EphrinB2/EphB4介导促红细胞生成素调控骨重塑的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由炎症、损伤、肿瘤、先天畸形和增龄等原因引起的牙槽骨吸收与颌骨缺损是口腔医学领域中最常见的临床表现之一,不仅影响咀嚼、发音、进食等功能,而且还影响颜面美观以及进一步的义齿修复。因此,如何调控骨重塑、促进骨修复成为临床和基础研究的重点。研究骨形成与骨吸收的分子机理不仅对阐明骨缺损和骨代谢性疾病的发病机制具有重要的理论意义,根据这些分子机理或机制、通过调控骨形成与骨吸收等过程,也是治疗骨破坏性疾病的主要策略。
     骨组织是终生不断进行代谢的组织,成骨细胞介导的骨形成与破骨细胞介导的骨吸收构成骨重塑,持续进行的骨重塑可维持矿化平衡及骨组织自身结构的完整。以往的研究表明,RANKL/RANK轴是维持骨稳态的重要信号通路,成骨细胞产生的RANKL作用于破骨细胞前体细胞上的相应受体RANK,进而促进破骨细胞的分化和功能。近年来,国内外学者们相继发现,在骨重塑过程中,还通过ephrin/Eph轴传递破骨细胞和成骨细胞之间的相互作用。Ephrin配体主要表达于破骨细胞,Eph受体主要表达于成骨细胞。研究表明,由ephrinB到EphB的正向信号促进成骨细胞的分化,而由EphB到ephrinB的逆向信号抑制了破骨细胞的形成,其相互作用在骨重塑过程中发挥重要的作用。
     最近,研究者发现促红细胞生成素(EPO)能够促进骨折愈合和加快下颌骨的牵张成骨速度;EPO在体外能刺激骨髓造血干细胞表达BMP-2和BMP-6,腹腔内注射rhEPO能促进HSCs表达BMPs。但是目前尚未见EPO对成骨/破骨细胞分化和功能的作用的详细研究。我们将围绕ephrinB2/EphB4轴,研究该轴介导的EPO对成骨/破骨细胞分化和功能的影响及其机理。进一步以此为靶点,通过体内动物实验,研究EPO对颌骨损伤修复的作用。研究目的
     (1)通过体外诱导ST2细胞向成骨细胞分化实验,初步观察EPO对成骨细胞EphB4表达的影响,研究EPO对成骨细胞分化的作用;通过体外诱导RAW264.7细胞向破骨细胞分化,初步观察EPO对破骨细胞ephrinB2表达的影响,研究EPO对破骨细胞分化的作用;
     (2)应用ephrinB2-Fc蛋白,模拟成骨细胞与破骨细胞共培养体系,观察和比较EPO在单因素条件下对成骨细胞分化和功能的影响,研究ephrinB2/EphB4信号介导的EPO促成骨细胞分化作用及其主要机理;采用基因沉默实验,进一步验证EPO通过EphB4/ephrinB2信号对骨重塑的调控作用;
     (3)利用大鼠切牙拔除后剩余牙槽骨吸收模型,体内观测EPO在牙槽骨骨改建中的作用。
     研究方法
     (1)采用小鼠骨髓基质细胞系ST2细胞作为成骨细胞前体细胞,在成骨条件诱导液(含抗坏血酸50mg/L、β-甘油磷酸钠10mmol/L、地塞米松10-8mol/L)中培养,经real-time PCR检测EPO对成骨细胞相关基因和EphB4表达的影响,通过组织化学染色检测ALP活性和钙结节数量比较EPO对成骨细胞功能的影响;诱导小鼠单核/巨噬细胞系RAW264.7细胞向破骨细胞分化(RANKL50ng/ml),经real time PCR检测EPO对破骨细胞相关基因及ephrinB2表达的影响,通过TRAP阳性细胞数和骨吸收陷窝数量变化,观察破骨细胞分化过程中EPO对破骨细胞数量和功能的影响;
     (2)在诱导成骨细胞分化前加入ephrinB2-Fc模拟成骨细胞破骨细胞共培养体系,分别通过real time PCR,ALP活性和钙结节染色实验,检测EPO在成骨细胞分化中作用;通过ephrinB2siRNA和EphB4shRNA沉默破骨细胞或成骨细胞中ephrinB2或EphB4基因,通过real-time PCR检测相关基因的表达情况,观察阻断EphB4/ephrinB2信号后EPO对成骨/破骨细胞分化的影响;
     (3)体内建立大鼠拔牙模型,通过软X线测量牙槽嵴高度探讨EPO对剩余牙槽嵴骨吸收的作用,通过骨密度测量和组织学观察EPO对骨修复能力的影响。
     研究结果
     (1)成骨细胞诱导分化实验中,与对照组相比,EPO可以增加Runx2、Sp7和ColⅠ表达,增强ALP活性和增加钙结节数量,同时EPO增加了EphB4的表达;破骨细胞诱导分化过程中,EPO先通过增加c-fos和NFATc1表达增加了破骨细胞数量,随后下调了Ctsk和MMP9的表达,抑制了破骨细胞活性,TRAP染色和骨吸收陷窝实验进一步证实了上述结果,同时EPO增加了ephrinB2的表达;
     (2)在模拟共培养体系中,EPO可以通过增加的ephrinB2上调成骨细胞相关基因的表达,促进成骨细胞的分化和骨形成功能,提示EPO可能通过EphB4/ephrinB2信号调控骨重塑;基因沉默实验证实,阻断EphB4基因转录后EPO促进成骨细胞分化的作用被减弱,提示EPO通过促进骨形成、抑制骨吸收以调控骨重塑可能是由EphB4/ephrinB2信号介导的;
     (3)体内实验结果显示,应用EPO牙槽嵴骨密度和骨形成量均高于对照组;与对照组比较,EPO降低了剩余牙槽骨的吸收量,促进了牙槽骨损伤的修复。
     研究结论
     (1) EPO可以促进成骨细胞分化及其骨形成;
     (2) EPO虽然能增加破骨细胞形成,但所增加的破骨细胞缺乏骨吸收功能;
     (3) EPO通过ephrinB2/EphB4双向信号调控骨重塑;
     (4) EPO促进了牙拔除后剩余牙槽骨的愈合。
