超大口径全可动望远镜结构选型及精度控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中科院、国家发改委及新疆自治区将在奇台建造一口直径为110m的地面全可动射电望远镜。建成投入使用后,其口径将成为世界之最,性能将达到国际领先水平。
     然而建造如此超大跨度的望远镜,从结构技术角度最为突出的问题如下:传统结构方案存在若干不合理之处,仅自重作用就显著降低了主反射面精度(也称主反射面RMS),制约了其性能的发挥;同时迎风姿态多样造成主反射面风压分布复杂以及日照作用引起的非均匀温度场,均严重影响了主反射面RMS值;此外,电磁波在副反射面聚焦而产生的“太阳灶”效应也应引起重视。
     围绕上述关键科学问题,以控制主反射面RMS值为主线,提高主反射面精度为目标,本文拟从如下四方面展开研究:
     1、射电望远镜结构总体方案改进与优化
     以提高主反射面精度为目标,首先对全可动望远镜结构工作原理及反射面RMS拟合方法进行介绍;其次分析了传统结构方案精度较低的本质原因为:主反射面存在集中荷载作用、背架结构支承方案不合理、背架结构体系空间受力性能不佳。基于此,分别对其进行改进或创新,提出了一种新型高效的全可动望远镜结构总体方案,有效的提高了反射面精度。
     2、背架结构截面优化、几何参数分析与最佳安装角度的确定
     以主反射面精度为优化目标,引入遗传算法并进行改进,对背架结构进行截面优化,获得了一组较优的截面尺寸;在此基础上,对除截面尺寸以外的其它几何变量进行参数分析,探讨了它们对反射面RMS的影响程度。同时,仍以提高反射面精度为目标,利用梯度法的基本思想对望远镜背架结构的最佳安装角度进行了优化确定。
     3、反射面结构风荷载特性及其对精度的影响
     采用风洞试验和CFD数值模拟相结合的研究方案,对一类典型反射面(焦径比为0.3)结构展开各迎风姿态下的风荷载及风振响应特性分析,获得了适用于该类结构设计的风荷载取值。基于此,对既定的望远镜结构分别进行了生存风速和工作风速下的结构性能分析,评估了望远镜结构的力学可靠性,探讨了各类荷载对反射面RMS的影响,为后续反射面促动器的变形调控提供参考依据。
     4、日照非均匀温度场特性及其对反射面精度的影响
     以主、副反射面为研究对象,采用瞬态传热有限元分析方法,建立了综合考虑太阳辐射、空气对流换热、阴影遮挡等因素的望远镜整体结构日照温度场精细化数值模型。并选取最不利工况对其进行日照作用分析,获得了望远镜变位中该作用对主反射面RMS的全过程影响,以及电磁波聚焦在副反射面产生的“太阳灶”效应的时间及空间分布特性。
Chinese Academy of Sciences, National Development and Reform Conmmissionand the Xinjiang Uygur Autonomous Region will unite together to construct a largeall-movable radio telescope which has an aperture of110m diameter in the county ofQitai. It will be the largest all-movable radio telescope on the groud to achieve the mostadvanced level in the world after it is put into use.
     Yet if such large radio telescope is built, the most prominent problems from thestructure techniques are listed as follows. There are several improper points in theconventional structure style. Only the gravity load seriously destroyes the reflectorsurface precision (which is called as RMS for short afterwards) and forbids itsperformance. Meanwhile, many kinds of upwind profiles cause complicated windpressure distribution to reflector surface. Moreover non-uniform temperaturedeformation caused by solar effect inevitably affects the suface RMS. Espesically solarcooker problem in the sencondary reflector because of the electromagnetic wavefocusing also should be paid attention to.
     Based on the scientific problems above, in order to control the surface RMS, thepaper will carry out the corresponding research work in the following four aspects.
     1. Improvement and optimization of the overall radio telescope structure scheme
     In order to improve the main reflector surface RMS, firstly the working principleof the telescope and the surface precision fitting method are introduced. Then the natureof surface precision decline is analyzed and as follows:the main reflector hasconcentrated loads, the back frame support structure is not reasonable and back framestructure has a poor performance of stress. Based on these problems, a series ofimprovements and innovations are put into effect to the structure. Finally a newstructure scheme and several connections are put forward.
