特性将会起到一定的作用。至于选择指标是否以穗位高/株高0.35-0.40为宜,尚值得进一步研究。
     5.单标记、双标记对两点标记选择结果比较表明,phi116标记在两个试验点共检测到54个带型为A的家系,其中郫县点经接种鉴定表现为抗性家系25个(占46.30%);雅安点抗性家系18个(占32.48%)。umc1044标记在两个试验点共检测到59个带型为A的家系,其中郫县点抗性家系21个(占35.60%);雅安点抗性家系16个(占26.42%)。两个标记联合进行选择,郫县点经接种鉴定表现为抗性家系17个(占31.13%);雅安点经接种鉴定表现为抗性家系16个(占29.34%)。由上可以看出,利用双标记选择明显比单标记选择准确性高,且试验环境不同,鉴定结果有较大的差别,说明用多个标记、多种环境比用单个标记、单一环境的选择压力更大,选择效果可能更好。
     6.对部分抗性家系的分析表明,在抗性家系中多数单株的病级为0-3级,而5-9级的单株较少。如家系1114-1共调查15株,其中有6个单株的病级为0级,有2个单株的病级为1级,2个单株的病级为2级,抗病指数为33.33%;家系1124-1有7个单株的病级为0级,有2个单株的病级为1级,有3个单株的病级为5级,抗病指数为29.62%;家系1160-1有6个单株的病级为0级,1个单株的病级为1级,有1个单株的病级为3级,抗病指数为36.30%,进一步证明利用本课题组现有连锁标记辅助选择具有一定的可靠性。
Banded leaf and sheath blight(BLSB) is one of the most harmful diseases with a globally harmfulness.It is also a serious diseases in China especially in the southwest mountain areas of China.Over the years the study on Banded leaf and sheath blight are still in the stage of identification tag,location,mapping and other infrastructure areas,the application in breeding still is very inadequate.That's the reason why the germplasm is insufficient for resistance to the disease.In our research,conventional genetic breeding and modern molecular biology techniques were combined to study on MAS of the disease with a view to provide technical support and material with highly resistance for the breeding.The main results were summaried as follow:
     1.The disease index of CML270 and 478 is 13.59%and 83.62%,respectively.According to the identification of resistant for BLSB,the maize inbred line CML270 was resistant to maize BLSB,otherwise 478 is highly susceptible.The disease index of F1 was 48.96%, ranged from that of P1 to P2.It showed that there are significant differences in the resistant to BLSB between the two inbred lines.It also verify that CML270 was an inbred lines with high resistance to sheath blight.
     2.The result of ANOV of each location showed that variance of the 145 families were significant in plant height,ear height and BLSB height.It showed that the resistance of the families were affected by the genotype.The result of combine ANOV of two locations showed that variance of the location were significant in plant height,ear height and height.It showed that the resistance of the families were affected by the locations.The results showed that the resistant of the families were affected by the genotype,envrioment and genotype×envrioment.
     3.The result of correlation analysis showed that the disease index is significant correlated with the plant height and ear height negatively.It is suggested that the families with higher plant and ear were more resistant to the disease.In breeding application,we can selecet resistant families by selecting the families with higher plant and ear.
     4.37 high resistance or resistance families were selected according to the results of field experiment in Chengdu.The value of Ear height/height of these families ranged from 0.36 to 0.5.The value of Ear height/height of 26 of the 37 families were bigger than 0.40. 38 high resistance or resistance families were selected according to the results of field experiment in Ya'an.The value of Ear height/height of these families ranged from 0.29 to 0.44.The value of Ear height/height of 31 of the 38 families were bigger than 0.40.It is suggested that it is effective to select the families with high resistance or resistance by using the value of Ear height/height.If the the value of Ear height/height between 0.35 and 0.40 could be used as the selection criterion needs futher study.
     5.54 families were detected to have the A band(resistance band) with the marker Phi116,25 (46.30%) and 17(31.48%) of these families were identified to resistance family according to the results of field experiment in Chengdu and Ya'an,respectively.59 families were detected to have the A band(resistance band) with the marker Umc1044,21(35.60%)and 15(25.42%) of these families were identified to resistance family according to the results of field experiment in Chengdu and Ya'an,respectively.When both of the 2 markers were combined,only 14(25.93%) and 12(20.34%) families were were identified to resistance family according to the results of field experiment in Chengdu and Ya'an,respectively.It is more accuracy to select by using double-tag than using a single tag.
