上海市郊西瓜连作障碍成因及应用生物有机肥进行防治的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西瓜(Citrullus Lanatus Thunb)是我国设施栽培中的重要经济类瓜果作物,由于经济效益的驱使和人多地少矛盾,常常由于连茬种植致使连作障碍日益严重,已严重影响到设施西瓜栽培的可持续发展。因此,以西瓜为研究对象,通过系统研究设施西瓜连作障碍发生的机理,对于解决目前连作障碍日益严重问题和提供科学的治理决策具有重要的意义。
     本研究通过西瓜长期定位连作实验,从微生物、土壤与植物营养、植物生理生化等几个方面系统研究了西瓜连作条件下土壤微生物的演变规律、土壤养分消长规律。同时研究了西瓜残体腐解物与根系分泌物中自毒物质对西瓜根系的影响与毒害机理,揭示了设施西瓜连作障碍形成的主要原因。在此基础上将有机肥与专性功能菌有效结合,系统研究了微生物有机肥对减轻西瓜连作障碍的调控机理。主要结果如下:
     土传病害枯萎病是西瓜连作的主要障碍因子。随连作次数的增加,西瓜发病率与土壤中镰刀菌数量呈明显的正相关,西瓜连作6茬后,土壤中尖孢镰刀菌菌落数达6.5×103g-1土壤,比第一茬土壤增加7.6倍,西瓜枯萎病发病率达58%。相反,土壤中细菌、放线菌、真菌数量则随着西瓜长期连作而不断降低。此外,氨化细菌、硝化细菌、纤维素分解菌、自生固氮菌数量随着西瓜连作次数的增多有所下降。
     西瓜-甜瓜轮作后减轻了土壤病害的发生。轮作后土壤中细菌、放线菌与真菌数量有所增加,其中硝化细菌、自生固氮菌与纤维素分解菌的数量都有所上升。与西瓜连作土壤相比,尖孢镰刀菌、丝核菌数量的上升幅度较小。轮作6茬后,甜瓜土壤中过氧化氢酶、蛋白酶、脲酶和磷酸酶活性分别比第一茬西瓜土壤增加了28.8%、15.8%、12.7%和23.7%,比同时期连作西瓜土壤酶活性分别高28.0%、46.7%、19.0%和31.7%。此外,轮作6茬后土壤电导率为1.75ms/cm,比连作后电导率(2.45ms/cm)降低了28.6%。
     西瓜的自毒作用源于西瓜根茎叶残体中含有的抑制物质。西瓜根、茎、叶的水浸液对种子的发芽率、根长、根系活力有抑制作用。通过HPLC分析,根茎叶中含有肉桂酸、香豆酸、香草酸、阿魏酸等酚酸类化合物。外源酚酸类物质不仅改变了西瓜根系超微结构,而且抑制了西瓜根系脱氢酶、超氧化物歧化酶活性,刺激了过氧化物酶、多酚氧化酶活性,造成了逆境胁迫。添加外源肉桂酸和对羟基苯甲酸提高了土壤过氧化氢酶活性、脲酶活性,增强了土壤呼吸强度。而土壤碱解氮、速效磷、速效钾含量和有机质含量则显著降低。
     施用微生物有机肥刺激了土壤酶活性和土壤呼吸强度。西瓜定植6周后,以育苗处理和移栽处理对土壤酶活性增加最为明显,脲酶和转化酶活性分别比同时期土壤增加了20.4%和40.0%。土壤呼吸强度比同期对照土壤提高了20.0%。育苗处理和移栽时处理的土壤微生物活性最强,土壤中细菌、放线菌和真菌数量分别比对照增加了35.7%-55.78%、14.5%-34.7%和4.9%~31.9%。同时,微生物有机肥对土壤尖孢镰刀菌数量有明显的抑制作用。育苗处理、移栽处理及育苗与移栽结合处理处理后,西瓜枯萎病发病率分别为8.0%、6.0%和3.5%,而对照(无任何处理)发病率达21.0%。
     施用微生物有机肥后,西瓜植株吸收的营养增加,产量增加,品质提高。育苗处理、移栽处理和育苗与移栽结合处理的西瓜植株中N总量分别比对照增加了23.9%、5.7%和18.9%,P总量分别比对照增加了30.5%、19.7%和28.5%,K总量分别比对照增加了25.0%、6.1%和15.1%。西瓜产量也大幅度提高,育苗处理、移栽处理和育苗与移栽结合处理后的产量分别达32601kg hm-2,29991kg hm-2和33447kghm-2,比对照分别增加23%、13%和26%。同时,西瓜可溶性固形物含量增加,品质提高。此外,由于微生物有机肥促进了根系对养分的吸收,使土壤中盐分降低,减轻了土壤次生盐渍化程度。
     结论:西瓜连作障碍主要是由土传病害尖孢镰刀菌、土壤次生盐渍化和西瓜残体中的酚酸类自毒物质造成的。通过施用微生物有机肥可显著降低西瓜枯萎病的发病率,是目前为止减轻西瓜连作障碍最有效的措施。
Watermelon (Citrullus Lanatus Thunb) is one of the favorable fruits and widely cultivated in greenhouse agriculture in China. However, the contradiction between the limited land for agriculture and increased year-round demand for supply requires mono-cropping of watermelon as a popular cropping system. In this way, continuously mono-cropping system severely decreased the yield and quality of watermelons. It is necessary to investigate the mechanisms of continuously cropping obstacle of the watermelon so that farmers can take measures to resolve it.
     This thesis focused on the soil microbiology, soil and plant nutrition, and plant physiology during the continuously cropping of watermelons in Shanghai suburban. We investigated the development and evolution of soil microorganisms, the balance of soil nutrients, the composition and accumulation of salt ions in soil and toxicology of autotoxicity of watermelon plants. Afterwards, we developed one bio-organic fertilizer and studied alleviation mechanism of continuously cropping obstacle of water melon by introducing bio-organic fertilizer into soils. The key results are listed as follows:
     Invasion of soil-born plant pathogen, Fusarium oxysporum f. sp. niveum is an important factor limiting the production of watermelon. With increased frequency of mono-cultivation of watermelon, the occurrences of Fusarium wilt of watermelons is positively correlated to the population of Fusarium oxysporum f. sp. niveum in the soil. After6rotations of mono-cultivation of watermelons, the population of Fusarium oxysporum f. sp. niveum reached6.5x103/g soil, which was7.6times higher than that in the first rotation, and the occurrence of Fusarium wilt was58%. Meanwhile, the population of total bacterium, actinomycetes, and fungi decreased with increased rotation frequency. Among these microorganisms, ammonifying bacterium, nitrifying bacterium, cellulose-decomposing bacterium and nitrogen-fixing bacterium were identified and their population decreased with increased rotation frequency too.
