SOPC Plus协同设计架构及在AMT中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国汽车产销量屡创新高,城市拥堵现象和环境污染问题也日益严重。随着汽车工业的不断发展,人们对汽车的安全性、舒适性和经济性提出了更高的要求。自动变速汽车将会成为一种趋势,具有巨大的需求空间。AMT由于保留了手动变速器的大部分结构,以其生产继承性好,改造成本低,节油效果明显等特点,被认为是中国自动变速器的发展趋势。国内的AMT研制经过了理论探索、原理样机、产品样机和产业化四个阶段,但当前的产业化进展并不顺利。AMT的产业化除了与行业标准相关外,还与核心技术的解决密切相关。系统软/硬件结构设计是核心技术中最基础和最关键的技术,对于AMT来说就是TCU平台的构建技术。
     AMT电控系统属于汽车电子控制系统,也是典型的嵌入式系统。当前的汽车电子设计中存在软硬件分离、设计者的创新能力和优化设计能力受限、运算能力不足、硬件设计缺乏重用支持、软件开放性层次和软件质量不高等问题。为了解决这些问题,并促进AMT的产业化进程,本文所做的主要工作有:
     (1)提出了基于SOPC技术、硬件构件技术和量子平台技术的SOPC Plus协同设计架构
     该架构用SOPC技术解决软硬件设计分离问题、设计者的创新能力、想象力和优化设计能力受限问题及运算能力不足问题;以硬件构件技术解决硬件设计缺乏重用支持问题;以量子平台的事件驱动架构、软件总线技术和代码自动生成技术解决软件开放性层次和软件质量不高问题。上述技术的有机结合,使SOPC Plus架构不但继承了SOPC的所有优点,而且将硬件系统设计从芯片级解决方案升级为电路板级解决方案,将软件系统从顺序控制模型升级为事件驱动编程模型,形成了“五层/三总线/一平台”的一体化协同设计架构。不但可以解决当前汽车电子开发中的不足,对其他嵌入式系统的开发也有借鉴作用。
     (2)基于直接IAP和CAN总线的层次化在线系统升级方案
     汽车电子产品在应用后发现缺陷,或产品功能得到增强时,产品就有系统升级的需求。SOPC Plus架构的硬件基础是FPGA技术。在系统编程ISP功能和在应用编程IAP功能都可以实现以FPGA为基础的系统升级。基于ISP的在线升级,需要停止当前系统的运行,并且需要外接JTAG接口,对于汽车电子产品的系统升级并不合适。基于FPGA的直接IAP和CAN总线的升级方案以FPGA的主动串行配置方式和SOPC的引导过程为基础,通过构建基于Avalon,总线的IP核使系统具备外围芯片的访问能力。不需要停止当前系统运行,通过CAN网络及增强的ISO15765标准协议传输升级文件并更新配置芯片的方式实现升级。以AMT的系统升级为例,阐述了其双核架构,硬件构成原理、层次化升级指令、升级步骤和实验情况等。
     (3)平台化、层次化、构件化和算法硬件化的AMT电控系统设计
     SOPC Plus是一种全新的汽车电子设计平台。基于该平台的AMT电控系统设计中,首先对AMT电控系统进行了功能分析,提出了对应设备级、电路板级和芯片级的由外到内的层次化设计顺序。外部设备层主要涉及TCU外围辅助系统的工作原理及设计思路;片外硬件构件层研究了AMT的基础构件库、组合构件库以及电路板级硬件的设计过程;片内协同设计层研究了芯片选择、软硬件划分、基于IP核的片内硬件系统设计和基于量子平台的软件设计。软件设计中选用量子平台内嵌的Vanilla内核,实现了针对NiosⅡ软核的移植,并使用量子平台图形化建模工具QP Modeler设计了AMT的主活动对象层次状态机HSM并自动生成对应HSM的C代码。
     各种智能算法可以显著提高AMT的起步和换挡质量,但由于计算量大、占用资源多而容易使AMT系统失去实时性。软件算法硬件化将各种智能算法用硬件电路的方式实现,可以大大提高计算速度,使运算量不再成为智能算法应用的障碍。以离合器的BP-PID控制算法为例,研究了智能算法硬件化的框架设计和主要模块实现原理。(4)台架和道路测试
     针对单元执行机构位置控制的台架试验,验证了各传感器、单元执行机构、单元控制电路及单元控制算法的有效性;针对不同路况的整车起步和换挡测试验证了主活动对象层次状态机及相关控制策略的有效性。
With China's auto production and sales hit record highs, the phenomenon of urban congestion and environmental pollution is increasingly serious. With the continuous development of automobile industry, people put forward higher requirements on car safety, comfort and economy. Car with automatic transmission will become a trend, with a huge demand. AMT reserve most of the original manual transmission assembly body, with good inheritance, low cost and fuel saving, is considered to be the development trend of automatic transmission of China. The development of domestic AMT has four stages, which are theoretical exploration, prototype, product prototype and industrialization, but the current industrialization is not smooth. The industrialization of the AMT is not only related to industry standards, but also closely related to the core technology. The software and hardware design of system is the most basic and most critical core technology, which is the design of the tranmission control unit platform as to the AMT.