     2. Back frame structure optimization, geometric parameters analysis and the bestinstalled angle confirmation
     Adopting the main reflector surface RMS as the optimization object, the geneticalgorithm is introduced and improved to optimize the cross section of each bar for theback frame structure and a better set of cross section is acquired. On the basis of resultsabove, other parameters analysis is carried out to the back frame structure. And theinfluence on the surface RMS of these geometric variables is investigated. Afterward inorder to pursue the best precision, the gradient method is utilized to obtain the bestinstalled and adjusted angle of the back frame structure.
     3. Wind load characteristics of the reflector and its influence on the surface RMS
     Aiming at open parablolic reflector,wind tunnel and CFD adopted, a commonlyused type of reflector (F/D=0.3) is selected as research object to carry out the windtunnel test and numerical simulation for various kinds of upwind profiles. Its wind loaddistribution characteristics, wind vibration response characteristics and a huge mass ofwind resistance design data is obtained. Based on it, the mechanics performance and isanalyzed respectively at the survival wind speed and working speed to the establishedstructure. The analysis results assess the reliability of its mechanics performance,discuss the different effect on surface RMS of several kinds of loads and provide thevaluable references for deformation control of the actuators in the future.
     4. Sunshine non-uniform temperature field charateristics and its influence on thesurface RMS
     Adopting the main and secondary reflector structure as the analysis objects, thefinite element model of the all-movable telescope for structural temperature fieldanalysis is established, with the factors of solar radiation, shadow in surroundingenvironment, periodic air temperature and etc taken into consideration at the same time.The worst-case weather condition is selected to make the solar effect for them. Themain reflector surface RMS by the time course is acquired during the change of pitchand azimuth angle. At the same time the solar oven effect combined the time and spatialdistributions in the secondary reflector is presented.
引文
[1]克里斯琴森,霍格玻姆.射电望远镜[M].北京:科学出版社,1985:60-72.
    [2] Christiansen, W. N. and Hogbom, J. A. Radio Telescope[M]. Cambridge:Cambridge Press,1977:120-128.
    [3] R. J. Goldstein, E. R. G. Eckert, W. E. Lbele, et al. Heat Transfer–a Review of2000Literature[J]. Heat and Mass Transfer.2002,45(14):2853~2957.
    [4]500米口径球面射电望远镜(FAST)项目初步设计书[R].中国科学院国家天文台,2008,11.
    [5] Christian A. Gueymard. The Sun’s Total and Spectral Irradiance for Solar EnergyApplications and Solar Radiation Models [J]. Solar Energy.2004,76(4):423~453.
    [6] C. Shen, Y. L. He, Y. W. Liu, et al. Modelling and simulation of solar radiation dataprocessing with simulink [J]. Simulation Modelling Practice and Theory.2008,16(7):721~735.
    [7]肖勇全,王菲.太阳辐射下建筑围护结构的动态热平衡模型及实例分析[J].太阳能学报.2006,27(3):270~273.
    [8]南仁东.500m球反射面射电望远镜FAST[J].中国科学G辑.2005,35(5):449~466.
    [9] Y. H. Qiu. A Novel Design for Giant Radio Telescopes with an Active SphericalMain Reflector. Chinese Journal of Astronomy and Astrophysics.1998,22(3):361~368.
    [10] R. D. Nan, G. X. Ren. Adaptive Cable-Mesh Reflector for the FAST. ActaAstronomica Sinica.2003,44(2):13~18.
    [11] R. D. Nan, B. Peng. A Chinese Concept for the1km2Radio Telescope. ActaAstronautica.2000,46(10):667~675.
    [12]贵州省平塘县大窝凼FAST候选台址综合工程地质初勘报告[R].贵州地质工程勘察院.2006,9.
    [13]钱宏亮. FAST主动反射面支承结构理论与试验研究[D].哈尔滨工业大学博士学位论文.2007,05.
    [14]钟杰.巨型射电望远镜结构非均匀温度场研究[D].哈尔滨工业大学硕士学位论文.2012,07.
    [15]吴盛殷,南仁东.射电望远镜的发展和前景[J].天文学进展.1998,12(10):57~60.
    [16]张书霞.双反射面天线赋形技术研究[D].西安电子科技大学硕士学位论文.2010,4.
    [17]赵芸.毫米波三波束卡塞格伦天线设计[D].南京理工大学硕士学位论文.2012,2.
    [18]陈树勋,叶尚辉.修正曲面天线的保型设计[J].西北电讯工程学院学报,1981,(01):1-9.
    [19]翁路华,施浒立,胡超,田炳丽.高能宇宙线射电探测系统接收天线设计[J].机电工程,2009,(04):93-96.