     In the rotation system of watermelon with honey melon, the population of total bacterium, actinomycetes and fungi in the rotation system was higher than in mono cultivation system. The population of ammonifying bacterium, nitrifying bacterium, nitrogen-fixing bacterium and cellulose-decomposing bacterium was also significantly increased. The population of soil borne Fusarium spp. and Rhizoctonia solani increased in the rotation of watermelon with honey melon, but was not as much as that in the watermelon mono-cultivation. In the sixth rotation, the activity of peroxidase, protease, urease and phosphatase of soils were28.8%,15.8%,12.7%and23.7%higher than that in the first rotation of watermelon and were28.0%,46.7%,19.0%and31.7%higher than that in mono-cultivation system of watermelon. After six frequency of rotation, soil electric conductivity (2.45ms/cm) in rotation system with watermelon and honey melon was only about29%of that in mono-cultivation system with watermelon.
     Autotoxicity was also involved in the continuously cropping obstacle of watermelon. Water extracts from residues of the watermelon roots, stems and leaves inhibited seed germination, root elongation and root activities. The identification of extracts by HPLC indicated that all the watermelon tissues contained cinnamic, coumaric, vanillic and ferulic acid. Application of exogenous phenolic acids changed ultra micro-structure of root and inhibited the dehydrogenase, surperoxide dismutase (SOD), but stimulated peroxidase, polyphenol oxidase in the root, which was similar to the phenomenon caused by environmental stress. Application of cinamic acid and p-hydroxybenzonic aicd into the soil stimulated the activity of soil catalase, uerase, and soil breath intensity, but strongly decreased content of alkali hydrolyzed nitrogen, available phosphate, available potassium and organic matter in the soil.
     Application of microbioorganic fertilizer significantly stimulated the activity of soil enzyme and soil respiration intensity.6weeks after transplanting, the activity of urease and transferas in soils, in which watermelon plants were treated by the microbioorganic fertilizer at seedling stage or at transplanting, was20%and40%higher than the control. The soil respiration intensity was20%higher than the control. Meanwhile, the treatment with microbioorganic fertilizer caused36%~56%more bacterium population,15%~35%more actinomycete population and5%~32%more fungi population than the control. Furthermore, microbioorganic fertilizer strongly inhibited the population of Fusarium oxysporum f. sp. niveum. The occurrences of disease were8%,6%and4%for the treatment of microbioorganic fertilizer at seedling stage, transplanting stage and at both seedling stage and transplanting stage, respectively, while the Fusarium wilt occurrences of the control was21%.
     Application of microbioorganic fertilizer stimulated nutrients uptake, elevated the yield and improved the quality of watermelon. In comparison with the control, the treatment of microbioorganic fertilizer at seedling stage, at the transplanting, or at both seedling and transplanting stage increased total N by24%,8%and19%, total P by31%,20%and29%, and total K by25%,6%and15%, respectively. The yield reached32601,29991and33447kg hm-2. They were23%,13%and26%higher than the control, respectively. In addition, the content of soluble solid in watermelon was increased by the treatment of microbioorganic fertilizer. Because of the improvement of nutrient uptake, the content of soil salt was decreased. The application of microbioorganic fertilizer also effectively alleviated the secondary salinity of the soil.
     Conclusion:
     The continuously cropping obstacle of watermelon is caused by Fusarium wilt (the pathogen Fusarium oxysporum f. sp. niveum), secondary salinity of the soil and autotoxicity from the watermelon organs'residues (especially the phenolic acids). Application of microbioorganic fertilizer can effectively suppress the Fusarium wilt and control the continuously cropping obstacle of watermelon.
引文
1. Alsaadawi, I S. Al-Uqailithy, J K, Al-Hadithy, S M and Alrubeaa, A 1. Effects of gamma irradiation o allelopathic potential of Sorghum biolor against weeds and nitrification[J]. Chemical Ecology,1985,11:1737-1754.
    2. Asao T, Kitazawa H, Tomita K, Suyama K et al. Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain[J]. Scientia Horticulturae,2004,99:207-214.
    3. Asao T, Hasegawa K, Sueda Y, et al. Autotoxicity of root exudates from taro[J]. Scientia Horticulture,2003, (97):389-396.
    4. Asao T, Taniguchi H, Suyama K, Yamamoto H, Itoh K, Tomita K., Taniguchi K, Hooki T. Rebersibility of the action of 2,4-dichlorobenzoic acid on cucumber seedlings by strains of soil microorganisms[J]. Society Horticulture Science,2001,70:393-395. (in Japanese with English summary).
    5. Baiakumar T, Vincent V H B and Paliwal K. On the interaction of UV-B radiation (280-315)nm with water suss in crop plant[J]. Plant Physiology,1993,82:217-222.
    6. Barkosky R R, Einhellig F A. Effects of salicylic acid on plant-water relationship [J]. Chemical Ecology,1993,19:237-247.
    7. Baziramakenga R, Leroux G D and Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots[J]. Chemical Ecology,1995,21:1271-1285.
    8. Bazivamakenga R, Leroux G D, Simurd R R, et al. Allelopathic effects of phenolic acids on nucleic: acid and protein levels in soybean seedlings[J]. Canadian Botany,1997,75(3):445-450.
    9. Bazivamakenga R, Leroux G D, Sinnard R R. Effects of benzoic and cinnamic acid on growth, mineral composition and chlorophyll content of soybean[J]. Chemical Ecology,1994,20: 2821-2833.
    10. Bell, A B. Biochemical mechanisms of disease resistance[J]. Plant Physiology,1981,32:21-81.
    11. Bergmark, C L, Jackson, W A, Volk, R J and Blum, U. Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mat's L[J]. Plant Physiology,1992,98:639-645.
    12. Blum U, Austin M F, Lehman M E. Evidence for inhibitory allelopathic interaction involving phenolic acids in field soils:Concept Vs. an experimental model[J]. Critical Review in Plant Science,1999,18(5):673-693.
    13. Blum U. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interacdons[J]. Chemical Ecology,1998,24(4):685-708.
    14. Booker F L, Blum U, Fiscus E L. Short term of ferulic acids on ion uptake and water relations on cucumber seedlings [J]. Experimental Botany,1992,43(250):649-655.
    15. Chin C, Banske E M, Mussen G, Kleepper J W. In "Improving plant productivity with rhizosphere bacteria" Ryder M H, Stephens P M, Bbowen G D (eds). CSIRO, Australia.1994,191-193.
    16. Einhelig F A. Mechanism of action of allelochemicais in Allelopathy[J]. Allelopathy,1995, 1:197-115.
    17. Einhellig F A. Interactions involving Allelopathy in cropping system[J]. Agronomy,1996, 88:886-893.
    18. Einhellig E A.and Eckrich G R. Interactions of temperature and ferulic acid stress on sorghum and soybeans[J]. Chemical Ecology,1984,10:161-170.
    19. Einhellig F A, Seuza, I F. Phytotoxieity of sorgoleone found in grain sorghum root exudates[J]. Chemical Ecology,1992,18:1-11.
    20. Einhellig F A. Mechanisms and modes of action of allelochemicals. In:Putnam, A.R., Tang, C.T.(Eds), The Science of Allelopathy. John Wiley and Sons, New York, pp.1986,171-188.
    21. Eupcalosk. The effect of coumarins on root elongation and ultrastructure of meristematic cell protoplast[J]. Annals of Botany,1994,73:525-530.