     AMT electronic control system belongs to the automotive electronic control systems and the typical embedded systems. The current design of automotive electronics system has shortcomings, such as design separation of hardware and software, the limit of designer's ability to innovate and optimize the design, lack of computing power and poor hardware design reuse support as well as low quality software. To solve these problems, and to promote the industrialization of AMT, some work done in the thesis is as follows:
     (1) The SOPC Plus co-design framework is proposed based on SOPC technology, hardware component technology and quantum platform technology
     With the SOPC Plus framework, SOPC technology is used to solve the problem of separation design of hardware and software, the limit of designer's ability to innovate and optimize the design, and the lack of computing power. The hardware component technology is used to solve the lack of support for hardware design. The quantum platform event driven architecture, software bus technology and automatic code generation technology is used to solve the problem of low quality software. For the combination of these technologies, SOPC Plus has not only inherited all the advantages of SOPC, but also upgrade the hardware design from the chip-level solutions to the board-level solutions as well as the software design from the sequence control model to event-driven programming model, and the integrated "five layers, three buses and one platform" co-design framework is formed. The framework can not only solve the current design shortcoming of automotive electronics, and also serve as a reference to the other embedded systems.
     (2) Hierarchical online system upgrade program based on FPGA's direct 1AP and CAN bus
     If the defects found or function enhanced, automotive electrics products need to be upgraded. Upgrade can be achieved both with in-system-programming and with in-application-programming in FPGA-based system as the SOPC Plus architecture. In-system-programming is not suitable for automotive electronics upgrade because the system has to be stopped and the external JTAG interface needed. The hierarchical online system upgrade program is based on the active serial configuration mode of FPGA and SOPC-based boot process. The soft cores can access the peripheral chips by the IP cores based on Avalon bus. Do not need to stop the current system, chips upgrade can be achieved by configuration file transmission through the CAN network and the enhanced ISO 15765 standard protocol. AMT electronic control system online upgrade is used as an example to demonstrate the dual-core architecture, hardware architecture principles, hierarchical upgrade instructions, upgrade procedures and experiments
     (3) Platform-based, hierarchical, component-based and hardware-based algorithms design for AMT electronic control system
     AMT electronic control system is designed based on the SOPC Plus framework, which is a new automotive electronics design platform. First of all, the functional analysis is carried out, then the hierarchical design order is proposed from the outside to the inside as device layer, board layer and chip layer. The thoery of the peripheral and design ideas are researched in peripheral layer. The based component library, combined component library and the entire combination of hardware are researched in board layer. The chip selection, hardware and software function division, the construction of the system on chip, and software design based on quantum platform are researched in chip layer. Vanilla kernel embedded in quantum platform is selected and transplanted to NiosⅡin software design. QP Modeler, a quantum-platform graphical modeling tool is used to design the hierarchical state machine of AMT's main active object, and the C code is generated automatically corresponding to the hierarchical state machine in QP Modeler.
     Various intelligent algorithms can significantly improve the startup and shift quality of the AMT, but intelligent algorithms are limited for a mass of calculation, taking up more resources and easy to lose the AMT real-time character. Hardware-based algorithms can take advantage of parallel computing ability of FPGA, greatly improve computing speed, so computation is no longer a barrier to apply intelligent algorithm. A clutch BP-P1D control algorithm is designed in the paper, and the design framework and the principles of the main module of BP-PID are studied.