Bone repair or bone regeneration has become an important strategy in thetreatment of bone deformity and bone defects caused by trauma, tumor, andinflammation. Bone regeneration is a complex process of balance betweenbone-forming activity of osteoblasts and bone-resorbing activity of osteoclasts. Manymolecules are involved in the communication between osteoblasts and osteoclasts. Itwas believed that some proteins and signal pathways could affect both osteoclast andosteoblast at the same time to balance bone regeneration, such as ephrinB2/EphB4signal pathway. It was found that ephrinB2, which is synthesized in osteoclasts andbecome a transmembrane ligand in osteoclasts, and EphB4, a tyrosine kinase receptorin osteoblasts, are involved in the control of bone regeneration. Erythropoietin (EPO)is not only involved in red blood cell production, but recently was also found to beinvolved in many other biological functions, such as inducing bone regeneration.However, little is known about how EPO regulates bone regeneration. In this study,we hypothesized that EPO might be the double-edged protein that plays interestingroles by ephrinB2/EphB4in bone regeneration.
     Objective:
     (1) The role of EPO in the osteoblast/osteoclast differentiation.
     (2) In order to observe the roles of erythropoietin in bone regeneration throughephrinB2/EphB4signal pathway. We used ephrinB2-Fc to partially mimic theinteractions of osteoclasts and osteoblasts and gene knockdown assays.
     (3) The effects of EPO resulted in promoting new bone formation and inhibitingbone resorption in the animal model of jaw bone destruction.
     Methods:
     (1) To further understand mechanisms of effects of EPO on bone formation,murine bone marrow stromal cell line ST2cellas the osteoblast precursor werecultured with osteogenic medium. We will study the effect of EPO on the expressionof EphB4and their down stream molecules in progress of osteoblast differention byReal time PCR, cytochemical staining (ALP) and calcium deposition. In order to prove that the role of EPO on bone remodeling is mediated by bi-directional signalingof ephrinB2/EphB4, human EPO protein was used in osteoclast precursor (RAW264.7murine cell line) in vitro. The effect of EPO on the osteoclast differention by Realtime PCR, cytochemical staining (TRAP), and bone resorption assays in vitro.
     (2) In order to prove that the role of EPO on bone remodeling is mediated bybi-directional signaling of ephrinB2/EphB4, we will study the effect of EPO on theexpression of ephrinB2/EphB4and their downstream molecules in osteoclast andosteoblast co-culture system by Real time PCR and cytochemical staining, etc.Toobserve the effect of EPO on osteoclast/osteoblast differention by blockEphB4/ephrinB2signaling pathway by EphB4shRNA and ephrinB2siRNAin vitro.