    22. Freddy A. Common bean response to tillage intensity and weed control strategies [J]. Cropping System,2001,93:556-563.
    23. Friebe A, Roth U, Kuek P, et al. Effects of DIBOA on the activity of plasma memberane H +-ATPase[J]. Phytochemistry,1997,44:979-983.
    24. Glass D K. Influence of phenolic acids on ion uptake[J]. Plant physiology,1974,54:855-858.
    25. Guenzi W D and Mocajja T. Phytotoxic substances extracted from soil[J]. Soil Science Society American. Proc.1966, (30):214-216.
    26. Hall A B, Btum U, Fites R C. Stress modification of Allelopathy of elianthus annuus L debris on seed germination[J]. American Botany,1983,69:776-783.
    27. Hartung A C, Putnam A R, Stephens C T. Inhibitory activity of asparagus root tissue and asparagus seedlings [J]. American Society for Horticultral Science,1989,114:144-148.
    28. Hartung A C and Stephens C T. Effects of allelopathic substance produced by asparagus on incidence and severity of asparagus decline due to Fusarium crown rot[J]. Chemical Ecology,1983, 9:1163-1174.
    29. Hatsuda Y, Murao S, Nishimura S, Manasaki T. Biochemical studies on soil sickness:Ⅲ On the toxic substances in watermelon roots[J]. Nippon Nogeikagaku Kaishi,1961,35:1107-1108(in Japanese).
    30. Hejl A M, Einhelig F A, Rasmussen J A. Effects of juglone on growth, photosynthesis and respiration[J]. Chemiacal Ecology,1993,19(3):559-568.
    31. Holappa L, Blum U. Effects of exogenously applied ferulic acid, a potential allelopathic on leaf growth, water utilization, and endogenous abscisic acid levels of tomato cucumber and bean[J]. Chemical Ecology,1991,17:865-886.
    32. Hubetr, D M, Schneider, R W. Suppressive Soils and Plant Disease[J]. American Phytopathological Soicety,1982,1-7.
    33. Koeppe D E, Southwick L M and Bittell J E. The relationship of tissue chforogenic acid concentrations and leaching of phenolicess from sunflowers grown under varying phosphate nutrient conditions[J]. Canada Botany,1976,54:593-599.
    34. Koitabashi R, Suzuki T, Kawazu T, et al.1,8-Cincole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L[J]. Plant Resource,1998,110(1097):1-6
    35. Lancy E L. Prevention and use of natural chemical materials and harmful biologies. Translated by Hu Dunxiao. Beijing:Science Press.1988,19-28.
    36. Lynn H D. Effects of exogenously applied ferulic acid, a potential allelopathic compound, on ieaf growth, water utilization, and endogenous abscogic acid levels of tomato cucumber and bean[J]. Chemical Ecology,1991,17(5):865-886.
    37. Lyu S W, Blum U. Effects of ferulic acid. an allelopathic compound, on net P, K and water uptake by cucumber seedlings in a split root system [J]. Chemical Ecology,1990,16 (8):2429-2439.
    38. Lyu S W, Blum U, Gerig T M, Obrien T E. Effects of mixtures of phenolic acids on phosphorus uptake of cucumber seedling[J]. Chemical Ecology,1990,16:2559-2567.
    39. Markus A, Klages U, Krauss S, Lingens F. Oxidation and dehafogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp. Strain CBS3[J]. Bacterial,1984,160: 618-621.
    40. Mersie W, Singly M. Phenolic acids affect photosynthesis and protein synthesise by isolated leaf cells of volvet-leaf[J]. Chemical Ecology,1993,19:1293-1301.
    41. Meyer J R, Shew H D. Soil suppressive to black root rot of burley tobacco, caused by Thielaviopsis basicola[J]. Phytopathology,1991,81:946-954.
    42. Mole S, Rose J A M and Waterman P G. Light-induced variation in phenolic acid levels in foliage of rain-forest plants. I. Chemical changes[J]. Chemical Ecology,1988,14:1-22.
    43. Nanbu K. Fate of pesticides in soil[J]. Plant Protection,1990,11:477-482 (in Japanese).
    44. Nishio M and Kusano S. A Fungal substance of selective action on plant growth produced by pyrenochaeta sp[J]. Soil Science Plant Nutrition,1976, (22):467-472.
    45. Nishio M and Kusano S. Fungi associated with roots of continuously cropped upland rice[J]. Soil Science Plant Nutrition,1973, (19):205-217.
    46. Patterson B D, Mackae E A, Mackae I B. Estimation of hydrogen peroxide in plant extracts using Titanium (IV). Analytical Biochemistry,1984,139:487-492.
    47. Patterson D T. Effects of allelopathic chemicals on growth and physiological response of soybean (Glycine max) [J]. Weed Science.1981,29(1):53-58.
    48. Peirce L C, Colby L W. Interaction of asparagus root filtrate with Fusarium oxysporum. Sp. Asparagi[J]. American Society of Horticultural Science,1987,112:35-40.
    49. Peirce L C and Miller H G. Interaction of asparagus autotoxin with Fusarium[J]. Acta Horticultrace, 1990,271:305-313.
    50. Peirce L C and Miller H G. Asparagus emergence on Fusarium-treated and sterile media following exposure of seeds or radicals to one or more cinnamic acids[J]. American.Societyof Horticulture Science,1993,118:23-28.
    51. Pierce L C, Colby L W. Interaction of asparagus root filtrate with Fusarium oxysporum.Sp.asparagi, [J]. American Society of Horticulture Science,1987,112:35-40.
    52. Politycka B, Kubis J. Changes in free polyamine level and polyamine oxidase activity in cucumber roots under allelochemical stress conditions [J]. Acta Physiologiae Plantarum,2000,22(1):11-16.
    53. Politycka B. Phenolic and the activities of phenylalanine ammonia-lyase, phenol-beta-glucosyltransferase and beta-glucosidase in cucumber roots as affected by phenolic allelochemicals[J]. Acta Physiologise Plantarum,1998,20(4):405-410.
    54. Politycka B. Ethylene-dependent activity of phenylalanine ammonialyase and lignin formation in cucumber roots exposed to phenolic allelochemicals[J]. Acta Society of Botany Poloniae,1999, 68(2):123-127.
    55. Politycka B. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by deribatives of cinnamic and benzoic acids[J]. Acta Physiologise Plantanum,1996,18(4): 365-370.
    56. Politycka B. Free and glucosylated phenolics, phenol-beta-glucoayltransferase activity and memb-ance permability in cucumber roots affected by derivatives of cinnamic and benzoic acids [J]. Acta Physiologinc Plantarum,1997,19(3):311-317.
    57. Pramamik M H R, Masayuki N, Toshiki A and Yoshihisa M. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture[J]. Chemical Ecology,2000,26(8):1953-1967.
    58. Putnam A R, Duke W B. Biological suppression of weeds:Evidence for Allelopathy in accessions of cucumber [J]. Science,1974,185:370-37.
    59. Qasm J R. and Abu-Irmaileh B E. Allelopathic effect of Salvia syriaca L. (Syrian sage)in wheat[J]. Weed Resource,1985,25:47-52.