     (4) Bench and road testing
     Bench tests of unit actuator position control verified the effectiveness of the sensor, actuator, control circuit and basic control algorithm. Startup and shift tests in different road condition validated the effectiveness of hierarchical state machine of main active object and associated control strategies.
引文
[1]http://auto.qq.com/a/20110111/000078.htm.2010年汽车产销双超1800万辆破世界记录.
    [2]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1991.
    [3]常健,徐兆昆.桑塔纳轿车离合器性能分析[J].上海汽车,1997(3):10-12
    [4]程东升.电机驱动自动离合器接合过程的动力学特性及控制研究[D].上海交通大学,2003
    [5]http://www.aojauto.com/html/ProAnalysis/07122709421597327.shtml谁会成为未来中国变速箱市场主流之势-奥杰汽车网.
    [6]葛安林.自动变速器综述[J].汽车技术,2001(5):1-3
    [7]何忠波,白鸿柏.AMT技术的发展现状与展望[J].农业机械学报.2007,Vo1.385,5:181-186
    [8]么居标.自动变速器[M].北京:机械工业出版社.2010.4
    [9]http://www.qdjimo.com/html/2010/12/24083616988.htm,AT、CVT、DCT和AMT,自动变速器的4大金刚
    [10]雷雨龙.国内AMT技术现状及产学研合作开发模式的探讨.中国重型变速器产品发展论坛,2011.6
    [11]欧阳抗美.透过运营数据看AMT的价值.城市车辆.2008,2:59-61
    [12]李洪斌.基于量子框架的开放式重型汽车AMT系统关键技术研究.山东大学,2006
    [13]http://www.cartech8.com/thread-389872-1-1.html我国AMT主要研发状况.
    [14]http://ww.chebrake.com/othernews/2008/9/30/0893012514481263223.asp沈承鹏.记北京理工大学成功开发AMT之路.
    [15]http://bbs.hangzhou.com.cn/thread-4653886-1-1.html.
    [16]http://board.www.cqautofan.com/redirect.php?tid=151253&goto=lastpost.重庆青山公司AMT汽车自动变速器盛大揭幕.
    [17]http://gzgfkg.gov.cn/showdetail.asp?id=528.红林公司AMT亮相北京奥运会.
    [18]http://www.chebrake.com/othernews/2008/7/19/087191782295902777.asp.吕钊凤.自主品牌AMT向产业化迈出重要一步.
    [19]http://www.bitsp.com.cn/tecpark/show.jsp?id=466.汽车AMT(自动机械变速器)产业化标准及实验室研讨会在京召开
    [20]黄长顽,史瑞祥,蒋欣.电控机械式自动变速器.汽车电器.2007,12:17-19
    [21]刘振军,秦大同,叶明.电控机械自动变速车辆发动机转速控制.重庆大学学报(自然科学版).2007,Vol.30,No.1 1:5-8
    [22]葛安林,沈波.AMT换挡品质的研究[J].汽车技术,2003,2:43-45
    [23]雷雨龙,阴晓峰,谭晶星.基于CAN总线的AMT综合控制策略研究[J].公路交通科技,2005,22(3):115-118
    [24]何立民.嵌入式系统的定义与发展历史[J].单片机与嵌入式系统应用,2004.1:6-7
    [25]李晓军.基于量子框架的开放式汽车电控系统体系架构及其应用研究[D].山东大学,2009
    [26]潘松,黄继业,曾毓.SOPC技术实用教程[M].北京:清华大学出版社,2005:1-10
    [27]苏玉刚.汽车AMT的系统设计和智能控制技术研究[D].重庆大学博士论文,2004
    [28]赵健.电控机械式自动变速器中电控系统的研究[D].中国农业大学,2004
    [29]马文明.AMT换档规律与软件系统开发[D].合肥工业大学,2007
    [30]吕攀SmartAMT:基于SmartOSEK OS的汽车电控机械式自动变速箱控制系统[D].浙江大学,2006.
    [31]李晓军,张承瑞.重型卡车自动变速器的控制器设计[J].农业机械学报,2008,39(8):18-23
    [32]高焕堂.UML嵌入式设计[M].北京:清华大学出版社,2008.