    [20]杨戟.中国射电天文的研究与发展[J].中国科学院院刊,2011,(05):511-515.
    [21] R.Leve and R.Melosh. Computer Design of Antenna Reflectors. J. of stru.Div.Proc.ASCE, Vol.99, No.ST11,1973.
    [22] Von Hoerner. Homologous Deformations of Tiltable Telescope. J. of Stru. Div. ProcASCE, Vol.93,No.ST5, Oct,1967.
    [23] C.Fleccry. An efficient optimality criteria approach to the minimum weight Designof elastic structures. J.of Computers and Structures. Vol.11, No.3,1980.
    [24] G. Sonder C.Fleury. A Mixed Method in Structural Optimization. Int Joural forNum Meth in Eng,18,1978.
    [25] C.Fleccry. Weight Optimization by Duol method of Convex Programming.Jnter.J.for Numerical methods in Engineering, Vol.14,1979.
    [26] D. K. Ikemi. A Preprocessor Computer Program for the Thermal Analysis ofParabolic Satellite Antenna. AIAA-81-1181.
    [27] A. K. Noor, M. S. Anderson, W. H. Greene. Continuum Models for Beam andPlate-like Lattice Structures. AIAA Journal.1978,16:1219~1228.
    [28] A. H. Nayfeh, M. S. Hefzy. Continuum Modeling of the Mechanical and ThermalBehavior of Descrete Large Structures. AIAA Journal.1981,19:766~773.
    [29] R. F. O’Neill, J. L. Zich. Space Structures Heating (SSQ), A Numerical Procedurefor Analysis of Shadowed Space Heating of Sparce Structures. AIAA-81-1179.
    [30] M. Jack, B. S. Kim. Fundamental Studies of Thermal-Structural Effects on OrbitingTrusses. AIAA-82-0605.
    [31] G. Dan, R.Omri. Thermoelastic Analysis of Space Structures in Periodic Motion.Journal of Spacecraft and Rockets.1991,28(4):457~464.
    [32] T. F. Jeffery, M. W. Deborah. Thermal Distortion Analysis of An Antenna-AupportTruss in Geosynchronous Orbit. Journal of Spacecraft and Rockets.1992,29(3):386~393.
    [33] R. B. Malia., A. Ghoshal. Thermally Induced Vibrations of Structures in Space.Aerospace Thermal Structures and Materials for a New Era.1994:68~95.
    [34] L. Fu, X. W. Du, Z. M. Wan. Analysis of Effect of Pressure on Surface Accuracyfor Inflatable Antenna. Journal of Harbin Institute of Technology.2008,15(6):786~789.
    [35] I. B. Alexey, V. S. Denis, V. G. Alexander, etc.3D Finite Element Thermal andStructural Analysis of the RT-70Full-Circle Radio Telescope.
    [36]赵彦.大射电望远镜指向误差建模分析与设计研究[D].西安电子科技大学,2008.
    [37]郑元鹏.50m口径射电望远镜反射面精度分析[J].无线电通信技术,2002,(05):17~19.
    [38]张亚林.50米口径射电望远镜天线结构静动力分析[J].电子机械工程,2004,(06):37-40.
    [39]郑国忠.射电望远镜天线的精密测量概述[J].工程勘察,1985,(03):4-8.
    [40]张亚林,刘维明.50米射电望远镜天线座架结构动力设计[J].无线电通信技术,2003,(05):5-6.
    [41]张战国.大射电望远镜精调平台控制系统软件设计与实验[D].西安电子科技大学,2008.
    [42]叶尚辉.天线结构设计[M].国防工业出版社,1980-09.
    [43]段宝岩.天线结构分析优化与测量[M].西安电子科技大学出版社,2006-04.
    [44]王建.天线原理与设计[M].国防工业出版社.1993-06.
    [45][澳]W.N.克里斯琴森,[瑞典]A.霍格玻姆.射电望远镜[M].科学出版社.1977-05.
    [46]程景全.天文望远镜原理与设计[M].中国科学技术出版社.2003.
    [47]杨德华,徐灵哲.系统仿真在天文望远镜设计中的应用综述[J].系统仿真学报,2009,(10):2801-2805+2827.
    [48]赵青.军用望远镜设计风格分析与研究[J].美术大观,2012,(06):136.