     (3) Identify the role and mechanism of EPO on bone remodeling mediated byephrinB2/EphB4axis, and observe the effect of EPO on the regeneration of residualalveolar bone following tooth extraction in rats by soft X ray, bone mineral density(BMD) and histology, which will settle a foundation for treatment of jaw bonedestruction by EPO.
     Results:
     (1) The process of osteoblast differention showed that EPO increased expressionof EphB4in osteoblast. In addition, EPO increased the expressions of Runx2, Sp7,and ColⅠ in osteoblast at various time points. And EPO also enhance the activity ofALP and calcium deposition. The process of osteoclast differention EPO increasedexpression of ephrinB2in osteoclast and the expressions of c-fos, NFATc1, MMP9and Ctsk at early time points in osteoclast, but later decreased expressions of MMP9and Ctsk. The data from TRAP staining and bone resorption assays showed that EPOdecreased bone resorption. These results suggest that EPO can increase theproliferation of osteoclast, but not increase the bone resorption function.
     (2) EphrinB2-Fc interaction model was used as a stimulator to mimic theinteractions between osteoclast and osteoblast.EPO also increased expression ofosteogenicgenes and ALP positive osteoblasts and calcium deposition. The effects ofEPO in the osteoblast/osteoclast differention were attenuated by blockingephrinB2/EphB4gene transcription, suggesting that the regulation of bone remodelingby EPO might be through EphB4/ephrinB2signal pathway.
     (3) In vivo animal assays, BMD analysis and measurement of relative height ofresidual alveolar ridgeand histological findings (H&E staining) clearly demonstrate that EPO can efficiently induce new bone formation in the alveolar bone regenerationmodel.Conclusions:
     (1) EPO can promote osteoblast differentiation and the ability of bone formation;
     (2) EPO can increase the number of osteoclasts to inhibite resorption ability;
     (3) EPO directly stimulates ephrinB2expression in osteoclasts and EphB4expression inosteoblasts leading to the enhancement of bone formation while blacking the bone resorptionactivity of osteoclasts;
     (4) EPO promotes bone formation in an alveolar bone regeneration model.
引文
[1] Seeman E, Delmas PD. Bone quality–the material and structural basis of bonestrength and fragility [J]. N Engl J Med.2006,354:2250–61.
    [2] Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K. Arenonresorbing osteoclasts sources of bone anabolic activity?[J]. Bone Miner Res.2007,22:487–94.
    [3] Karsdal MA, Henriksen K, Sorensen MG, et al. Acidification of the osteoclasticresorption compartment provides insight into the coupling of bone formation tobone resorption [J]. Am J Pathol.2005,166:467–76.
    [4] Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation toresorption [J]. Trends Mol Med.2005,11:76–81.
    [5]Proff P, R mer P. The molecular mechanism behind bone remodelling: a review[J].Clinical oral investigations.2009,13(4):355-362.
    [6] Roodman GD. Cell biology of the osteoclast [J]. Exp Hematol.1999,27:1229–41.
    [7] Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of boneformation via sclerostin, a novel BMP antagonist [J]. EMBO J.2003,22:6267–76.
    [8] van Bezooijen RL, Roelen BA, Visser A, et al. Sclerostin is anosteocyte-expressed negative regulator of bone formation, but not a classicalBMP antagonist [J]. J Exp Med.2004,199:805–14.
    [9] Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secretedproduct of osteocytes that inhibits bone formation [J]. FASEB J.2005,19:1842–4.
    [10]Del Fattore A, Capannolo M, Rucci N. Bone and bone marrow: the same organ [J].Arch Biochem Biophys.2010,503(1):28-34.
    [11] Teitelbaum SL. Bone resorption by osteoclasts[J]. Science.2000,289(5484):1504-8.
    [12] Parfitt AM. Misconceptions V–activation of osteoclasts is the first step in thebone remodeling cycle [J]. Bone.2006,39:1170–2.
    [13] Martin TJ, Seeman E. New mechanisms and targets in the treatment of bonefragility [J]. Clin Sci (Lond).2007,112:77–91.
    [14] Noble BS, Peet N, Stevens HY, et al. Mechanical loading: biphasic osteocytesurvival and targeting of osteoclasts for bone destruction in rat cortical bone [J].Am J Physiol Cell Physiol.2003,284:C934–43.
    [15] Gu G, Mulari M, Peng Z, Hentunen TA, Vaananen HK. Death of osteocytes turnsoff the inhibition of osteoclasts and triggers local bone resorption [J]. BiochemBiophys Res Commun.2005,335:1095–101.