    60. Regina V. Effects of cinnamic acid derivatives on indoleacetic acid oxidation by peroxidase [J]. Phytochemistry,1995,38(1):19-22.
    61. Rice E L. Alllelopathy (2nd ed.). Academic Press, New York,1984.
    62. Sayorara M P, Ascis Rosa L R, Mariano Sami J, Michere F, et al. In Advances in Biological Control of plant Diseases Tang Wenhcca, R. James Cook, Albest Rovira (Eds). China Agricultural University Pressing,1996,347-353.
    63. Shann J R. and Blum U. The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus L[J]. Phytochemistry,1987,26:2959-2964.
    64. Shibu J, Andrew R G. Allelopathy in black walnut (Juglans nigra L.) alley cropping. Effects of junlone on hydroponically grown corn (Zea mays L) and soybean (Glycine max L Merr.)growth and physiology [J]. Plant and Soil,1998,203:199-205.
    65. Steinsiek J W. Oliver L R and Collins F C. Allelopathic potential of wheat (Triticum aestivum)straw on selected weed species[J]. Weed Science,1982,30:495-550.
    66. Stowe L W and Osborn A. The influence of nitrogen and phosphorus levels on phytotoxicity of phenolic compounds[J]. Canada Botany,1980,58:1149-1153.
    67. Sundin P, Waechter B. Degradation of phenolic acids by bacteria from liquid hydroponic culture of tomato. In:Struik, P.C., et al. (Eds.), Plant Production on the Threshold of a New Century. Kluwer Academic Publishers. Dordrecht. pp,1994,473-475.
    68. Tang C S, Cai W F, Kohl K and Nishimoto R K. Plant Stress and Allelopathy. In Allelopathy: Organisms, processes, and applications. Inderjit et al. (ed.).ACS Symp. Ser.582. American Chemical Society. Washington, DC.1995,142-158.
    69. Thomaszewiski M. Interaction of phenolic acids, metabllicions and chlating agents on auxin-induced growth[J]. Plant Physiology,1996,41:1443.
    70. Van Elsas J D, Garbeva P. Effects of agronomical measure on the microbial diversity of soils as related to the suppression of soil borne plant pathogens[J]. Biodegradation,2002,13:29-40.
    71. Vance C P. Lignification as mechanism of disease resistance. Ann. Zev. Photopath,1980,18 259-288.
    72. Vaughan D, Jones D. OrdBG. Amelioration by Volutella ciliata of the phytotoxicity of vanillic acid towards the growth of Pisum sativum[J]. Soil Biol Biochem,1993,25(1):11-17.
    73. Vaughan, D and Ord B G. Extraction of potential allelochemicals and their effects on root morphology and nutrient content In:Plant Root Growth (Ed.,D.Atkinson). London:Blackwell Scientific Publications,1991,399-421.
    74. Wu H, Raza W, Liu D, Wu C, Mao Z, Shen Q. Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f.sp.niveum, World Journal of Microbiology and Biotechnology,2007, DOI:10.1007/s 11274-007-9602-5 (online).
    75. Wu H, Yin X, Zhu Y, et al. Nitrogen metabolism disorder in watermelon seedling leaf by fusaric acidphytotoxin[J]. Physiological and Molecular Plant Pathology,2007,71:69-77.
    76. Wu H, Raza W, Fan J, et al.Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f.sp.niveum[J]. Agricultural and Food Chemistry,2008,56:1316-1321.
    77. Wu H, Yang X, Fan J, et al. Suppression of fusarium wilt of watermelon by a bio-organicfertilizer, Bio Control, DOI:10.1007/s 10526-008-9168-7 (online).
    78. Wu H, Liu D, Ling N, et al. Influence of root exudates of watermelon on growth,sporulation, mycotoxin and pathogenic enzymes of Fusarium oxysporum f.sp.niveum [J]. Eukaryotic Microbiology, (Accepted).
    79. Wu H, Bao W, Liu D, et al. Effect of fusaric acid extracted from Fusarium oxysporum f. sp.niveum on biomass and photosynthesis of watermelon leaves[J]. Caryologia,2008,61(2):95-101.
    80. Wu H, Yin X, Liu D, et al. Effect of fungal fusaric acid on the leaf and root physiology of watermelon (Citrullus lanatus) seedlings [J]. Plant and Soil,2008,308:255-266.
    81. Wu H, Liu D, Ling N, et al. Allelopathic role of artificially applied vanillic acid on in vitro Fusarium oxysporum f.sp. niveum[J]. Allelopathy,2008,22(1):111-122.
    82. Yang, C H, Crowley D E and Menge J A.16s rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophora infected avocado toots. FEMS[J]. Microbiol Ecology,2000,35:129-136.
    83. Yang H J. Autotoxicity of Asparagus officinalis L[J]. American.Society of Horticulture Science, 1982,107:860-862.
    84. Yu J Q, Shou S Y, Qian Y R and Hu W H. Autotoxic potential in cucurbit crops[J]. Plant and Soil, 2000,223:147-151.
    85. Yu J Q, Matsui Y. Extraction and identification of phytotoxic substances accumulated in the nutrient solution for the hydroponic culture of tomato[J]. Soil Science and Plant Nutrition,1993,39: 13-22.
    86. Yu J Q, Matsui Y. Phytotoxic substances in root exudates of cucumber(Cucumis sativus L) [J]. Chemical Ecology,1994,20:21-31.
    87. Yu J Q, Ye S F, Zhang M F and Hu W H. Effects of root exudates, aqueous root extracts of cucumber(Cucumis sativus L.) and allelochemicals on photosynthesis and antioxidant enzymes in cucumber[J]. Biochemical System Ecology,2003,31:129-139.
    88. Yu J Q and Komada H. Hinoki bark, a substrate with anti-pathogen properties that suppress root diseases of tomato[J]. Scientia Horticulture,1999,81:13-24.
    89. Yu J Q and Matsui Y. Effects of root exudates of cucumber(Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings[J]. Chemical Ecology,1997,23:817-827.
    90. Yu J Q, Zhou Y H, Huang M F and Allen D J..Chill-induced inhibition of photosynthesis: genotypic variation within Cucumis sativus[J]. Plant and Cell Physiology,2002,43:1182-1188.
    91. Yu J Q, and Matsui Y. Autointoxication of root exudates in pisum sativus [J]. Acta Horticulturae Sinica,1999,26 (3):175-179.
    92. Yu J Q, Yoshihisa, Matsui Y. Phytotoxic substances in root exudates of Cucumber[J]. Chemical Ecology,1994,20(1):21-31.
    93. Yu J Q. Autotoxic potential of cucurbit crops:Phenomenon, chemicals, mechanisms and means to overcome[J]. Crop Production,2001,4:335-348.
    94. Yu J Q. Extraction and identification of phytotoxic substances accumulated in the nutrient solution for the hydroponic culture of tomato[J]. Soil Science Plant Nutrition,1993,39:691-700.
