脉冲超宽带同步技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步技术是通信系统的关键技术之一,对于脉冲无线电超宽带系统则更是如此。其一、宽带导致时间搜索域上的高分辨率,因而为捕获过程带来更大的搜索区域;另外极低占空比的窄脉冲可能引起多径,在超宽带接收机端可能会有多于一个的多径满足同步要求引起误判。其二、由于收发端存在不可避免的时钟频偏,将为接收系统引入显著的误码率。其三、现存的网络时钟同步算法不能满足分布式超宽带网络的同步精度和网络开销等要求。针对密集多径条件下的超宽带同步困难的问题,研究了超宽带同步技术,包括物理层捕获、频偏估计、网络层时钟同步和超宽带平台的同步算法验证等四个方面。
     建立了脉冲无线电超宽带系统的数学模型,研究了脉冲无线电超宽带系统的接收模式。从理论上对常用的三种接收模式基于发送相关、基于能量检测和基于相关检测进行了深入的分析和比较。详细分析了衡量同步捕获性能的两个重要参数:平均捕获时间和虚警检测率,仿真对比了在IEEE提供的四种超宽带信道模型下不同接收模式的平均捕获时间和虚警检测率等同步性能指标。
     提出了一种采用变步长搜索策略的快速捕获算法。传统的采用非连续跳跃式搜索的快速捕获算法主要是针对于捕获时间的改进,其跳跃式搜索引起较大的失捕获概率。针对这个问题,提出了一种改进失捕获概率和平均捕获时间的快速捕获算法,变步长算法(Variable Step Algorithm,VSA)。从理论上推导了平均捕获时间和失捕获概率的公式,为研究变步长捕获算法的同步性能提供了理论依据。仿真比较了该算法与经典快速捕获算法的同步性能,仿真表明,变步长算法具有跳跃式搜索的特点,因此能够将搜索区域大幅度的减小,有助于减小平均捕获时间。并且该方案能够改善跳跃式搜索算法的失捕获情况。
     其次,提出了一种采用分数域辅助的频偏估计方法。鉴于频偏对超宽带系统的重要影响,提出了采用切普信号作为特殊的帧同步脉冲来估计系统频偏。通过对切普信号频偏特性的理论分析,证明频偏不会影响切普信号在分数域上收敛的特性,切普信号是非常适合作为频偏系统的帧同步脉冲。并且提出了一种全新的采用分数域辅助的频偏估计系统。该系统的核心是分数域辅助的频偏估计算法,算法包括时域和分数域两部分,通过在超宽带信号上叠加切普信号并且通过选择适当的分数域达到估计系统频偏的目的。在此系统的基础上,进一步提出了利用切普信号进行超宽带脉冲的捕获预测方案。对提出算法的频偏估计性能进行了仿真分析,其估计偏差接近最大似然的克拉美劳界。并且仿真比较了正常捕获和分数域捕获预测的同步性能,证明后者的捕获时间可以得到改善。
     然后,提出了一种适合于超宽带分布式网络的时钟同步算法。通过分析超宽带分布式网络的物理层特点,得出现有的网络时钟同步算法无法满足同步精度、网络开销等要求的结论,提出了双线估计算法(Dual Line Estimation Algorithm,DLEA),该算法能够提供时钟频偏的估计,能够考虑多次时延测量的结果,并且是基于成对模式。双线估计法包括数据搜集和频偏、时偏估计两部分,最后根据频偏和时偏的估计结果调整本地时钟。仿真证明,双线估计法的时钟同步精度明显优于传统的时钟同步算法,并具有降低网络开销的优势。
     最后,在基于FPGA的超宽带硬件平台上验证第3章提出的变步长捕获算法。首先介绍了超宽带硬件平台的设计原理,其主要的设计包括发送机、接收端和同步模块,着重介绍了各部分中FPGA的设计及仿真。然后验证了第三章提出的变步长算法的同步实现方案,同步的设计包括捕获和验证两部分。经过硬件的调试,采用变步长同步方案的超宽带平台误码率可以达到10-6数量级,具有较好的同步接收性能。
The utilization of smart synchronization technology is a very sensitive and important issue in Impulse Radio Ultra-Wideband (IR-UWB) systems for many reasons. Firstly, small resolution search is caused by broadband, resulting in the inclusion of larger search area during acquisition process. Also, the use of extremely narrow pulse with low duty cycle have inherent multi-path effect, i.e. more than one multi-path will satisfy the synchronization threshold, yielding misjudgment. Secondly, frequency offset between receiver and transmitter is omnipresent, unavoidable, and introduces significant BER in IR-UWB system. Thirdly, the existing network clock synchronization algorithms can not meet the requirements of synchronization accuracy and overload from the distributed network of IR-UWB. In order to solve synchronization problems in IR-UWB system under intensive multi-path conditions, synchronization in IR-UWB system is studied in depth, including acquisition at the physical layer, frequency offset problem, time synchronization at the network layer and hardware realization of IR-UWB platform.