    [16] Kurata K, Heino TJ, Higaki H, Vaananen HK. Bone marrow cell differentiationinduced by mechanically damaged osteocytes in3D gel-embedded culture [J]. JBone Miner Res.2006,21:616–25.
    [17] Clark WD, Smith EL, Linn KA, et al. Osteocyte apoptosis and osteoclastpresence in chicken radii0–4days following osteotomy[J]. Calcified tissueinternational.2005,77(5):327-336.
    [18] Maejima-Ikeda A, Aoki M, Tsuritani K, et al. Chick osteocyte-derived proteininhibits osteoclastic bone resorption [J]. Biochemical Journal.1997,322:245.
    [19] Heino TJ, Hentunen TA, Vaananen HK. Osteocytes inhibit osteoclastic boneresorption through transforming growth factor-beta: enhancement by estrogen [J].J Cell Biochem.2002,85:185–97.
    [20] Karsdal MA, Hjorth P, Henriksen K, et al. Transforming growth factor-betacontrols human osteoclastogenesis through the p38MAPK and regulation ofRANK expression [J]. J Biol Chem.2003,278:44975–87.
    [21] Gu G, Hentunen TA, Nars M, Harkonen PL, Vaananen HK. Estrogen protectsprimary osteocytes against glucocorticoid-induced apoptosis [J]. Apoptosis.2005,10:583–95.
    [22] Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes viaapoptosis accompanies estrogen withdrawal in human bone [J]. J Clin EndocrinolMetab.1997,82:3128–35.
    [23] Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS. The role of estrogen in thecontrol of rat osteocyte apoptosis [J]. J Bone Miner Res.1998,13:1243–50.
    [24] Noble BS, Stevens H, Loveridge N, Reeve J. Identification of apoptotic changesin osteocytes in normal and pathological human bone [J]. Bone.1997,20:273–82.
    [25] Henriksen K, Leeming DJ, Byrjalsen I, et al. Osteoclasts prefer aged bone [J].Osteoporos Int.2007,18:751–9.
    [26] Felix R, Elford PR, Stoerckle C, Cecchini M, et al. Production of hemopoieticgrowth factors by bone tissue and bone cells in culture [J]. J Bone Miner Res.1988,3:27-36.
    [27] Horowitz MC, Coleman DL, Flood PM, et al. Parathyroid hormone andlipopolysaccharide induce murine osteoblast-like cells to secrete a cytokineindistinguishable from granulocyte-macrophage colony-stimulating factor [J]. JClin Invest.1989,83:149-57.
    [28] Glowacki J, Rey C, Glimcher MJ, et al. A role of osteocalcin in osteoclastdifferentiation [J].J Cell Biochem.1999,45:292-302.
    [29] Kim MS, Day CJ, Morrison NA. MCP-1is induced by receptor activator ofnuclear factor-κB ligand, promotes human osteoclast fusion, and rescuesgranulocyte macrophage colony-stimulating factor suppression of osteoclastformation[J]. Journal of Biological Chemistry.2005,280(16):16163-16169.
    [30] Li X, Qin L, Bergenstock M, et al. Parathyroid hormone stimulates osteoblasticexpression of MCP-1to recruit and increase the fusion of pre/osteoclasts[J].Journal of Biological Chemistry.2007,282(45):33098-33106.
    [31] Morony S, Capparelli C, Lee R, et al. A chimeric form of osteoprotegerin inhibitshypercalcemia and bone resorption induced by IL-1beta, TNF-alpha, PTH,PTHrP, and1,25(OH)2D3[J]. J Bone Miner Res.1999,14:1478–85.
    [32] Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine thatregulates osteoclast differentiation and activation [J]. Cell.1998,93:165–76.
    [33] Wiktor-Jedrzejczak W, Bartocci A, Ferrante Jr AW, et al. Total absence ofcolony-stimulating factor1in the macrophage-deficient osteopetrotic (op/op)mouse [J]. Proceedings of the National Academy of Sciences.1990,87(12):4828-32.
    [34] Wiktor-JedrzejczakW, Mrbanowska E, Aukerman SL, et al. Correction by CSF-1of defects in the osteopetrotic op/op mouse suggests local, developmental, andhumoral requirements for this growth factor [J]. Exp Hematol.1991,19:1049–54.
    [35] Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secretedprotein involved in the regulation of bone density [J]. Cell.1997,89:309–19.
    [36] Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitoryfactor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIFinhibits osteoclastogenesis in vitro [J]. Endocrinology.1998,139:1329–37.