    [33]王宜怀,陈建明,蒋银珍著.基于32位ColdFire构建嵌入式系统[M].北京:电子工业出版社,2009.7
    [34]王宜怀,蒋银珍,王加俊.基于硬件构件的原理图绘制规则研究[J].微计算机信息,2010.11
    [35]李洪斌,张承瑞.基于量子框架的开放式汽车电控系统体系结构[J].吉林大学学报,2006,36(2):166-171
    [36]綦声波,张承瑞,罗映.基于SOPC和量子框架的电控机械式变速器电控系统[J].农业机械学报,2011.42(10):13-19
    [37]李晓军,张承瑞,杨泉.软件总线在AMT电控单元中的应用研究[J].汽车工程,2009.4:304-307
    [38]Hongbo Lan, Chengrui Zhang and Hongbin Li. An open design methodology for automotive electrical/electronic system based on quantum platform[J], Advances in Engineering Software,2008,39 (6):526-534.
    [39]Wolfgang Huhn, Marcus Schaper. Getting better software into manufactured products. McKinsey on IT, Spring 2006.
    [40]李兰英等编著.Nios Ⅱ嵌入式软核SOPC设计原理及应用.北京:北京航空航 天大学出版社,2006.
    [41]葛保建.基于SOPC的软硬件协同设计平台的研究与实现[D].武汉科技大学,2008.
    [42]M.Keating and P.Bricaud. Reuse Methodology Manual for System-on-a-Chip Designs,3rd Edition[M]. Kluwer Academic Publishers,2002.
    [43]Wayne H. Wolf. Hardware-Software Co-design of Embedded Systems, Proceedings of the IEEE, VOL 82, NO.7, pp.967-989, July 1994.
    [44]Giovanni De Micheli, and Rajesh K. Gupta. Hardware/Software Co-Design, Proceedings of the IEEE, VOL.85, NO.3, pp.349-365, March 1997.
    [45]S.Edwards, L.Lavagno, E.A.Lee, and A.Sangiovanni-Vincentelli. Design of embedded systems:Formal Models, Validation, and Synthesis. Proceedings of the IEEE, Vol.85, No.3, pp.366-390, March 1997.
    [46]易志强.有线数字电视Soc芯片软硬件协同设计及其片上总线研究[D].浙江大学,2006
    [47]栾静.模型驱动的系统级软硬件协同设计若干关键技术研究[D].华东师范大学,2006
    [48]Takach, A, Wolf, W. An automaton model for scheduling constraints in synchronous machines IEEE Trans. On Computers,44(1):1-12,1995
    [49]A. Bhattacharya, A. Konar, S. Das, C. Grosan, and A. Abraham, Hardware Software Partitioning Problem in Embedded System Design Using Particle Swarm Optimization Algorithm, in Proc. CISIS,2008, pp.171-176.
    [50]J.Staunstrup, W.Wolf, Hardware/software Co-Design:Principles and Practice[M],Kluwer Academic Publishers, pp.235-262,1997
    [51]P.maciel, E.barros, W.Rosenstiel, A Petri Net MOdel for Hardware/Software Codesign. Designe Automation for Embedded System, vol.4, pp.243-310, Oct., 1999
    [52]F.Slomka, M.Dorfel, S.Spitz, Design Process and Tools for the HW/SW Codesign and Rapid Protyping of Parallel and Heterogeneous Real-Time Communication System. PDPTA'99 Codesign Session,1999
    [53]P.Coste, F.Hessel. Multilanguage Design of Heterogeneous Systems. IEEE Hardware/Software Co-Design(CODES'99),1999
    [54]B.Luc, A.Michel, G/Guy. A Path Analysis Based Partitioning for Time Constrained Embedded Systems. Proceedings of Codes/Cash'98, pp.85-89,1998
    [55]D.Saha, R.S.Mitra, B.Anupam. Hardware Software Partitioning Using Genetic Algorithm. Proceedings of the 10th International Conference on VLSI Design, pp.155-160,1997
    [56]R.Gupta, G.D.Micheli. Hardware-Software Cosynthesis for Digital Systems[J]. IEEE Design & Test of Computers,vol.26(4), pp.29-41,1993
    [57]褚振勇,齐亮,田红心,高楷娟编著.FPGA设计及应用(第二版).西安:西安电子科技大学出版社,2006
    [58]陈燕.基于UML的嵌入式系统系统级设计方法研究[D].复旦大学,2005
    [59]Steve McConnell. Code Complete:A Practical Handbook of Software Construction. Microsoft Press, June,2004
    [60]Jean J. Labrosse. Embedded Systems Building Blocks, Second Edition[M]. R&D CMP Media, Inc,1999
    [61]John Catsoulis. Designing Embedded Hardware, Second Edition[M]. O'Reilly Media, Inc.2005
    [62]黄万伟,兰巨龙,于婧,李鹏.硬件构件的形式化描述及其组装机制[J].计算机工程,2010,36(8):230-232
    [63]程广河,郝凤琦,张让勇等.嵌入式环境中的软件构件化研究[J].计算机技术与发展,2007,17(9):139-141
    [64]荐红梅.基于硬件构件的嵌入式底层软件开发方法研究及其应用[D].苏州大学,2008
    [65]Penix J, Alexander P. Toward Automated Component Adaptation[C]. Proc. of the 9th International Conference on Software Engineering & Knowledge Engineering. Madrid, Spain:[s. n.],1997.