     A mathematical model of IR-UWB system is established, and different receiving modes for IR-UWB system are studied. Receiving modes based on transmitted reference, energy detection and correlation detection are theoretically analyzed and compared. Two important synchronization parameters, i.e., Mean Acquisition Time (MAT) and False Alarm Rate (FAR) are analyzed. In latter simulations, MAT and FAR for different receiving modes are compared in four IEEE _UWB channels.
     Firstly, a rapid acquisition algorithm adopting variable step searching strategy is proposed. Classic rapid acquisition algorithms are targeted at improving MAT, without acquisition accuracy considerations. To address this issue, a novel rapid acquisition algorithm, called Variable Step Algorithm (VSA), aimed at improving acquisition accuracy and MAT at the same time, is proposed. Theoretical deduction of MAT and FAR formulae for VSA is performed which provide analytical grounds for VSA synchronization performance comparisons. Empirical algorithms and VSA are compared with respect to synchronization performance. Simulations reveal that VSA outperforms classic algorithms with a shorter acquisition time and more accurate precision.
     Secondly, an anti-jitter timing method incorporating Fractional Fourier domain is proposed. Given the important role of frequency offset in IR-UWB system and its effect on frequency offset estimation in time domain, a new frequency offset estimation system adopting Fractional Fourier domain is proposed. The system kernel lies in frequency offset estimation algorithm, which includes both time domain and Fractional domain. The estimation algorithm adds chirp signals to UWB pulses and chooses the appropriate Fractional domain in order to achieve frequency offset estimation and acquisition forecast. A scheme for UWB acquisition forecasting in this system is also proposed and tested. In thorough simulative analysis, forecasted acquisition adopting Fractional Fourier domain is compared with regular acquisition in time domain, which confirmed that MAT and FAR can be improved by using proposed scheme.
     Then, a novel clock synchronization algorithm suitable for IR-UWB distributed network is proposed. Through the analysis of ultra-wideband network physical layer characteristics, the existing network clock synchronization algorithm might not meet network overhead and accuracy requirements. Thus, a novel time synchronization algorithm providing clock frequency offset, considering several delay measurement results, and based on pair-wised model is proposed, referred to as Dual Line Estimation Algorithm (DLEA). The new algorithm is implemented in two steps, i.e., data collection and frequency offset estimation. Then, the local clock is to be adjusted according to the estimations. Simulations reveal that DLEA synchronization accuracy is superior to the traditional clock synchronization algorithm, and has the advantage of lower network cost.
     Finally, we have verified the synchronization algorithm on the FPGA-based UWB hardware platform. Core design principles for UWB hardware platform are introduced; including the design of its main transmitter, receiver and synchronization module with due focus on FPGA design and simulation setup. Proposed VSA is also verified in FPGA, and the design includes acquisition and verification modules. After implementing the hardware debugger, error frame rate for UWB platform reaches the order of magnitude 10-6, with a good synchronization performance.
引文
1 S. S. Kolenchery, J. K. Townsend, J. A. Freebersyser. A Novel Impulse Radio Network for Tactical Military Wireless Communications. Military Communications Conference. 1998. MILCOM 98. Proceedings.1998: 59-65.
    2 T. S. Rappaport, A. Annamalai, R. M. Buehere. Wireless Communications: Past Events and a Future Perspective. IEEE Communications Magazine 50th Anniversary Commemorative Issue. 2002, 5: 148-161.