    [37] Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation[J].Nature.2003,423(6937):337-342.
    [38] Otto F, Thornell AP, Crompton T, et al. Cbfa1, a Candidate Gene forCleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiationand Bone Development [J]. Cell.1997,89(5):765-71.
    [39] Hoshi K, Komori T, Ozawa H. Morphological characterization of skeletal cells inCbfa1-deficient mice [J]. Bone.1999,25:639–51.
    [40] Corral DA, Amling M, Priemel M, et al. Dissociation between bone resorptionand bone formation in osteopenic transgenic mice [J]. Proceedings of theNational Academy of Sciences.1998,95(23):13835-13840.
    [41] Thomas GP, Baker SΜ, Eisman JA, et al. Changing RANKL/OPG mRNAexpression in differentiating murine primary osteoblasts[J]. Journal ofendocrinology.2001,170(2):451-60.
    [42] Gori F, Hofbauer LC, Dunstan CR, Spelsberg TC, Khosla S, Riggs BL. Theexpression of osteoprotegerin and RANK ligand and the support of osteoclastformation by stromal–osteoblast lineage cells is developmentally regulated [J].Endocrinology.2000,141:4768–76.
    [43] Horwood NJ, Elliott J, Martin TJ, Gillespie MT. Osteotropic agents regulate theexpression of osteoclast differentiation factor and osteoprotegerin in osteoblasticstromal cells [J]. Endocrinology.1998,139:4743–6.
    [44]44Kuroda Y, Hisatsune C, Nakamura T, et al. Osteoblasts induce Ca2+oscillation-independent NFATc1activation during osteoclastogenesis [J]. Proc Natl AcadSci Μ S A.2008,105(5):8643-8.
    [45] Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signaling [J].Nat Rev Mol Cell Biol.2002,3(7):475-86.
    [46] Irie N, Takada Y, Watanabe Y, et al. Bidirectional signaling throughephrinA2-EphA2enhances osteoclastogenesis and suppresses osteoblastogenesis[J]. J Biol Chem.2009,284(21):14637-44.
    [47] Li YP, Chen W, Liang Y, et al. Atp6i-deficient mice exhibit severe osteopetrosisdue to loss of osteoclast-mediated extracellular acidification [J]. Nature genetics.1999,23(4):447-51.
    [48] Sheu TJ, Schwarz EM, Martinez DA, et al. A phage display technique identifies anovel regulator of cell differentiation [J]. Journal of Biological Chemistry.2003,278(1):438-43.
    [49] Jones SJ, Gray C, Boyde A. Simulation of bone resorption-repair coupling invitro [J]. Anatomy and embryology.1994,190(4):339-49.
    [50] Gray C, Boyde A, Jones SJ. Topographically induced bone formation in vitro:implications for bone implants and bone grafts [J]. Bone.1996,18:115–23.
    [51] Parikka V, Vaananen A, Risteli J, et al. Human mesenchymal stem cell derivedosteoblasts degrade organic bone matrix in vitro by matrix metalloproteinases [J].Matrix Biol.2005,24:438–47.
    [52] Mulari MT, Qu Q, Harkonen PL, Vaananen HK. Osteoblast-like cells completeosteoclastic bone resorption and form new mineralized bone matrix in vitro [J].Calcif Tissue Int.2004,75:253–61.
    [53] Schwartz Z, Lohmann CH, Wieland M, et al. Osteoblast proliferation anddifferentiation on dentin slices are modulated by pretreatment of the surface withtetracycline or osteoclasts [J]. J Periodontol.2000,71:586–97.
    [54] Kiviranta R, Morko J, Alatalo SL, et al. Impaired bone resorption in cathepsinK-deficient mice is partially compensated for by enhanced osteoclastogenesisand increased expression of other proteases via an increased RANKL/OPG ratio[J]. Bone.2005,36:159–72.
    [55] Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and theosteoclast/immune cell dichotomy [J]. Autoimmunity.2008,41:218-23.
    [56] Del Fattore A, Fornari R, VanWesenbeeck L, et al. A new heterozygous mutation(R714C) of the osteopetrosis gene, pleckstrin homolog domain containing familyM (with Run domain) member1(PLEKHM1), impairs vesicular acidificationand increases tartrate-resistant acid phosphatase secretion in osteoclasts [J]. JBone Miner Res.2007,23:380–91.