    [66]Compton K, Hauck S. Reconfigurable Computing:A Survey Systems and Software[J]. ACM Computing Surveys,2002,34(2):71-210.
    [67]Bracciali A, Brogi A, Canal C. A Formal Approach to Component Adaptation[J]. Journal of Systems and Software,2005,74(1):45-54.
    [68]Desai M, Gupta R, Karandikar A. Reconfigurable Finite-state Machine Based IP Lookup Engine for High-speed Router[J]. IEEE Journal on Selected Areas in Communications,2003,21(4):501-512.
    [69]张世琨,张文娟,常欣等.基于软件体系结构的可复用构件制作和组装[J].软件学报,2001,12(9):1351-1359
    [70]崔尚森,冯博琴,赵祥模.基于构件的软件生产过程模型[J].长安大学学报,2006,26(5):108-111
    [71]Silva Jr Elias, Wagner Flavio R., Freitas Edison P., et al.Hardware support in a middleware for distributed and real-time embedded applications.Minas Gerais, Brazil:Association for Computing Machinery, New York, NY 10036-5701, United States,2006:149-154
    [72]贾智平,刘甜甜,张承慧,等.嵌入式通信中间件的马尔可夫路由决策与选择.电子学报.2007,35(07):1228-1230
    [73]刘毅,黄志刚.嵌入式系统中内存管理中间件的研究与实现.计算机与数字工程 .2006,34(10):176-178
    [74]黄贤英,肖朝辉,陈媛.嵌入式软件开发方法研究及应用.自动化技术与应用.2004,23(03):56-58
    [75]Burns Lawrence D.Designing a new automotive DNA.San Diego, CA, United States:Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States,2007:6-8
    [76]张新荣.轿车自动变速器电子控制系统的研究[D].同济大学,2002
    [77]刘然,陈英,赵小林.基于UML的CASE平台的代码自动生成.北京理工大学学报.2002,22(02):196-199
    [78]Ali Noraida Haji, Shukur Zarina, Idris Sufian. A design of an assessment system for UML class diagram.Kuala Lumpur, Malaysia:Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States,2007:539-544
    [79]Segundo C. Laura, Herrera C. Rodolfo, Herrera K. Yeni. UML sequence diagram generator system from use case description using natural language. Cuernavaca, Morelos, Mexico:Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States,2007:360-363
    [80]赵良,倪福川.基于有限状态机的嵌入式系统建模研究与实现[J].计算机工程与科学,2010,32(4):128-130
    [81]刘东,宋健,李磊.AMT产品起步控制策略的研究[J].车辆与动力技术,2008.1.
    [82]黄建明,曹长修,苏玉刚.汽车起步过程的离合器控制[J].重庆大学学报(自然科学版),2005,(3):91-94.
    [83]黄全安.车辆换挡冲击度的测试与评价方法研究[D].清华大学,2004.
    [84]Quan Zheng, Krishnaswamy Srinivasan, Giorgio Rizzoni. Transmission shift controller design based on a dynamic model of transmission response[J]. Control Engineering Practice,1999,(7):1007-1014.
    [85]何忠波.重型车辆AMT换档品质控制与换档策略的研究[D].北京理工大学,2004.