    95. Yu J, Odhiambo J J O, Bomke A A冬季覆盖作物对短期氮肥有效性的影响[J].水土保持科技 情报,2001,6:24-27.
    96. Yu J Q. Autotoxic potential in Vegetables Crops, In Allelopahy Update-Basic and Applied Aspects (Ed..S.S.Narwal). Science Publishers, Inc. U.S.A.1999,149-162.
    97. Zhang S, Raza W, Shen Q, et al. Control of Fusarium Wilt Disease of Cucumber Plants with the Application of Bio-Organic Fertilizer [J]. Biology and Fertility of Soils,2008,44 (8):1073-1080.
    98.高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及生态效应[J].应用生态报,1998,9(5);549-551.
    99.韩丽梅,王树起,鞠会艳,等.大豆根分泌物的鉴定及其化感作用的初步研究[J].大豆科学,2000,19(2):119-125.
    100.何绍江,毛新国,李传涵.杉木解酚菌的研究[J].生物学杂志,2001,12(3):344-346.
    101.驹田旦.土壤病害发生生态与防治.日本京都:种苗株式会社,1992,23-25.
    102.李志英,卢育华,徐立.土壤低温对嫁接黄瓜生理生化特性的影响[J].园艺学报,1998,25(3):258-263.
    103.刘桂芹,邓国生.嫁接技术在防止黄瓜枯萎病上的应用[J].中国蔬菜,1993,(2):32-33.
    104.刘鸣稻,徐瑞富,武庆顺,等.黄瓜嫁接防治根结线虫病[J].中国蔬菜,1998,(5):36.
    105.刘秀芬,马瑞霞,袁光林,等.根际区他感化学物质的分离、鉴定与生物活性的研究[J].生态学报,1996,16:1-16.
    106.泷岛.防治连作障碍的措施[J].日本土壤肥料科学杂志,1983,(2):170-178.
    107.吕卫光,张春兰,彭宇.外源苯丙烯酸抑制连作黄瓜生长的机制初探[J].中国蔬菜,2001,(3):10-12.
    108.吕卫光,张春兰,袁飞,等.化感物质抑制连作黄瓜生长的作用机理[J].中国农业科学,2002,35(1):106-109.
    109.吕卫光,张春兰,袁飞,等.嫁接减轻设施黄瓜连作障碍机制初探[J].华北农学报,2000,15(增刊):153-156.
    110.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,1991,18(2)159-162.
    111.王大力.水稻化感作用的研究综述[J].生态学报,1998,18(3):326-335.
    112.王大力.草属植物化感作用研究综述[J].生态学杂志,1995,14(4):48-53.
    113.王宏凯,尚来贵,方社会.黄瓜不同嫁接方法试验[J].北方园艺,1998,(3):23-24.
    114.吴凤芝,赵凤艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究,2002,(1):45-50.
    115.吴凤芝,孟立君,文景芝.黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J].中国蔬菜,2002,(5):26-27.
    116.吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,2000,31(3):241-247.
    117.吴洪生.西瓜连作土传枯萎病微生物生态学机理及其生物防治.南京农业大学博士论文,2008,6.
    118.于贤昌,邢禹贤,马红,等.黄瓜嫁接苗抗冷性特性研究[J].园艺学报,1997,24(4):348-352.
    119.于贤昌,邢禹贤,马红,等.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响[J].中国农业科学,1998,31(2):41-47.
    120.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报(自然科学版),2000,31(1):124-126.
    121.中野明正,上原洋一,山内章.设施土壤中盐类积累现状及低硫酸根缓效性肥料的化学改善作用[J].日本土壤肥料学会杂志,2001,72:237-244.
    122.张树生,杨兴明,沈其荣,等.连作土灭菌对黄瓜(Cucumis sativus)生长和土壤微生物区系的影响[J].生态学报,2006,27(5):1809-1817.
    123.张树生,杨兴明,沈其荣,等.施用氨基酸肥料对连作条件下黄瓜的生物效应及土壤生物性状的影响[J].土壤学报,2006,44(4):689-694.
    124.张学炜,黄学森,古勤生,等.西瓜连作障碍及其防治方法[J].中国西瓜甜瓜,1993,(2):21-23.
    125.郑军辉,叶素芬,喻景权.蔬菜连作障碍产生原因及生物防治[J].中国蔬菜,2004,(3):56-58.
    126.郑阳霞,钟宇,李能芳.嫁接对蔬菜生理生化特性影响的研究进展[J].北方园艺,2005,(1):7-8.
    1. Alvey S, Yang C H, Buerkert A, et al. Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils[J]. Biology and Fertility of Soils,2003.37:73-82.
    2. Bunemann E K, Smithson P C, Jama B, Frossard E, et al. Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya[J]. Plant and Soil,2004,264:195-208.
    3. Olsson S, Alstrom S. Characterisation of bacteria in soils under barley monoculture and crop rotation[J]. Soil Biology and Biochemistry,2000,32:1443-1451.
    4. Van Elsas J D, Garbeva P. Efects of agronomical measure on the microbial diversity of soils as related to the suppression of soil borne plant pathogens[J]. Biodegradation,2002,13:29-40.
    5. Ward D M, WeUer R, Bateson M M.16S rRNA sequences reveal numerous uncultured microorganisms in a natural community[J]. Nature,1990,345:63-65.
    6. 陈慧, 郝慧荣, 熊君.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,2007,18(12):2755-2759.
    7. 郝慧荣,李振方,熊君,等.连作怀牛膝根际土壤微生物区系及酶活性的变化研究[J].中国生态农业学报,2008,16(2):307-311.
    8. 胡元森,刘亚峰,吴坤,等.黄瓜连作土壤微生物区系变化研究[J].土壤通报,2006,37(1):126-129.
    9. 胡元森,吴坤,李翠香,等.黄瓜连作对土壤微生物区系影响Ⅱ--基于DGGE方法对微生物种群的变化分析[J].中国农业科学,2007,40(10):2267-2273.
    10.胡元森,吴坤,刘娜,等.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学,2004,37(10):1521-1526.
    11.李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996,6,136-139.
    12.刘金波,许艳丽.我国连作大豆土壤微生物研究现状[J].中国油料作物学报,2008,30(1):132-136.
    13.刘亚锋,孙富林,周毅,等.黄瓜连作对土壤微生物区系的影响Ⅰ--基于可培养微生物种群的数量分析[J].中国蔬菜,2006,(7):4-7.
    14.马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,2004,15(6):1005-1008.
    15.苏世鸣,任丽轩,霍振华,等.西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响[J].中国农业科学,2008,41(3):704-712.
    16.孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施[J].农业工程学报,2005,21卷(增刊):184-190.
    17.孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J].作物学报,2001,27(5):617-621.
    18.王岩,沈其荣,史瑞和.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    19.吴凤芝,孟立君,文景芝.黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J].中国蔬菜,2002,(5):26-27
    20.吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,2000,31(3):241-247.
    21.徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报,2003,32(3):19-24.
    22.许光辉,郑洪方.土壤微生物分析方法手册[M].北京:中国农业出版社.1986,110-283.
    23.许艳丽,王光华,韩晓增.连、轮作大豆土壤微生物生态分布特征与大豆根部病虫害关系的研究[J].农业系统科学与综合研究,1995,11(4):311-314.