     6.The disease-resistant grade level of the individuals of the 12 resistance families were analysis.The majority of the individuals of these families belongs to the 0-3 grade level, the minority of the the individuals of these families belongs to the 5-9 grade level.For instance,a total of 15 individuals of the family 1114-1 were investigated,6,2 and 2 plants belongs to grade level 0,1,and 2,respectively,with a disease-resistant index of 33.33%.A total of 15 individuals of the family 1124-1 were investigated,7,2 and 3 plants belongs to grade level 0,1,and 5,respectively,with a disease-resistant index of 29.62%.A total of 15 individuals of the family 1160-1 were investigated,6,1 and 1 plants belongs to grade level 0,1,and 2,respectively,with a disease-resistant index of 36.30%.It is suggested that the marker assistant selection is reliable by using the markers Phi116 and Umc1044.
引文
[1].戚佩坤等.吉林省栽培植物真菌病害志.北京:科学出版社,1966.33-34
    [2].朱惠聪.玉米上种立枯丝核菌病害.植物病理学报,1982,12(2):61-62.
    [3].颜思齐等.禾谷类作物纹枯病研究.植物病理学报,1984,14(1):25-30.
    [4].高卫东.华北区玉米、高粱、谷子纹枯病病原学初步研究.植物病理学报,1987,17(4):247-251.
    [5].谭复顺.鄂西山区玉米纹枯病损失调查.植物保护,1988,14(2):54
    [6].谭方河,陶家凤.西南地区立枯丝核菌优势融合群致病性的初步研究,四川农业大学报,1991,9(1):149-155
    [7].张存山,等.玉米纹枯病调查研究.吉林农业科学,1992,(3),37-39.
    [8].宋佐衡,等.玉米纹枯病研究进展概述.辽宁农业科学,1993,(4):45-47.
    [9].朱立煌,陈英等,用分子标记定位一个未知的抗稻瘟病基因,中国科学(B辑),1994,24:1048-1052
    [10].梁继农.等.玉米纹枯病产量损失测定和发生规律.植物保护学报,1997,24(2):101-105.
    [11].吴大椿,万明刚,玉米对纹枯病抗性的初步研究,湖北农业科学,1995,6:39-41
    [12].吴大椿,方守国,余知和,玉米纹枯病病原及生物学特性研究,湖北农学院学报,1997,17(1):15-19
    [13].陈捷,唐朝荣,高增贵等.玉米纹枯病病原菌侵染过程研究,沈阳农业大学学报,2000,31(5):503-506
    [14.]宋佐衡,陈捷,刘伟成,等,玉米纹枯病研究进展概述,辽宁农业科学,2000,30(4):319-326
    [15].王晓呜,等.玉米病虫害田问手册.北京:中国农业科技出版社,2002.26.
    [16].何小红,等,数量性状基因作图精度的主要影响因子,全国动植物数量遗传与种学术研讨会文集,中国遗传学会、扬州大学编,2000,75-78
    [17].吴为人,基于性状-标记回归的QTL区间测验方法,全国动植物数量遗传与育种学术研讨会文集,中国遗传学会、扬州大学编,2000,13-18
    [18].吴为人,李维明,卢浩然,建立一个重组自交系群体所需的自交代数(英文)福建农业大学学报,1997,26(2):129-132
    [19].李维明,吴为人,卢浩然等.检测作物数量性状基因与遗传标记连锁关系的方差分析法极其应用,作物学报,,1993,19(2):97-102
    [20].杨俊品,荣廷昭,玉米RFLP分子标记研究进展,玉米科学,1999,7(1):18-24
    [21].郑用链,玉米性状遗传,刘纪鳞主编,玉米育种学,1991,103-198,农业出版社
    [22].徐云碧,朱立煌,分子数量遗传学,中国农业出版社1994,
    [23].莫惠栋,植物育种中的试验设计,刘后利主编,作物育种研究进展,东南大学出版社.1994,231-265,
    [24].高之仁,1986,数量遗传学,四川大学出版社
    [25].曹永国,王国英,戴景瑞,分子标记在植物育种中的应用,阎隆飞,王学臣主编,生命科学研究进展(第一集),1996,143-149,中国农业大学出版社
    [26].薛庆中,张熊义,熊兆飞等,应用分子标记辅助选择培育抗白叶枯病水稻恢复系,浙江农业大学学报,1998,24(6):631-638
    [27].戴景瑞,我国玉米生产发展的前景及对策,作物杂志,1998,(5):6-11
    [28].张增翠,侯喜林.SSR分子标记开发策略及评价.2004,26(5):763-768
    [29].李明芳,郑学勤.开发SSR引物之研究动态.遗传,2004,26(5):769-776
    [30].卿九龄等,摘除病叶防治玉米纹枯病的研究,植物保护,1994,20(1):4-6
    [31].方宣钧,人,唐纪良,作物DNA标记辅助育种,科学出版社,2001
    [32].邓启云,袁隆平,梁凤山,等野生稻高产基因及其分子标记辅助育种研究.杂交水稻,2004,19(1):6-10
    [33].赵茂俊等,玉米抗纹枯病QTL定位,作物学报,2006,32(5):698-702
    [34].荣廷昭等,西南生态区玉米育种,中国农业出版社,2003
    [35].唐海涛等,玉米纹枯病研究进展,玉米科学,2004,12(1):93-96,99