    [86]许晓红.AMT汽车离合器控制策略的研究.科技信息,2008,36:112-113.
    [87]齐占宁,陈全世,葛安林.基于遗传算法的AMT车辆起步模糊控制.机械工程学报,2001,37(4),8-11.
    [88]Kong Hui fang, Zhang Chong wei. A Research of Fuzzy Control Technology on AMT Vehicle Clutches[J]. Intelligent Control and Automation,2006,2: 8537-8540.
    [89]余春晖,陈慧岩,丁华荣.车辆离合器起步阶段模糊控制的研究.汽车工程.2005,(4):423-430
    [90]肖勇明,孙冬野,秦大同,杜亮.汽车离合器起步阶段局部模糊控制研究[J]. 汽车技术,2008,12:12-15
    [91]陈红,赵文龙,夏长明.车辆离合器起步阶段模糊控制的研究及仿真分析[J].内燃机与配件,2010.7:13-16
    [92]于英,李耀,顾磊.AMT电动执行器伺服控制系统模糊免疫PID控制器研究.机械传动,2010,34(11):20-24.
    [93]Zhao Yongsheng, Chen Liping, Zhang Yunqing. Enhanced Fuzzy Sliding Mode Controller for Automated of AMT Vehicle[J]. SAE Paper 2006-01-1488.
    [94]习纲,张建武,陈俐.汽车AMT离合器的非线性滑模控制[J].中国机械工程,2002,13(2):171-174.
    [95]程东升,顾力强,张建武.基于反馈线性化的汽车AMT离合器滑模控制.汽车工程,2002,24(5):384-386
    [96]GLIELMO L, VASCA F. Optimal Control of DryClutch Engagement[J]. SAE Paper 2000-01-0837.
    [97]Sun Chengshun, Zhang Jianwu. Optimal Control Applied in Automatic Clutch Engagements of Vehicles[J]. Chinese Journal of Mechanical Engineering,2004, 17(2):280-283.
    [98]AMARI R, ALAMZR M, TONA P. Modeling and Simulation of Smooth Gearshift Control in Real-time for Automatic Manual Transmission AMT) System[C]//The International Federation of Automatic Control. Proceedings of the 17th World Congress. Seoul:The International Federation of Automatic Control,2008: 7079-7085.
    [99]陈清洪,秦大同,叶心.AMT重型汽车起步离合器最优控制.中国公路学报,2010,23(1):116-121.
    [100]孙冬野,顾永明,秦大同,庄建兵,余荣辉.非线性控制方法在AMT起步控制中的应用.重庆大学学报(自然科学版),2007,30(10):10-14
    [101]蒋世全.AMT汽车模糊三参数换挡规律研究.自动化与仪器仪表,2010,4:6-11
    [102]周学建,付主木,张文春,周志立.车辆自动变速器换挡规律的研究现状与展望.农业机械学报,2003,34(3):139-145.
    [103]张志义,赵丁选,陈宁.工程车辆模糊自动换挡策略研究.农业机械学报,2005,36(10):26-29.
    [104]冯能莲,李克强,连小珉,郑慕侨,马彪.液力机械传动车辆模糊换挡策略研究.农业机械学报,2003,34(5).
    [105]贾元华,周立元.自动变速器模糊换挡及其控制理论研究.农业装备与车辆工程,2005,4:33-36.
    [106]高爱云,付主木,张文春.拖拉机电控机械式自动变速器模糊换挡策略.农业机械学报,2006,37(11).
    [107]Tang Xia-qing,Hou Chao-zhen,Chen Yun-chuang. Study of Controlling Engagement for AMT Based on Fuzzy Control. Journal of Beijing Institute of Technology,2002,11 (1),45-49.
    [108]S.Sakaguchi,I.Sakai,T.Haga. Application of fuzzy logic to shift scheduling method for automatic transmission. Fuzzy Systems, Second IEEE Intenrational Conference on 1993:52-58.
    [109]张玉华.李振凯.自动变速器换档的神经网络控制系统设计.工业控制计算机,2007,20(12):58-59.
    [110]周克良.曾璐,曾婕.王瑞祥.基于神经网络控制的自动变速器换档系统.电子技术应用,2007,8:37-40.
    [111]张晓明,吴光强,张德明.基于神经网络的DCT换挡品质评价系统的开发汽车科技,2008,11:38-41.