    24.于贵瑞,陆欣来,韩静淑,等.连作与轮作体系中土壤微生物区系的动态分析[J].辽宁农业科学,1989,(3):18-23.
    25.袁龙刚,张军林,张朝阳,等.连作对辣椒根际土壤微生物区系影响的初步研究[J].陕西农业科学,2006,(2):36-40.
    26.甄文超,代丽,胡同乐,等.连作草莓土壤微生物区系动态的研究[J].河北农业大学学报,2005,28(3):70-72.
    27.范小峰,俞诗源,范亚娜,等.黄土高原大棚黄瓜不同年限连作对土壤主要理化性状的影响[J].中国土壤与肥料,2006,(6):15-19.
    28.封海胜,张思苏.花生不同连作年限土壤酶活性的变化[J].花生科技,1994,(3):5-9.
    29.关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:260-353.
    30.郭文忠,刘声锋,‘李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J].土壤,2004,36(1):25-29
    31.贺丽娜,梁银丽,高静,等.连作对设施黄瓜产量和品质及土壤酶活性的影响[J].西北农林科技大学学报,2008,36(5):155-159.
    32.李文庆,骆洪义,丁芳军,等.大棚栽培土壤盐分的变化[J].土壤,1995,(4):203-205.
    33.梁银丽,陈志杰,王宗明.设施农业在生态环境建设中的地位与作用[J].水土保持学报,2002,16(5):32-35.
    34.梁银丽,陈志杰,徐福利,等.日光温室连作年限对黄瓜生理特性的影响[J].西北植物学报,2003,23(8):1378-1382.
    35.粱银丽,陈志杰,徐福利,等.黄土高原设施农业中的土壤连作障碍[J].水土保持学报,2004,18(4):134-136。
    36.马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,2004,15(6):1005-1008.
    37.南京农业大学主编.土壤农化分析[M].北京:农业出版社,1992,10.
    38.唐咏,梁成华,刘志恒,等.日光温室蔬菜栽培对土壤微生物和酶活性的影响[J].沈阳农业大学学报(自然科学版),1999,30(1):16-19.
    39.王素平,刘艳,郭世荣.设施土壤次生盐渍化的特征及其对蔬菜作物的危害[J].华中农业大学学报,2004,增刊(2):105-110.
    40.王震宇,王英祥,陈祖仁.重茬大豆生长发育障碍机制初探[J].大豆科学,1991,10(1):31-36.
    41.吴风芝,孟立君,王学征,等.设施蔬菜轮作和连作土壤酶活性的研究[J].植物营养与肥料学报,2006,12(4):554-558.
    42.吴凤芝,栾非时,王东凯,等.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究[J].东北农业大学学报,1996,27(3):255-258.
    43.余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤,2005,(6):9-13.
    44.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,31(1):124-126.
    45.曾玲玲,张兴梅,洪音,等.长期施肥与耕作方式对土壤酶活性的影响[J].中国土壤与肥料,2008,(2):28-31.
    46.张雪艳,高丽红,李元,等.栽培模式对黄瓜连作温室土壤酶活性及相关养分的影响[J].内蒙古农业大学学报(自然科学版),2007,18(3):113-117.
    47.郑军辉,叶素芬,喻景权.蔬菜连作障碍产生原因及生物防治[J].中国蔬菜,2004,(3):56-58.
    1. Asao T, Hasegawa K, Sueda Y, et al. Autotoxicity of root exudates from taro[J]. Scientia Horticulture,2003, (97):389-396.
    2.A.D.麦克拉伦著.闵九康译.土壤生物化学[M].北京:农业出版社,1984,174-185.
    3. Baziramakenga R. Effects of benzoic and cinnamic acids on membrance permeability of soybean roots[J]. Chemical Ecology,1995,21:1271~1285.
    4. Blum U, Austin M F, Lehman M E. Evidence for inhibitory allelopathic interaction involving phenolic acids in field soils:Concept Vs. an experimental model[J]. Critical Review in Plant Science,1999,18(5):673-693.
    5. BlumU, Dalton B R, Rawlings J Q. Effects of ferulic acid and some of its microbial prod ucts on radicle growth of cucumber[J]. Chemical Ecology,1984,11:279~301.
    6. BlumU, Dalton B R, Shann J R. Effects of various mixtures of ferulic acid and some of its mi crobial metabolic products on cucumber leaf expansion and dry matter in nutrient culture[J]. Chemical Ecology,1985,11(3):619~641.
    7. Blum U, Shafer S R. Microbial populations and phenolic acids in soil[J]. Soil Biology and Biochemistry,1988,20(6):793~800.
    8. Blum U. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interacdons[J]. Chemical Ecology,1998,24(4):685~708.
    9. Chapin F S. New cog in the nitrogen cycle[J]. Nature,1995,377:199~200.
    10. Chou C H, Leu L L. Allelopathic Substances and Activities of Delonix Regia Raf[J]. Chemical Ecology,1992,18:353~367.
    11. Einhellig F A, Seuza I F. Phytotoxieity of sorgoleone found in grain sorghum root exudates[J]. Chemical Ecology,1992,18:1~11.
    12. Glass D K. Influence of phenolic acids on ion uptake[J]. Plant physoilogy,1974,54:855-858.
    13. Harpper J L. Population biology of plants[M]. London:Academic press,1977.
    14. Hatsuda Y, Murao S, Nishimura S, Manasaki T. Biochemical studies on soil sickness:III On the toxic substances in watermelon roots[J]. Nippon Nogeikagaku Kaishi,1961,35:1107-1108
    15. Hiragoshi I,.Kuroda S.and Nishikawa K. Studies on the autoxicant substances. I. Inhibition of germination and seedling growth by a residual nutrient solution for the gravel culture of pea[J]. Agriculture Horticulture,1959,34:1419~1421.
    16. Komadah H. The occurrence, ecology of soilborne disease and their role (in Japanese) [J]. Takii Seed Co Ltd. Japan,1988,1~3.
    17. lnderjit A U. Effect of phenolic compounds on selected soil properties [J]. Forest ecology and management,1997,92:11~18.
    18. Patrick Z A. Phytotoxic substance associtied with decomposition of in soil plant residues[J]. Soil Science,1971,111(1):13~19.
    19. Patterson D T, Mackae E A, Mackae I B. Estimation of hydrogen peroxide in plant extracts using Titanium (IV)[J]. Analytical Biochemistry,1984,139:487-492.
    20. Patterson D T. Effects of allelopathic chemicals growth and physiological responses of soybean[J]. Weed Science,1981,29(1):53-59.
    21. Peirce L C and Miller H G. Asparagus emergence on Fusarium-treated and sterile media following exposure of seeds or radicals to one or more cinnamic acids[J]. American.Societyof Horticulture Science,1993,118:23-28.
    22. Peirce L C, Colby L W. Interaction of asparagus root filtrate with Fusarium oxysporum. Sp. Asparagi[J]. American Society of Horticultural Science,1987,112:35-40.