    [57] Hayman AR, Jones SJ, Boyde A, et al. Mice lacking tartrate-resistant acidphosphatase (Acp5) have disrupted endochondral ossification and mildosteopetrosis [J]. Development.1996,122:3151–62.
    [58] Hollberg K, Hultenby K, Hayman A, Cox T, Andersson G. Osteoclasts from micedeficient in tartrate-resistant acid phosphatase have altered ruffled borders anddisturbed intracellular vesicular transport [J]. Exp Cell Res.2002,279:227–38.
    [59] Roberts HC, Knott L, Avery NC, Cox TM, Evans MJ, Hayman AR. Alteredcollagen in tartrate-resistant acid phosphatase (TRAP)-deficient mice: a role forTRAP in bone collagen metabolism [J]. Calcif Tissue Int.2007,80:400–10.
    [60] Bollerslev J, Steiniche T, Melsen F, Mosekilde L. Structural andhistomorphometric studies of iliac crest trabecular and cortical bone in autosomaldominant osteopetrosis: a study of two radiological types [J]. Bone.1989,10:19–24.
    [61] Lee SK, Lorenzo JA. Parathyroid hormone stimulates TRANCE and inhibitsosteoprotegerin messenger ribonucleic acid expression in murine bone marrowcultures: correlation with osteoclast-like cell formation [J]. Endocrinology.1999,140:3552–61.
    [62] Tran VP, Vignery A, Baron R. Cellular kinetics of the bone remodeling sequencein the rat [J]. Anat Rec.1982,202:445–51.
    [63] Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice developosteopetrosis due to a deficit in matrix degradation but not demineralization [J]. JBone Miner Res.1999,14:1654–63.
    [64] Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2–EphB4signaling controlsbone homeostasis [J]. Cell Metab.2006,4:111–21.
    [65] Karsdal MA, Fjording MS, Foged NT, Delaisse JM, Lochter A. Transforminggrowth factor-beta-induced osteoblast elongation regulates osteoclastic boneresorption through a p38mitogen-activated protein kinase-and matrixmetalloproteinase dependent pathway [J]. J Biol Chem.2001,276:39350–8.
    [66]李琛,史册,孙宏晨等. EPO通过ephrinB2/EphB4逆向信号影响破骨细胞分化的实验研究.中国科技论文在线.201202-686.
    [67] Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys.2008,473(2):201-9
    [68] Bollerslev J. Autosomal dominant osteopetrosis: bone metabolism andepidemiological, clinical, and hormonal aspects [J]. Endocr Rev.1989,10:45–67.
    [69] Brockstedt H, Bollerslev J, Melsen F, Mosekilde L. Cortical bone remodeling inautosomal dominant osteopetrosis: a study of two different phenotypes [J].Bone.1996,18:67–72.
    [70] Cleiren E, Benichou O, Van Hul E, et al. Albers-Schonberg disease (autosomaldominant osteopetrosis, type II) results from mutations in the ClCN7chloridechannel gene [J]. Hum Mol Genet.2001,10:2861–7.
    [71] Kornak Μ, Kasper D, Bosl MR, et al. Loss of the ClC-7chloride channel leads toosteopetrosis in mice and man [J]. Cell.2001,104:205–15.
    [72] Henriksen K, Gram J, Schaller S, et al. Characterization of osteoclasts frompatients harboring a G215R mutation in ClC-7causing autosomal dominantosteopetrosis type II [J]. Am J Pathol.2004,164:1537–45.
    [73] Alatalo SL, Ivaska KK, Waguespack SG, et al. Osteoclast-derived serumtartrate-resistant acid phosphatase5b in Albers-Schonberg disease (type IIautosomal dominant osteopetrosis)[J]. Clin Chem.2004,50:883–90.
    [74] Del Fattore A, Peruzzi B, Rucci N, et al. Clinical, genetic, and cellular analysis of49osteopetrotic patients: implications for diagnosis and treatment [J].J MedGenet.2006,43:315–25.
    [75] Lee SH, Rho J, Jeong D, et al. v-ATPase V0subunit d2–deficient mice exhibitimpaired osteoclast fusion and increased bone formation[J]. Nature medicine.2006,12(12):1403-9.
    [76] Kim HJ, Zhao H, Kitaura H, et al. Glucocorticoids suppress bone formation viathe osteoclast [J]. J Clin Invest.2006,116:2152–60.
    [77] Mundy GR, Bonewald LF. Role of TGF beta in bone remodeling [J]. Ann NYAcad Sci.1990,593:91–7.