    [49] Ravi Subrahmanyan. Photogrammetric Measurements of the Gravity Deformationin a Cassegrain Antenna [J]. IEEE Transaction on Antennas and Propagation,2005,53(8):2590-2596.
    [50]王从思,段宝岩,仇原鹰.天线表面误差的精确计算方法及电性能分析[J].电波科学学报,2006,(03):403-409.
    [51]周生怀.大型天线结构的预调及实践[J].通信与测控,1998,(2):47-59.
    [52]庞毅.深空大天线结构设计关键技术[J].电子机械工程,2011,(03):28-30+43
    [53]马品仲.大型望远镜设计与研究[J].应用光学,1994,(03):6-11.
    [54]厉建峰.大型光电阵望远镜结构传热分析与设计[D].南京理工大学,2007.
    [55]马品仲.大型望远镜机械结构研究[J].现代机械,1996,(01):1-4.
    [56]邱育海.具有主动主反射面的巨型球面射电望远镜[J].天体物理学报,1998,(02):107-113.
    [57]杨世杰.现代望远镜制造中的一些问题[J].天文学报,1962,(02):203-207.
    [58]望远镜[J].中国光学与应用光学文摘,1996,(01):96.
    [59]刘岩.110m天线结构技术研究报告[R].哈尔滨工业大学空间结构研究中心.2012,12.
    [60]吴景龙,杨淑霞,刘承水.基于遗传算法优化参数的支持向量机短期负荷预测方法[J].中南大学学报(自然科学版),2009,(01):180-184.
    [61]张琛,詹志辉.遗传算法选择策略比较[J].计算机工程与设计,2009,(23):5471-5474.
    [62]边霞,米良.遗传算法理论及其应用研究进展[J].计算机应用研究,2010,(07):2425-2429+2434.
    [63]庄健,杨清宇,杜海峰,于德弘.一种高效的复杂系统遗传算法[J].软件学报,2010,(11):2790-2801.
    [64]王银年.遗传算法的研究与应用[D].江南大学,2009.
    [65]罗源伟,李泉永,李文勇,杨延航.基于遗传算法的天线结构优化[J].现代雷达,2000,(04):67-71.
    [66]岳嵚,冯珊.遗传算法的计算性能的统计分析[J].计算机学报,2009,(12):2389-2392.
    [67]曹道友,程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44-47+51.
    [68]王银年.遗传算法的研究与应用[D].江南大学,2009.
    [69]吴值民,吴凤丽,邹赟波,李宏伟,卢厚清.退火单亲遗传算法求解旅行商问题及MATLAB实现[J].解放军理工大学学报(自然科学版),2007,(01):44-48.
    [70] Hadley G, Whitn T M. Analysis of inventory systems [M]. New Jersey:Prentice-Hall Inc,1963.
    [71]邝溯琼.遗传算法参数自适应控制及收敛性研究[D].中南大学,2009.
    [72]王小平,曹立明.遗传算法实现与软件实现[M].西安:西安交通大学出版社,2002.
    [73]张明辉,王尚锦.具有自适应交叉算子的遗传算法及其应用[J].机械工程学报,2002,(01):51-54.
    [74]卢厚清,陈亮,宋以胜,吴值民,邹赟波.一种遗传算法交叉算子的改进算法[J].解放军理工大学学报(自然科学版),2007,(03):250-253.
    [75]蔡良伟,李霞.遗传算法交叉操作的改进[J].系统工程与电子技术,2006,(06):925-928.
    [76]姜薇.遗传算法中交叉算法的改进[D].吉林大学,2009.
    [77]吴佳英.多亲遗传算法及其应用研究[D].湘潭大学,2003.
    [78]杨国军,陈丽娟,周丽,王桂娟,程洪机.评―遗传算法交叉操作的改进‖[J].电子科技,2007,(10):22-25.
    [79]尹作海,邱洪泽,周万里.基于改进变异算子的遗传算法求解柔性作业车间调度[A].中国运筹学会智能计算分会.第三届中国智能计算大会论文集[C].中国运筹学会智能计算分会,2009:5.
    [80]王湘中.进化策略的变异算子与仿真平台研究[D].中南大学,2005.
    [81]邝航宇,金晶,苏勇.自适应遗传算法交叉变异算子的改进[J].计算机工程与应用,2006,(12):93-96+99.
    [82] D Woody. Gravitational deflection of the Light on telescopes [A]. KonaSymposium on Millimeter and Sub-millimeter Astronomy, GD Watt and ASWebster, Eds.Amsterdam, TheNetherlands: Kluwer,1990,158:43-44.