    23. Pierce L C, Colby L W. Interaction of asparagus root filtrate with Fusarium oxysporum.Sp.asparagi, [J]. American Society of Horticulture Science,1987,112:35-40.
    24. Putnam A R, Duke W B. Biological suppression of weeds:Evidence for Allelopathy in accessions of cucumber [J]. Science,1974,185:370-37.
    25. Shind H and Kuwatsuka S. Behaviour of phenolic substances in the decaying process of plant Ⅲ. Degradation of phenolic acids. Soil Science Plant Nutrition,1975,21:227~238.
    26. Shou T, Zhou J M, Wang H Y, etal. Phenolic Acids in Plant-Soil-Microbe System, A Review[J]. Science Press,2002,12(1):1~14.
    27. Takijima. Studies on soil sickness in crop:Substances exuded from root and the growth inhibiting activity of a nutrition solution for crop cultivation[J]. Agriculture Horticulture,1959, 34:1417~1418.
    28. Turner J A, Rice E L. Microbial decomposition of ferulic acid in soil[J]. Chemical Ecology,1975, (I):41~58.
    29. Ughan D, Sparllng G P, Ord B G. Ameliorationof the phytotoxicity of phenolic acids by some soil microdes[J]. Soil Biology Biochemical,1983,15(5):613~614.
    30. Vaughan D, Jones D, Ord B G. Amelioration by Volutella ciliata of the phytotoxicity of vanillic acid towards the growth of Pisum sativum[J]. Soil Biology Biochemical,1993,25(1):11~17.
    31. Wang T S C, Kao M M. The Exploration and Improvement of The Yield Decline of Monoculture Sugarcane in Taiwan. In:Chou, C. H.(ed). Tropical Plant. Tnst, of Bot. Acad. Sinica, Monogr. No. 5 Taibei, Taiwan,1984,1-9.
    32. Yu J Q and Matsui Y. Effects of Root Exudates of Cucumber and Allelopathicals on the Ion Uptake by Cucumber Seeding [J]. Chemical Ecology,1997 (23):817~827.
    33. Yu J Q, Lee S, Matsui Y. Effects of The Addition of Activate Charcoal on The Growth of Tomato Plants Grown by Hydroponics [J]. Soil Science Plant Nutrition,1993,39,13~22.
    34. Yu J Q, Matsui Y. Phytotoxic Substances in Root Exudates of Cucumber(cucumis sativus L) [J]. Chemical Ecology,1994,20:21~31.
    35. Yu J Q, Matsui. Extraction and Identification of Phytotoxic Substances Accumulated inThe Nutrient Solution for The Hydroponic Culture of Tomato[J]. Soil Science and Plant Nutrition,1993, 39:691~700
    36. Yu J Q. Allelopathic suppression of pseudomonas infection of tomato in a tomato Chinese chive inter-cropping system[J]. Chemical Ecology,1999,25(4):167~172.
    37.蔡玉祺,王珊龄,蔡道基.甲基异柳磷等四种农药对土壤呼吸的影响[J].农村生态环境,1992,3:36-40.
    38.陈捷.植株残体对黄瓜幼苗的影响研究初报[J].辽宁农业科学,1990,(3);42-45.
    39.陈龙池,廖利平,汪思龙,等.外源毒素对土壤养分的影响[J].生态学杂志,2002,21(1):19-22.
    40.杜英君,靳月华.连作大豆植株化感作用的模拟研究[J].应用生态学报,1999,10(2):209-212.
    41.冯志红,闫立英,王久兴,等.连作栽培中自毒物质对黄瓜种子萌发和幼苗生长的影响[J].种子,2005,24(6):41-44.
    42.高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及生态效应[J].应用生态学报,1998,9(5);549-551.
    43.韩锦峰主编.植物生理生化[M].北京:高等教育出版社,1997.
    44.韩丽梅,王树起,鞠会艳,等.大豆根分泌物的鉴定及其化感作用的初步研究[J].大豆科学,2000,19(2):119-125.
    45.何光训.连载杉木林地土壤肥力退化症结[J].浙江林学院学报,2002,19(1):100-103.
    46.何光训.土壤酚类物质引起植物中毒的植物生理原因[J].浙江林学院学报,1992,9(3):339-344.
    47.黄立编.电子显微镜生物标本制备技术[M].江苏:科技出版社,1982.
    48.靳月华.红松苗自身相克的模拟试验研究[J].林业科技通讯,1992,(3):4-7.
    49.腊塞尔E W,著:谭世文,林振骥,郭公佑译.土壤条件与植物生长[M].北京:科学出版社,1979,206-211.
    50.林思祖,黄世国,曹光球,等.杉木自毒作用研究[J].应用生态学报,1999,10(6):661-664.
    51.刘雁,林思祖,曹光球,等.杉木及其伴生树种化感物质的分离与生物测定[J].福建林学院学报,2001,21(3):268-271.
    52.刘江云,杨学东,徐丽珍,等.天然酚酸化合物的反相高效液相色谱分析[J].色谱,2002,20(3):245-248.
    53.泷岛.防治连作障碍的措施[J].日本土壤肥料科学杂志,1983,(2):170-178.
    54.鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社.2000,4:146-226.
    55.吕卫光,张春兰,彭宇.外源肉桂酸抑制连作黄瓜生长的机制初探[J].中国蔬菜,2001,(3):10-12.
    56.吕卫光,张春兰,袁飞,等.化感物质抑制连作黄瓜生长的作用机理[J].中国农业科学,2002,35(1)106-109.
    58.马瑞霞,冯怡.化感物质对枯草芽孢杆菌在厌氧条件下的生长及反硝化作用的影响[J].生态学报,2000,20(3):452-457.
    59.马瑞霞,刘秀芬,袁光林,等.小麦根区微生物分解小麦体产生的化感物质及其生物活性的研究[J].生态学报,1996,16(6):632-639.
    60.阮维斌.高效液相色谱法检测与化感现象相关的五种酚酸[J].应用与环境生物学报,2001,7(6):609-612.
    61.史长青.重金属污染对水稻土酶活性的影响[J].土壤通报,1995,26(1):34.
    62.王璞,赵秀琴.几种化感物质对棉花种子萌发及幼苗生长的影响[J].中国农业大学学报,2001,6(3):26-31.
    63.王倩,李晓林.苯甲酸和肉桂酸对西瓜幼苗生长及枯萎病发生的影响[J].中国农业大学学报,2003,8(1):83-86.
    64.王树起,韩丽梅,杨振明,等.大豆根茬腐解液和营养液残液对大豆生长发育的自感效应[J].大豆科学,2000,19(2):119-125.
    65.吴凤芝,赵凤艳,马凤鸣.酚酸物质及其化感作用[J].东北农业大学学报,,2001,32(4):402--407.
    66.吴凤芝,赵凤艳.根系分泌物与连作障碍[J].东北农业大学学报,2003,34(1):1 14-118.
    67.辛建华,傅振清.苯丙氨酸解氨酶、多酚氧化酶与与甜瓜抗枯萎病的关系[J].石河子大学学报(自然科学版),1997,1(1):47-50.