    3 First reported and order 02-48. Federal Communications Commission. 2002.
    4 J. Gerrits, J. R. Farserotu; J. R. Long. Low-Complexity Ultra-wide-Band Communications. IEEE Transactions on Circuits and Systmes. 2008, 55(4): 329-333.
    5谈振辉.未来无线通信领域的新技术.中兴通信技术. 2004, 1: 37-40.
    6 M. Z. Win, R. A. Scholtz. Impulse Radio: How it Works. IEEE Communications Letters. 1998, 2(2): 36-38.
    7 K. Smak, P. Withington, S. Phelan. Ultra-Wide Band Radio: the Emergence of an Important New Technology. IEEE Vehicular Technology Conference. Rhodes. 2001: 1169-1172.
    8 E. A. Homier, R. A. Scholtz. Rapid Acquisition of Ultra-Wideband Signals in the Dense Multipath Channel. 2002 IEEE Conference on Ultra Wideband Systems and Technologies. Baltimore. 2002: 105-110.
    9朱义君,常力. UWB的主要特点及在短距离无线通信中的应用前景.电子技术应用. 2003, 10: 6-8.
    10 K. Siwiak. The Potential of Ultra Wideband Communications. Twelfth International Conference on Antennas and Propagation. 2003, 1(31): 225-228.
    11 J. M. Cramer, M. Z. Win, R. A. Scholtz. Impulse Radio Multipath Characteristics and Diversity Reception. IEEE International Conference on Communications. Atlanta. 1998, 3: 1650-1654.
    12李会勇,高昕艳,徐政五.UWB家庭无线智能网的解决方案.电子科技大学学报.2003, 32(6): 604-607.
    13 M. Z. Win, R. A. Schohz. Ultra-wide Bandwidth Time-Hopping Spread- Spectrum Impulse Radio for Wireless Multiple-access Communications. IEEE transactions on Communications. 2000, 48: 679-690.
    14黎海涛.超宽带无线通信的发展.信息网络. 2003, 8: 28-30.
    15 M. Z. Win, R. A. Schohz. On the Energy Capture of Ultra Wide Bandwidth Signals in Dense Multipath Enviroments. Communications letters. IEEE, 1998, 2(9): 245-247.
    16 P. Withington. Impulse Radio Overview. Time Domain Corporation. 2001: 1-7.
    17 R. L. Peterson, R. E. Ziemer, and D. E. Borth, An Intorduction to Spread Spectrum Communications. Upper Saddle River. NJ: Prentice-Hall. 1995: 87-89.
    18 M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Communications: Volume III. Rockville, MD: computer Science. 1985: 97-99.
    19 C. Xia, D N. Anh. A Synchronization Technique for UWB Systems using IEEE Channel Models. CCECE. Saskatoon. 2005, 5: 1778-1781.
    20 F. Chin, W. Zhi and C. C. Ko. System Performance of UWB based Low Rate Wireless Personal Area Network. Signals, Systems and Computers. 2003, 2:1235-1238.
    21 W. Hirt. Ultra-wideband Radio Technology: Overview and Future Research. Computer Communications. 2003, 26: 46-52.
    22 H. J. Park, Mi-Jeong Kim, Yoon-Jae So, etc. Communication System for Home Entertainment Network. IEEE transactions on Consumer Electroincs. 2003, 49(2): 302-311.
    23 R. A. Scholtz. Multiple Access with Time-hopping Impulse Modulation. IEEE military communnications conference. Boston. 1993: 447-450.
    24 R. A. Sandeep, S. Vijayakumaran, and T. F. Wong. Timing Acquisition in Ultra-wideband Communication Systems. IEEE transactions on vehicular technology. 2005, 54(5): 1570-1583.
    25 R. Blazquez, P. Newaskar; A. Chandrakasan. Coarse Acquisition for Ultra Wideband Digital Receivers. International conference on acoustics, speech, and signal processing. 2003, 4: 137-140.
    26 S. Soderi, J. Iinatti and M. Hamalainen. CLPDI Algorithm in UWB Synchronization. International workshop on ultra wideband systems. 2003: 759-763.
    27 K. H. Kil and B. G. Song. New Preamble Design for Reduced-Complexity Timing Acquisition in UWB Systems. IEEE transactions on vehicular technology. 2006:1977-1981.