    [83] W A Imbriale, M J Britcliffe, M Brenner. Gravitational Deformation Measurementsof NASA’s Deep Space Network70m Reflector Antennas[R].NASA IPN ProgressReport, PR42-147,2001,1-15.
    [84] J Ruze. Antenna Tolerance Theory. A Review [J]. Proc. IEEE,1966,54(4):633-640.
    [85]王伟,段宝岩,马伯渊.重力作用下天线反射面变形及其调整角度的确定[J].电波科学学报, Vol.23, No.4:65-66.August,2008.
    [86]高延龙.雷达天线风荷载特性的数值仿真方法研究[D].西安:西安电子科技大学硕士学位论文,2009.
    [87] De Young, Vogiatzis K. Numerical simulations of airflow in verylarge telescopeenclosures. Proceeding of the SPIE, Second Backaskog Workshop on ExtremelyLarge Telescopes.2004,5382:379-387.
    [88] Quattri, Marco. Proceedings of SPIE, the International Society for OpticalEngineering.2002,4840:459-470.
    [89] D. Hiriart, J. L. Ochoa, B. Garcia. Wind Power Spectrum Measured at the Sanpedro Martir Sierra. Revista Mexicana de Astronomia y Astrofisica,2001,37:213-220.
    [90] G. Solari G. Piccardo. Probabilistic3-D Turbulence Modeling for Gust Buffeting ofStructures. Probabilistic Engineering Mechanics.2001,16:73-86.
    [91] Y. Q. Jia, B. L. Sill, T.A. Reinhold. Effects of Surface Roughness Element Spacingon Boundary Layer Velocity Profile Parameters.J.Wind Eng. Ind. Aerodyn.1998,73:215-230.
    [92] H.P.A.H.Irwin. The Design of Spires for Wind Simulation. J. Wind Eng. Ind.Aerodyn.1981,8:361-366.
    [93] T. Balendra, D. A. Shah, K. L. Tey, S. K. Kong. Evaluation of Flow Characteristicsin the NUS-HDB Wind Tunnel. J. Wind Eng. Ind. Aerodyn.2002,90:675-688.
    [94] Meroney, Letchford, Sarkar. Comparison of Numerical and Wind TunnelSimulation of Wind Loads on Smooth. Rough and Dual Domes Immersed in aboundary Layer. International Journal of Wind and Structures.2002,5:347~358.
    [95] Y. Uematsu, R. Tsuruishi. Wind load evaluation system for the design of roofcladding of spherical domes. Journal of Wind Engineering and IndustrialAerodynamics.2008,(96):2054~2066.
    [96]杜强.雷达天线风荷载特性的数值计算方法及应用研究[D].西安:西安电子科技大学博士学位论文,2011.
    [97] M. Sterling. C.J. Baker. A.D. Quinn. R.P. Hoxey. Pressure and velocity fluctuationsin the atmospheric boundary layer. Wind and Structures.2005, Vol.8, No.1:13~34.
    [98] Standards Australia/Standards New Zealand. Structural design actions. Part2: Windactions. AS/NZS1170.2:2002,2002.
    [99] S. kho. C. Baker. R. Hoxey POD/ARMA reconstruction of the surface pressurefield around a low rise structure. The5thAsia-Pacific Conference on WindEngineering. Kyoto, Japan. October21-24.2001:509-512.
    [100] Y. Chen. G.A. Kopp. D. Surry. Prediction of pressure coefficients on roofs of lowbuildings using artificial neural networks. J. Wind Eng. Ind. Aerodyn.2003,(91):423-441.
    [101] B. E. Launder and D.B. Spalding. The numerical computation of turbulent flows,Comp. Math. Appl. Mech.Eng,1974(3):35-61.
    [102]纪兵兵,陈金瓶. ANSYS ICEM CFD网格划分技术实例详解[M].北京:中国水利水电出版社,2012.
    [103] C. Canuto, M.Y. Hussaini, A. Quarterini and T.A. Zang: Spectral Methods in FluidDynamics, Springer-Verlag,1987.
    [104] S. Murakami, A.Mochida. Development of a new model for flow and pressurefields around bluff body [J]. Journal of Wind Engineering and IndusrialAerodynamics,1997(67,68):169-182.
    [105]林斌. CFD模拟技术在大型复杂结构工程中的应用[D].哈尔滨:哈尔滨工业大学硕士论文,2005.