    68.薛成玉,吴凤芝,王洪成,等.浅论酚酸与土壤微生物之间的相互作用[J].黑龙江农业科学,2005,(3):45-47.
    69.杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2002,22(6):231-336.
    70.杨晓华,蔡金龙,姚莉英.西瓜设施栽培土壤连作障碍及配套防治技术[J].中国瓜菜,2005(6):34-36.
    71.于天仁,陈志诚主编.土壤发生中的化学过程[M].北京:科学出版社,1984,174-185.
    72.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,31(1):124-126.
    73.喻景权,松井佳久.豌豆根系分泌物自毒作用的研究[J].园艺学报,1999,26(3):175-179.
    74.袁飞,张春兰,沈其荣.酚酸物质对连作黄瓜根际微生物类群的影响[J].中国农业科学,2004,37(4):545-551.
    75.袁光林,马瑞霞,刘秀芬,等.化感物质对土壤脲酶活性的影响[J].环境科学,1998,19(2):55-57.
    76.曾任森,骆世明.香茅、胜红蓟和三叶鬼针草植物他感作用研究[J].华南农业大学学报,1993,14(4):8-14.
    77.张福锁.根分泌物及其在植物营养中的作用[J].北京农业大学学报,1992,18(4):353-356.
    78.张淑香,高子勤.连作障碍与根际微生态研究Ⅱ.根系分泌物与酸类物质[J].应用生态学报,2000,11(1):152-156.
    79.张宪武.杉木连栽与土壤中毒,杉木人工生态学研究论文集[M].沈阳:沈阳出版社,1980,143-151.
    80.张宪政.作物生理研究法[M].北京:农业出版社,1990.
    81.张学炜,黄学森,古勤生,等.西瓜连作障碍及其防治方法[J].中国西瓜甜瓜,1993,(2):21-23.
    82.张志良主编.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1997,59-62.
    83.赵萌,李敏,王淼焱,等.西瓜连作对土壤主要微生物类群和土壤酶活性的影响[J].微生物学通报,2008,5(8):1251-1254.
    84.甄文超,曹克强,代丽,等.连作草莓根系分泌物自毒作用的模拟研究.植物生态学报,2004,28(6):828-832.
    85.中国科学院上海植物生理研究所编.现代植物生理学实验指南[M].北京:科学出版社,1999,314-315.
    86.周礼恺编著.土壤酶学[M].北京:科学出版社,1987,5:267-281.
    87.周志红,骆世明,牟子平,等.番茄(Cycopersicon)的化感作用研究[J].应用生态学报,1997,8(4):445--449.
    88.朱林,张春兰,沈其荣,等.稻草等有机物料腐解过程中酚酸类化合物的动态变化[J].土壤学报,2001,38(4):471--475.
    89.朱丽霞,张家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    90.邹丽芸,喻景权.西瓜植株水浸提物对西瓜种子萌发的影响[J].浙江农业科学,2004,4:181-182.
    91.邹丽芸.西瓜根系分泌物对西瓜植株生长的自毒作用[J].福建农业科技,2005,(4):30-34.
    1. Khalifa O. Biological control of Fusarium wilt of peas by organic soil amendments[J]. Annual Applied Biology,1965,56:129-137.
    2.蔡玉祺,王珊龄,蔡道基.甲基异柳磷等四种农药对土壤呼吸的影响[J].农村生态环境,1992(3):36-39.
    3.郭荣君,刘杏忠,杨怀文.大豆根际细菌拮抗大豆根腐病菌研究[J].大豆科学,1998,17(1):53-58.
    4.郝慧荣,李振方,熊君,等.连作怀牛膝根际土壤微生物区系及酶活性的变化研究[J].中国生态农业学报,2008,16(2):307-311.
    5.计钟程.大豆重迎茬减产的主要原因及对策[J].土壤通报,1990,(2):76-86.
    6.孔建,赵白鸽,王文夕,等.枯草芽孢杆菌抗菌物质对镰孢菌抑制机理的镜下研究[J].植物病理学报,1998,28(4):337-340.
    7.李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37(3):563-566.
    8.刘金波,许艳丽.我国连作大豆土壤微生物研究现状[J].中国油料作物学报,2008,30(1):132-136.
    9.吕卫光,张春兰,袁飞,等.嫁接减轻设施黄瓜连作障碍机制初探[J].华北农学报,2000,15(增刊):153-156.
    10.吕卫光,张春兰,袁飞,等.有机肥减轻连作对黄瓜自毒作用的机制[J].上海农业学报,2002,18(2);52-56.
    11.宋荣浩,杨红娟,马坤,等.有机和有机无机结合施肥对设施栽培西瓜产量和品质的影响[J].上海农业学报,2007,23(2):38-40.
    12.苏世鸣,任丽轩,霍振华,等.西瓜与早作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响[J].中国农业科学,2008,41(3):704-712.
    13.孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施[J].农业工程学报,2005,21(增刊):184-188.
    14.孙红霞,武琴,郑国祥,等.EM对茄子、黄瓜抗连作障碍和增强土壤生物活性的效果[J].土壤,2001,(5):264-267.
    15.王震宇.重茬大豆生长发育障碍机制初探[J].大豆科学,1991,10(1):31-36.
    16.吴风芝,孟立君,王学征.设施蔬菜轮作和连作土壤酶活性的研究[J].植物营养与肥料学报,2006,12(4):554-558.
    17.吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,2000,31(3):241-247.
    18.徐福利,梁银丽,张成娥,等.日光温室土壤生物学特性与施肥的关系[J].水土保持研究,2004,11(1):20-22.
    19.许艳丽,王光华,韩晓增.连、轮作大豆土壤微生物生态分布特征与大豆根部病虫害关系的研究[J].农业系统科学与综合研究,1995,11(4):311-314.
    20.于广武.大豆连作障碍研究初报[J].大豆科学,1993,12(3):237-243.
    21.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,31(1):124-126.
    22.袁龙刚,张军林,张朝阳,等.连作对辣椒根际土壤微生物区系影响的初步研究[J].陕西农业科学,2006,(2):36-40.
    23.张春兰,吕卫光,袁飞,等.生物有机肥减轻设施栽培黄瓜连作障碍的效果[J].中国农学通报,1999,15(6):67-69.
    24.张学炜,黄学森,古勤生,等.西瓜连作障碍及其防治方法[J].中国西瓜甜瓜,1993,(2):21-23.
    25.郑军辉,叶素芬,喻景权.蔬菜连作障碍产生原因及生物防治[J].中国蔬菜,2004,(3):56-58.
    26.郑阳霞,钟宇,李能芳.嫁接对蔬菜生理生化特性影响的研究进展[J].北方园艺,2005,(1):7-8.
    27.周晓芬,杨军芳.不同施肥措施及EM菌剂对大棚黄瓜连作障碍的防治效果[J].河北农业科学,2004,8(4):89-92.
    28.朱林,彭宇,袁飞,等.几种有机物对连作黄瓜生长的影响[J].安徽农业科学,2001,29(2):214-216.
    29.邹莉,袁晓颖,李玲,等.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志,2005,25(2):27-30.