    28 R. Fleming C. Kushner, G. Roberts. Rapid Acquisition for Ultra Wideband Localizers. IEEE conference on Ultra Wideband systems and technologies. Baltimore. 2002: 245-249.
    29 S. Vijayakumaran, T. E. Wong. Equal Gain Combining for Acquisition of UWB Signals. IEEE Military Communications conference. Monterey .2003, 2: 880-885.
    30 S. Vijayakumaran and T. E. Wong. On Equal-gain Combining for Acquisition of Time-hopping Ultra Wideband. IEEE transactions on communications. 2006, 54(3): 479-490.
    31 S. Aedudodla, S. Vijayakumaran and T. F. Wong. Rapid Ultra-wideband Signal Acquisition. IEEE conference on wireless communications and networking. HongKong. 2004, 2: 1148-1153.
    32 O. S. Shin, K. B. Lee. Utilization of Multipaths for Spread-Spectrum Code Acquisition in Frequency-Selective Rayleigh Fading Channels. IEEE transation communications. 2001, 49(4): 734-743.
    33 G. E. Corazza. On the MAX/TC Criterion for Code Acquisition and Its Application to DS-SSMA Systems. IEEE tansactions on communications. 1996, 44(9): 1173-1184.
    34 H. L. Zhang, S. Q. Wei, D. L. Goeckel. Rapid Acquisition of Ultra-Wideband Radio Signals. Asilomar Conference on Signals, Systems, and Computers. Pacific Grove.1996, 1: 712-716.
    35 E. A. Homier, R. A. Scholtz. Rapid Acquisition of Ultra-wideband Signals in the Dense Multipath. IEEE conference on ultra wideband systems and technologies. Baltimore. 2002: 105-109.
    36 J. Ibrahim, R. Michael Buehrer. Two-stage Acquisition for UWB in Dense Multipath. Selected areas in communications. 2006(4): 801-807.
    37 S. Gezici, E. Fishler, H. Kobayashi, H. V. Poor. A Rapid AcquisitionTechnique for Impulse Radio. Communications, computers and signal processing. 2003, 2: 627-630.
    38 L. Reggiani, G. M. maggio. A Reduced-Complexity Acquisition Algorithm for UWB Impulse Radio. International conference on ultrawideband systems and technologies. Tokyo. 2003: 131-135.
    39 S. Aedudodla, S. Vijayakumaran. Ultra-wideband Signal Acquisition with Hybrid DS-TH Spreading. IEEE transaction on wireless communication. 2005, 52(2): 225-236.
    40 A. Saghafi. A New Search Space Reduction Technique for Acquisition of UWB Signals in Multipath Channels. IEEE vehicular technology conference. Dublin. 2007: 1559-1563.
    41 A. Saghafi. Rapid Acquisition of Ultra-wideband Signals in Multipath Environments. IEEE Asia Pacific conference on circuits and systems. Singapore. 2006: 1818-1821.
    42 S. Vijayakumaran, T. F. Wong. Best Permutation Search Strategy for Ultra-Wideband Signal Acquisition. IEEE transaction on communication. 2005, 52(5): 760-765.
    43 C. K. Rushforth. Transmitted-Reference Techniques for Random or Unknown Channels. IEEE transaction on information theory. 1964, 10(1): 39-42.
    44 R. Gagliardi. A Geometrical Study of Transmitted Reference Communication System. IEEE transaction on communication technology. 1964, 12(4): 118-123.
    45 G. D. Hingorani. A Transmitted Reference System for Communication in Random or Unknown Channels. IEEE transaction on communicaitons. 1995, 13(3): 293-301.
    46 R. Hoctor and H. Tomlinson. An Overview of Delay-Hopped Transmitted-Reference RF Communications. Technical information series. 2002, (2): 1-29.
    47 R. Hoctor, H. Tomlinson. Delay-Hopped Transmitted Reference RF Communications. IEEE conference on ultra wideband systems and technologies. Baltimore. 2002: 265-270.
    48 N. van Stralen, A. Dentinger, K. Welles, R. Gauss, R. Hoctor, H.Tomlinson.Dealy Hopped Transmitted Reference Experimental Results. IEEE Conference on Ultra Wideband systems and technologies. Baltimore. 2002: 93–98.