    [112]Thomas L.Ting. Development of a neural network based virtual sensor for automatic transmission slip. Proceedings of the 2002 IEEE International Symposulm on Intelligent Control,Vancouver,Canada,October 27-30.721-721.
    [113]陈清洪,秦大同,叶心.AMT汽车动态模糊神经网络三参数换挡策略研究.汽车工程,2010,32(6).
    [114]王学峰,许纯新,孔德文,赵克利.工程机械FNN换挡控制系统的改进.农业机械学报,2004,35(2).
    [115]阴晓峰,谭晶星,雷雨龙,葛安林.AMT换挡过程发动机转速Fuzzy_BangBang双模态控制.机械工程学报,2004,40(2):157-160.
    [116]肖会芹.一种基于软切换的发动机转速智能控制算法.自动化与仪表,2010,4:37-41.
    [117]程东升,张建武,孙承顺.车辆AMT离合器离散变结构控制.农业机械学报,2003,34(1):31-34.
    [118]赵永胜,任卫群,张云清,陈立平.汽车AMT自动离合器的局部线性化模糊滑模控制.农业机械学报,38(1):17-21.
    [119]何忠波,梁宪福,韩正军,刘英杰,杨建春.AMT换挡过程动力学建模及换挡品质影响因素分析.2004,16(6):45-49.
    [120]Zhigang Yang,Changxiu Cao,Yugang Su. A method of optimal shift control based on pattern recognition and learning algorithm. Proceedings of the 4th World Congress on Intelligent Control and Automation,June 10-14 2002,Shanghai,P.R.China,955-959.
    [121]Hyeoun-Dong Lee, Seung-Ki Sul, Han-Sang Cho, Jang-Moo Lee. Advanced gear-shifting and clutching strategy for a parallel-hybrid vehicle. IEEE Industry Applications Magazine, November/December 2000,26-32.
    [122]Wang Guanghui, Chen Jie, Pan Feng.Design of single neuron PID multi-variable controller based on evolving PSO.Chongqing, China:Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States,2008:8656-8660
    [123]Xia Changliang, Xue Mei, Chen Ziran.Adaptive PID control and on-line identification for switched reluctance motors based on BP neural network.Niagara Falls, ON, Canada:Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States,2005:1918-1923
    [124]宋滨,谷丽娜.基于神经网络的PID控制[J].青岛大学学报,2001,6(3):90-91.
    [125]孙育刚,嵇启春.基于神经网络的Smith预估PID控制器设计与仿真[J].自动化技术与应用,2009,28(10):9-12.
    [126]刘迪,赵建华.一种基于BP神经网络模型的自适应PID控制算法[J].自动化技术与应用,2008,27(8):4-7.
    [127]Wang Jiangjiang, Zhang Chunfa, Jing Youyin.Adaptive PID control with BP neural network self-tuning in exhaust temperature of micro gas turbine.Singapore, Singapore:Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States,2008:532-537
    [128]张学燕,高培金,刘勇.BP神经网络PID控制器在工业控制系统中的研究与仿真[J].自动户技术与应用,
    [129]刘金琨.先进PID控制MATLAB仿真(第二版)[M].电子工业出版社,2007
    [130]马瑞利公司.马瑞利AMT变速器的研究.汽车与配件,2008,6:30-31
    [131]The MATH WORKS Inc. Using Simulink and Stateflow in Automotive Applications[R].1998:61-62
    [132]程国达.嵌入式系统的硬/软件协同设计研究[D].复旦大学,2003.
    [133]方茁,陈泽文,彭澄廉SOPC设计中的用户自定义逻辑[J].计算机工程,2004,17:42-44
    [134]戚振军,张承瑞,綦声波.基于AFS600的CAN核重用设计[J].机械与电子,2010,5:41-44
    [135]Miro Samek, PRACTICAL UML STATECHARTS IN C/C++, Second Edition: Event-Driven Programming for Embedded Systems[M]. Newnes,2008.
    [136]綦声波,褚东升,刘滨,王军成.基于P89C51RD2IAP功能的数据存取与软件升级[J].单片机与嵌入式系统应用,2002(7):97-100.
    [137]马秀明.基于FPGA的IAP(在应用编程)技术在深远海环境监测传感器网络中的研究和应用[D],青岛:中国海洋大学,2009.