    [36].杨华,杨俊品等,玉米纹枯病QTL分子标记定位。科学通报,2005,8(50)772-776
    [37].黄京华,曾任森,骆世明,AM菌根真菌诱导对提高玉米纹枯病抗性的初步研究,中国生态农业学报,2006,14(3),167-169
    [39].Weber JL.Human DNA polymorphisms and methods of analysis Current opinion in biotechnology,1990,1(2):166-171
    [40].Rafalski JA,Tingey SV.Genetic diagnostics in plant breeding:RAPDs,microsatellites and machines.Trends in Genetics,1993,9(8):275-280
    [41].Ahn S.And S.D.Tanksley,1993,Comparative linkage maps of the rice and maize genomes,Proc.Natl.Acad.Sci.USA,90:7980-7984.
    [42]Peakall R,Gilmore S,Keys W,et al.Cross-species amplification of soybean(Glycine max) simple sequence repeats(SSRs) within the genus and other legume genera:implications for the transferability of SSRs in plants. Molecular Biology and Evolution, 1998,15(10): 1275-1287
    
    [43].Dudley J.W. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits, Crop Science. 1993,33:660-668
    [44].Dudley J.W., Saghai Maroof M.A., Rufener G.K., Molecular marker and grouping of parents in maize breeding programs, Crop Science, 1991, 31:718-723
    [45].Yoshimura S. Yamanouchi U, Katayose Y, et al. Expression of Xal, a bacterial blight-resistance gene in rice is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95 (4): 1663- 1668 [46].Stuber CW, Mapping and manipulating quantitative traits in maize, Trends Genet. 1995,11: 477-481 [47]. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23(21): 4407-4414
    [48]. Jeffreys AJ, Wilson V, Kelly R et al. Individual-specific 'fingerprints' of human DNA. Nature, 1985,316:76-79
    [49]. Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American journal of human genetics. 1989,44(3): 397-401 [50]. Lander ES. The New Genomics: Global Views of Biology Science,1996,274: 536-539 [51].Mullis KB,Faloona F. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in enzymology, 1987,155: 335-350
    [52]. Saiki RK, Gelfand DH, Stoffel S et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988,239: 487-491
    [53]. Williams JK, Kubelik AR, Livak KJ et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990,18(22): 6531-6535
    [54]. Welsh J, Mc Clell M. Fingerprinting genomes using PCR with arbitrary. Nucleic Acids Research, 1990,18(24): 7213-7218
    [55]. Welsh J, Honeycutt R J, McClelland M. Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR) Theoretical and Applied Genetics, 82(4): 473-476
    [56]. Caetano-Anolles G, Bassam BJ, Gresshoff PM. DNA amplification fingerprinting using very short arbitrary oligonucleotide. primers Bio/Technology 1991,9(6): 553-557
    [57]. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994,20(2): 176-183
    [58].Miesfeld R,Krystal M,Amheim N.A member of a new repeated sequence family,which is conserved throughout euearyotic evolution,is found between the human delta and beta globin genes.Nucleic Acids Research,1981,9(22):5931-5947