    49杨刚,亢洁,施仁.超宽带传输参考接收机的性能研究.通信学报. 2005, 10: 122-127.
    50亢洁,杨刚.传输参考型UWB相关接收机的性能分析及仿真.无线通信技术. 2006, 1: 18-21.
    51梁彩凤,王树勋,孙晓颖,丁锐.改进的超宽带传输参考系统及其性能.吉林大学学报(工学版). 2007, 4: 870-974.
    52 X. Cheng, A. Dinh. Ultrawideband Synchronization in Dense Multipath Environment. IEEE pacific rim conference on communications, computers and signal processing. Victoria. 2005: 29-32.
    53 X. Cheng, A. Dinh. UWB Acquisition at Symbol Sampling Rate Using Reference Aided Match Filter and Adaptive Post Detection Integration. The 2nd international conference on wireless broadband and ultra wideband communications. Washington. 2007: 6-6.
    54 G. F. Tchere, P. Ubolkosold, S. Knedlik, O. Loffeld. Data-aided Timing Acquisition in UWB Differential Transmitted Reference Systems. IEEE 17th international symposium on personal, indoor and mobile radio communications. Helsinki. 2006:1-5.
    55 H. J. Wang, S. M. Jiang, G. Wei, F. Ji, X. Y. Zhang. Performance Analysis of UWB Timing Acquisition Schemes based on RSS Measurements. International conference on wireless communications, networking and mobile computing. Wuhan. 2006: 1-4.
    56 K. Bai, N. He. Acquisition Performance Comparison of Energy Detector and Single-Pulse Correlator for UWB Systems. 41st annual conference on information sciences and systems. Baltimore. 2007: 141-146.
    57 N. He, C. Tepedelenliogulu. Acquisition Performance Comparison of Transmitted Reference and Coherent UWB Receivers. IEEE Global telecommunications conference. San Francisco. 2006: 1-5.
    58 S. Vijayakumaran, T. F. Wong. Best Permutation Search Strategy for Ultra-Wideband Signal Acquisition. IEEE transaction on communication. 2005, 52(5): 760-765.
    59 Z. Tian, V. Lottice. Efficient Timing Acquisition in Dense Multipath for UWB Communication. IEEE vehicular technology conference. Orlando. 2003: 1318-1322.
    60 Z. Tian, L. Yang, G. B. Giannakis. Symbol Timing Estimationin Ultrawideband Communications. 2002 Asilomar conference on signals systems and computers. Pacific Grove 2002: 1924-1928.
    61 L. Yang, Z. Tian, G. B. Giannakis. Non-data Aided Timing Acquisition of Ultra-wideband Transmissions Using Cyclostationarity. IEEE conference on acoustics, speech, and signal processing. Hongkong. 2003: 121-124.
    62 Z. Tian, G. B. Giannakis. BER Sensitivity to Mistiming in Ultra-Wideband Part I Nonrandom Channels. IEEE transaction on signal processing. 2005, 53 (4):1550-1560.
    63 Guvenc, H. Arslan. Performance Evaluation of UWB Systems in the Presence of Timing Fitter. IEEE conference on ultra wideband systems and technologies Tokyo. 2003: 136-141.
    64 P. B. Hor, C. C. Ko, W. Zhi. BER Performance of Pulsed UWB System in the Presence of Colored timing fitter. IEEE Joint UWBST & IWUWBS. 2004: 293-297.
    65张洪亮,王呈贵,沈良,骆坚. UWB脉冲形状对同步偏差敏感度的仿真分析.军事通信技术. 2006, 27(1): 51-53.
    66 J. Chen, T. Lv, Y. Chen. A Timing-jitter Robust UWB Modulation Scheme. IEEE signal processing letters. 2006, 13: 593-596.
    67 Y. D. Chen, J. Chen, T. J. Lv. A High Order Bi-phase Modulation Scheme for UWB Transmission. IEEE vehicular technology conference. Milan. 2004, 7: 5209-5213.
    68 L. Yang, G. B. Giannakis. Low-Complexity Training for Rapid Timing Acquisition in Ultra Wideband Communications. IEEE global telecommunications conference. San Francisco. 2003, 2: 769-773.