    [106] M. Kato, B.E. Launder. The modeling for turbulent flow around stationary andvibrating square cylinders. Prep. Of9th Symp. On turbulent shear flow.1993:4-16.
    [107]杜强.大气边界层中天线风荷载特性的数值分析[J].电子科技大学学报,2010(2).
    [108]孙晓颖.鞍形屋盖平均风压分布特性的数值模拟研究[J].工程力学,2006(10).
    [109]叶尚辉,李在贵.天线结构设计[M].西安:西安电子科技大学出版社,1986.
    [110]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [111] GB50009-2001.建筑结构荷载设计规范[S].中华人民共和国国家标准.中国建筑工业出版社,2006.
    [112]张相庭.工程抗风设计计算手册[M].北京:中国建筑出版社,1998.
    [113]中华人民共和国国家标准. GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [114]钱宏亮,刘岩,范峰.上海65m射电望远镜地震响应分析[J].哈尔滨工业大学学报,2011,(12):7-12.
    [115]范峰等.上海65米射电望远镜天线结构分析核查报告[R].哈尔滨:哈尔滨工业大学空间结构研究中心,2010.
    [116]钱宏亮,刘岩,范峰,付丽,刘国玺.65m天线结构主反射面面形精度分析[J].红外与激光工程,2012,(11):3027-3033.
    [117] Bremer, M., Penalver, J. FE model based interpretation of telescope temperaturevariations[C]. SPIE4757,186(2002).
    [118] Bremer, M., Greve, A., van’t Klooster, K., Grewing, M., Eder, J., Valsecchi, G.Front and rear Perspective heated prototype panels for the IRAM15–m telescopesin28th ESA Antenna Workshop on Space Antenna Systems and Technologies[C].ESTEC–Nordwijk, the Netherlands,943(2005).
    [119] Chamberlin, R.A. Temperature meaurements on the Leighton telescope: SurfaceMemo2[J].(2003).
    [120] Cheng, J. Principles of Astronomical Telescope Design [M]. Springer, Heidelberg–New York (2009).
    [121] Daryabeigi, K. Heat transfer in adhesively bonded honeycomb core panels [J].Thermophysics Heat Transfer16,217(2002).
    [122] Doyle, D., Pilbratt, G. Tauber, J. The Herschel and Planck Space Telescopes [J].Proc. IEEE97(8),1403(2009).
    [123] N. Liu, B. Hu, Z. W. Yu. Stochasitic Finite Element Method for RandomTemperature in Concrete Structures. International Journal of Solids and Structures.2001,38(38-39):6965~6983.
    [124] W. C. Jiang, J. M. Gong, S. D. Tu, et al. Modelling of Temperature Field andResidual Stress of Vacuum Brazing for Stainless Steel Plate-fin Structure. Journalof Materials Processing Technology.2009,209(2):1105~1110.
    [125] F.凯尔别克著,刘兴法等译.太阳辐射对桥梁结构的影响.中国铁道出版社,1981.
    [126]钱宏亮,刘岩,范峰,付丽,刘国玺.上海65m射电望远镜太阳辐射作用分析[J].工程力学,2012,(10):378-384.
    [127]彭友松,强士中,李松.哑铃形钢管混凝土拱日照温度分布研究.中国铁道科学.2006,27(5):71~75.
    [128] L. F. Romero, S. Tabik, J. M. Vías, et al. Fast Clear-sky Solar IrradiationComputation for Very Large Digital Elevation Models. Computer PhysicsCommunications.2008,178(11):800~808.
    [129] Christian A. Gueymard. The Sun’s Total and Spectral Irradiance for Solar EnergyApplications and Solar Radiation Models. Solar Energy.2004,76(4):423~453.
    [130] C. Shen, Y. L. He, Y. W. Liu, et al. Modelling and simulation of solar radiation dataprocessing with simulink. Simulation Modelling Practice and Theory.2008,16(7):721~735.
    [131] M. Elbadry, A. Ghali. Temperature Variations in Concrete Bridges. Journal ofStructural Engineering, ASCE.1983,109(10):2355~2374.
    [132] R. J. Goldstein, E. R. G. Eckert, W. E. Lbele, et al. Heat Transfer–a Review of2000Literature. Heat and Mass Transfer.2002,45(14):2853~2957.
    [133]冯贞国,郑元鹏.50m口径天线结构有限元模型的建立方法[J].无线电通信技术,2008,(03):26-27+47.