    [59].Alpert KB,Tanksley SD,High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2.A major fruit weight quantitative trait locus in tomato.Proe.Ncad.Sci.USA,1996,93:15503-15507
    [60].Asins M.J.Present and future of quantitative trait locus analysis in plant bre eding,PlantBreeding,2002,121:281-291
    [61].B.C.Collard,M.Z.Z.Jahufer,J.B.Brouwer&E.C.K.Pang An introduction to marker,quantitive trait loci(QTL) mapping and marker-assisted selection for crop improvent:The basic concepts.Euphytica,2005,142:169-196
    [62].Edwards,D.and Barley,J.Plant bioinformatics:from genome to phenome.Trends Biotechnol.2004,22:232-237
    [63].Brunner,S.et al.Evolution of DNA sequence nonhomologies among maize inbreds.Plant Cell,2005,17:343-360
    [64].Rudd,S.et al.Plant Markers:a database of predicted molecular markers from plants.Nucleic Acids Res.,2005,33,628-632
    [65]秦芸,叶华智,张敏,等.四川雅安山区玉米纹枯病菌的种群组成[A].面向21世纪的植物保护发展战略[C].北京:中国科学技术出版社,2001.702-704
    [66]张春山等.玉米纹桔病调查研究.植物保护,1992.vol 18No.5 27-28
    [67]潘学彪,邹军煌,陈宗祥等。水稻品种Jasmine85抗纹枯病主效QTLs的分子标记定位科学通报,1999,15(44):233-237
    [68]潘学彪,顾思良,Rush M c,et al.两个水稻改良抗源对纹枯病抗性的遗传分析:2.抗源间互交F1的抗性表现.江苏农学院学报,1997,18(4):1-4
    [69]Pan X B,Xie Q J,Rush M C,et al.Partial resistance to rice sheath blight may be controlled by single major genes.Phytopathology,1995,85(4):511-516
    [70]Jentong F.Evaluation of a dwarf rice sccession from chinese as a source of sheath blight resistance,Thesis for M.S.,Louisiana State Univ,Supervisor:Rush M.C.,1985:76-81
    [71]国广泰史,钱前,佐藤宏之,滕胜,曾大力,藤本宽,朱立煌,2002,水稻纹枯病抗性QTL分析,遗传学报,1(29):50-55
    [72]Kunihiro Y.,Qian Q.,Sato H.,Teng S.,Zeng D.L.,Fujimoto K.,and Zhu L.H.,2002,QTL analysis of sheath blight resistance in rice(Oryza sativa L.),Yichuan Xuebao(Acta Ge netica Sinica),1(29):50-55
    [73]韩月澎,邢永忠,陈宗祥等,杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位,遗传学报,2002,29(7):622-626
    [74]Xie Q J,Linscombe S D,Rush M C,et al.Registration of LSBR-33 and LSBR-5 sheath blight-resistant germplasm lines on rice.Crop Sci,1992,32:507
    [75]刘志勇,孙其信,李洪杰,等.小麦抗白粉病基因Pm21的分子标记辅助选择.遗传学报,1999,26(6):673-682
    [76]刘金元,刘大钧,陈佩度,等.分子标记辅助育种新尝试—与Pm2及Pm4a基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用.南京农业大学学报,1997,20(2):1-5.
    [77]薛庆中,朱立煌,应用分子标记辅助选择培育抗白叶枯病水稻恢复系,浙江农业大学学报,1998,24(6):581-582
    [78]A.K.Chowdhury邱敦莲,与大豆霜霉病连锁的RAPD标记,国外作物育种,2003,22(3):71-72
    [79]Hallden C,et al.Absrract of plant genome Ⅲ.San Diego RSA.1995:80
    [80]Williamson V M,Ho J Y,Wu F F,Miller N,Kaloshian I.A PCR-based marker tightly linked to the nematode resistance gene,Mi,in tomato.Theor.Appl.Genet.,1994,87:757-763
    [81]Nair S,Bentur JS,Prasada RU,Mohan M,DNA markers tightly linked to a gall midge resistance gene (Gm2) are potentially useful for marker-aided selection in rice breeding[J].Theor.Appl.Genet.1995.91:68-73.
    [82]杨华,杨俊品,荣廷昭等。玉米抗纹枯病分子标记辅助选择初步研究,分子植物育种,2007,3(5):347-352