    [78] Baylink DJ, Finkelman RD, Mohan S. Growth factors to stimulate boneformation [J]. J Bone Miner Res.1993,8:S565–72.
    [79] Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and thecoupling of formation to resorption [J]. Bone.1995,17:93S–8S.
    [80] Robinson JA, Riggs BL, Spelsberg TC, Oursler MJ. Osteoclasts and transforminggrowth factor-beta: estrogen-mediated isoform-specific regulation of production[J]. Endocrinology.1996,137:615–21.
    [81] Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growthfactor-beta1to the bone [J]. Endocr Rev.2005,26:743–74.
    [82] Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of theinsulin-like growth factor (IGF) receptor gene reveals an essential role of IGFsignaling in bone matrix mineralization [J]. J Biol Chem.2002,277:44005–12.
    [83] Bikle DD, Sakata T, Leary C, Elalieh H, et al. Insulin-like growth factor I isrequired for the anabolic actions of parathyroid hormone on mouse bone [J]. JBone Miner Res.2002,17:1570–8.
    [84] Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K.Osteoclasts secrete non-bone derived signals that induce bone formation [J].Biochem Biophys Res Commun.2008,366:483–8.
    [85] Walker E, McGregor N, Poulton I, et al. Cardiotrophin-1is an osteoclast-derivedstimulus of bone formation required for normal bone remodeling [J]. J BoneMiner Res.2008,23:2025–32.
    [86] Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution ofosteocyte processes revealed by the combination of confocal laser scanningmicroscopy and differential interference contrast microscopy [J].Bone.2001,28:145–9.
    [87] Taylor AF, Saunders MM, Shingle DL, et al. Mechanically stimulated osteocytesregulate osteoblastic activity via gap junctions [J]. Am J Physiol, Cell Physiol.2007,292:C545–52.
    [88] Baron R, Rawadi G. Targeting the Wnt/beta-catenin pathway to regulate boneformation in the adult skeleton [J]. Endocrinology.2007,148:2635–43.
    [89] Matsuyama J, Ohnishi I, Kageyama T, et al. Osteogenesis and angiogenesis inregenerating bone during transverse distraction: quantitative evaluation using acanine model[J]. Clin Orthop Relat Res.2005,433:243-50.
    [90] Villars F, Bordenave L, Bareille R, et al. Effect of human endothelial cells onhuman bone marrow stromal cell phenotype: role of VEGF?[J] J Cell Biochem.2000,79(4):672-85.
    [91] Villars F, Guillotin B, Amédée T, et al. Effect of HMVEC on humanosteoprogenitor cell differentiation needs heterotypic gap junctioncommunication [J]. Am J Physiol Cell Physiol.2002,282(4): C775-85.
    [92] Sun H, Qu Z, Guo Y, et al. In vitro and in vivo effects of rat kidney vascularendothelial cells on osteogenesis of rat bone marrow mesenchymal stem cellsgrowing on polylactide-glycoli acid (PLGA) scaffolds [J].Biomed EngOnline.2007,6:41-7.
    [93]Copland IB, Jolicoeur EM, Gillis MA, Cuerquis J, Eliopoulos N, Annabi B, et al.Coupling erythropoietin secretion to mesenchymal stromal cells enhances theirregenerative properties [J]. Cardiovasc Res.2008,79:405e15.
    [94]Li Y, Takemura G, Okada H, et al. Reduction of inflammatory cytokineexpression and oxidative damage by erythropoietin in chronic heart failure[J].Cardiovascular research.2006,71(4):684-94.
    [95] Kertesz N, Wu J, Chen TH, Sucov HM, Wu H. The role of erythropoietin inregulating angiogenesis [J]. Dev Biol.2004,276:101e10.
    [96] Shiozawa Y, Jung Y, Ziegler A M, et al. Erythropoietin couples hematopoiesiswith bone formation[J]. PloS one.2010,5(5): e10853.
    [97] R lfing JHD, Bendtsen M, Jensen J, et al. Erythropoietin augments boneformation in a rabbit posterolateral spinal fusion model[J]. Journal ofOrthopaedic Research.2012,30(7):1083-8.
    [98]Bakhshi H, Rasouli MR, Parvizi J. Can local Erythropoietin administrationenhance bone regeneration in osteonecrosis of femoral head?[J]. Medicalhypotheses.2012,79(2):154-6.
    [99] Glantschnig H, Fisher JE, Wesolowski G, et al. M-CSF, TNFα and RANK ligandpromote osteoclast survival by signaling through mTOR/S6kinase[J]. Cell Death&Differentiation.2003,10(10):1165-77.