    [138]綦声波,马秀明.FPGA的在应用编程技术研究[J].单片机与嵌入式系统应用,2009(1).
    [139]綦声波,田学文.双NiosⅡ软核在嵌入式系统中的应用[J].单片机与嵌入式系统应用,2008(2):28-31
    [140]綦声波,马秀明.离线加密编程器中的BootLoader程序设计[J].单片机与嵌入式系统应用,2008(10).
    [141]ISO 14230-1 Keyword Protocol 2000 Part 1:Physical Layer [S]. Genevese Switzerland:ISO Standard,2000. International Organization for Standardization.
    [142]ISO 14230-2 Keyword Protocol 2000 Part 2:Data Link Layer [S]. Genevese Switzerland:ISO Standard,2000. International Organization for Standardization.
    [143]ISO 14230-3 Keyword Protocol 2000 Part 2:Application. International Organization for Standardization.
    [144]Layer [S].Genevese Switzerland:ISO Standard,2000.
    [145]ISO 15765-1:Road Vehicles-Diagnostics on Controller Area Network (CAN) [S]. [S.1]:ISO Standard,2004. International Organization for Standardization.
    [146]ISO 15765-2:Road Vehicles-Diagnostics on Controller Area Network (CAN) [S]. [S.1]:ISO Standard,2004. International Organization for Standardization.
    [147]ISO 15765-3:Road Vehicles-Diagnostics on Controller Area Network (CAN) [S]. [S.1.]:ISO Standard,2004. International Organization for Standardization.
    [148]ISO14229:Road vehicles-Unified diagnostic services (UDS)-Specification and requirements,2006. International Organization for Standardization.
    [149]张宏,詹德凯,林长加.基于CAN总线的汽车故障诊断系统研究与设计[J].汽车工程,2008,30(10):934-937
    [150]闫旭琴,王知学,李建新,成巍.基于CAN总线的车载设备软件升级系统[J].山东科学,2010,23(3):12-15
    [151]常欣红,于金泳,刘志远.汽车故障诊断标准IS015765的网络层分析与实现[J].汽车技术,2006(9):40-44.
    [152]尤国红.基于CAN总线的标定系统界面平台设计[D].大连交通大学硕士学位论文,2008:6-8.
    [153]Hyeoun-Dong Lee,Seung-Ki Sul,Han-Sang Cho,Jang-Moo Lee. Advanced gear shifting and clutching strategy for parallel hybrid vehicle with automated manual transmission. Industry ApplicationsC onference,1998. Thirty-Third IAS Annual Meeting.1998:1709-1713.
    [154]Pettersson M, Nielsen L. Gear shifting by engine control[J]. IEEE Transactions on Control Systems Technology,2000,8 (3):495-507.
    [155]http://www.autoinfo.gov.cn/autoinfo_cn/lbj/tpxw/webinfo/2011/06/130676440 6220206.htm.四家汽车厂联手推进电子控制软件平台国产化
    [156]李继云,曲立国.基于神经网络的自适应PID控制器在矿井输送机中的应用[J].煤矿机械,2010,31(10):199-201
    [157]张海燕,李欣,田书峰.基于BP神经网络的仿真线设计及其FPGA实现[J].电子与信息学报,2007,29(5):1267-1270
    [158]李昂,王沁,李占才,万勇.基于FPGA的神经网络硬件实现方法[J].北京科技大学学报,2007,29(1):90-95
    [159]Stine J E and Schulte M J. The symmetric table addition method for accurate function approximation. Journal of VLSI Signal Processing,1999,21(2):167-177.
    [160]Schulte M J and Stine J E. Accurate function approximations by symmetric table lookup and addition. Proceedings of the 11th International Conference on Application-Specific Systems, Architectures and Processors. Zurich, Switzerland. 1999:144-153.
    [161]Andy Luo. ARM在汽车电子中的应用[J]Information Quarterly.2009,10: 74-76
    [162]綦声波,张承瑞,赵健.基于LabVIEW的DBW型轿车AMT数据采集系统设计.机床与液压,2009,37(7):109-112
    [163]李洪斌,张承瑞,郭新民.重型汽车电控气动离合器操纵系统[J].农业机械学报,2007,38(2):