    [100] Kim J, Jung Y, Sun H, et al. Erythropoietin mediated bone formation isregulated by mTOR signaling[J]. Journal of cellular biochemistry.2012,113(1):220-8.
    [101] Shiozawa Y, Jung Y, Ziegler AM, et al. Erythropoietin couples hematopoiesiswith bone formation[J]. PloS one.2010,5(5): e10853.
    [102]Ashwin MN, Yi-Ting Tsai, Krishna MS, et al.The effect of erythropoietin onautologous stem cell-mediated bone regeneration [J].Biomaterials.2013,34:7364-71.
    [103] Holstein JH, Orth M, Scheuer C, et al. Erythropoietin stimulates bone formation,cell proliferation, and angiogenesis in a femoral segmental defect model inmice[J]. Bone.2011,49(5):1037-45.
    [104] Peter Proff&Piero R mer. The molecular mechanism behind bone remodelling:a review [J]. Clin Oral Invest.2009,13:355–62.
    [105] Ahmet Mihmanli, Dogan Dolanmaz, Mustafa C, et al.Effects of RecombinantHuman Erythropoietin on Mandibular Distraction Osteogenesis [J].OralMaxillofac Surg.2009,67:2337-43.
    [106] Hirai H, Maru Y, Haqiwara K, et al. A novel putative tyrosine kinase receptorencoded by the eph gene [J]. Science.1987,238:1717-20.
    [107] Mackiewicz Z, Niklińska WE, Kowalewska J, et al. Bone as a source oforganism vitality and regeneration [J].Folia Histochem Cytobiol.2011,49:558-69.
    [108] Yoshida CA, omori HK,Maruyama Z,Miyazaki T,Kawasaki K, SP7inhibitsosteoblast differentiation at a late stage in mice [J]. PLoS One.2012,7: e32364.
    [109] Chi Zhang.Transcriptional regulation of bone formation by theosteoblast-specific transcription factor Osx [J].Journal of Orthopaedic Surgeryand Research.2010,5:37-45.
    [110] Pennisi A, Ling W, Li X, et al. The ephrinB2/EphB4axis is dysregulated inosteoprogenitors from myeloma patients and its activation affects myeloma bonedisease and tumor growth [J]. Blood.2009,114:1803-12.
    [111] Irie N, Takada Y, Watanabe Y, et al. Bidirectional signaling throughephrinA2-EphA2enhances osteoclastogenesis and suppresses osteoblastogenesis[J]. J Biol Chem.2009,284(21):14637-44.
    [112] Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: atranscriptional activator of osteoblast differentiation [J]. Cell.1997,89:747–54.
    [113] Koichi Matsuo, Naoko Irie. Osteoclast–osteoblast communication [J].Archivesof Biochemistry and Biophysics.2008,473:201–9.
    [114] Asagiri M, Sato K, Μsami T, et al. Autoamplification of NFATc1expressiondetermines its essential role in bone homeostasis [J]. J Exp Med.2005,202:1261–9.
    [115] Reponen P, Sahlberg C, Munaut C, Thesleff I, Tryggvason K. High expressionof92-kD type IV collagenase (gelatinase B) in the osteoclast lineage duringmouse development [J]. J Cell Biol.1994,124:1091–1102.
    [116] Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immunecell dichotomy [J].Autoimmunity.2008,41:218-23.
    [117] Tamma R, Zallone A. Osteoblast and Osteoclast Crosstalks: From OAF toEphrin[J]. Inflammation&Allergy-Drug Targets.2012,11(3):196-200.
    [118] ZWu, C Liu, G Zang, et al.The effect of simvastatin on remodeling of thealveolar bone following tooth extraction [J]. Int J Oral Maxillofac Surg.2008,37(2):170-6.
    [119] Kirkeby A, Torup L, Bochsen L, et al. High-dose erythropoietin alters plateletreactivity and bleeding time in rodents in contrast to the neuroprotective variantcarbamyl-erythropoietin (CEPO)[J]. Thromb Haemost.2008,99:720-8.
    [120] Arcasoy MO.The non-haematopoietic biological effects of erythropoietin [J].BrJ Haematol.2008,141(1):14-31.
    [121] Matsuyama J, Ohnishi I, Kageyama T, et al. Osteogenesis and angiogenesis in
    regenerating bone during transverse distraction: quantitative evaluation using a
    canine model [J]. Clin Orthop Relat Res.2005,433:243-50.