    69 Z. Tian, G. B. Giannakis. Data-aided ML Timing Acquisition in Ultra-Wideband Radios. IEEE conference on Ultra-Wideband systems and technologies. Reston. 2003: 142-146.
    70 C. Carbonelli, U. Mengali. Timing Recovery for UWB Signals. IEEE global telecommunications conference. Dallas. 2004, 1: 61-65.
    71 Z. Tian, G. B. Giannakis. Training Sequence Design for Data-Aided Timing Acquisition in UWB Radios. IEEE International conference on communications. Paris. 2004, 6: 3399-3403.
    72 Z. Tian, G. B. Giannakis. Symbol Timing Estimation in Ultra-Wideband Communications. IEEE Conference on asilomar. Pacific Grove. 2002: 1924-1928.
    73 L. Yang, G. B. Giannakis. Blind UWB Timing with a Dirty Template. International Conference on Acoustics, Speech, and Signal Processing. Montreal. 2004: 509-512.
    74 Z. Wang, X. Yang. Ultra Wide-band Communications with Blind Channel Estimation based on First-order Statistics. International conference on acoustics, speech, and signal processing. Montreal. 2004: 529-532.
    75 D. L. Mills. Internet Time synchronization: The Network Time Protocol. IEEE transactions on communications. 1991, 39(10): 1482-1493.
    76 L. Zhang, Z. Liu, C. H. Xia. Clock Synchronization Algorithms for Network Measurements. IEEE 21st Annual joint conference on computer and communications societies. New York. 2002:160-169.
    77 J. Elson, L. Girod, D. Estrin. Fine-grained Network Time Synchronization using Reference Broadcasts. IEEE 5th symposium on operatiation system design and implementation. Boston. 2002: 147-163.
    78 G. T. Cao, J. L. Welch. Accurate Multihop Clock Synchronization in Mobile Ad hoc Networks. IEEE international workshop on mobile wireless networking. 2004:13-20.
    79 S. Ganeriwal, R. Kumar, M. B. Srivastava. Timing Sync Protocol for Sensor Network. 1st ACM conference on embedded networked sensor systems. Los Angeles. 2003:138-149.
    80 M. L. Sichitiu, C. Veerarittiphan. Simple, Accurate Time Synchronization for Wireless Sensor Networks. IEEE Wireless Communications and Networking Conference. Orlando. 2003: 16-20.
    81 J. V. Greunen, J. Rabaey. Lightweight Time Synchronization for Sensor Networks. 2nd ACM international workshop on wireless. San Diego. 2003:11-19.
    82 M. Maroti, B. Kusy, G. Simon. The Flooding Time SynchronizationProtocol. 2nd international conference on embedded networked sensor systems. New York. 2004: 39-49.
    83 X. J. Huang, Y. X. Li. Generating Near-White Ultra-wideband Signals with Period PN Sequences. IEEE vehicular technology conference. Rhodes. 2001, 5:1184-1188.
    84 H. Suzuki. A Statistical Model for Urban Radio Propagation. IEEE transactions on communications. 1977, 7: 673-680.
    85 J. Foerster, Q. Li. UWB Channel Modeling Contribution from Intel. (IEEE document no.P802.15-02/279-SG3a), Available at http://grouper.ieee.org/groups/802/15/pub/2002/Jul02/.
    86 Q. H. Spencer, B. D. Jeffs, M. A. Jensen, et al. Modeling the Statistical Time and Angle of Arrival Characteristics of an Indoor Multipath Channel. IEEE Journal on selected areas in communications. 2000, 18(3): 347-360.
    87 H. Hashemi. The Indoor Radio Propagation Channel. IEEE Proceedings. 1993, 81(7): 943-968.
    88 R. J. M. Cramer. An Evaluation of Ultra-Wideband Propagation Channels. Ph.D. dissertation, University of Southern California, Los Angeles, CA, USA, 2000, 10: 90-101.
    89 S. S. Ghassemzadeh, L. J. Greenstein, V. Tarokh. The Ultra-Wideband Indoor Multipath Model. AT&T Labs, Florham Park, NJ, USA, Tech. Rep.P802.15 02/282r1SG3a. IEEE P802.15 SG3a contribution. 2002: 1-1.
    90 R. J. M. Cramer, R. A. Scholtz, M. Z. Win. Evaluation of an Ultra-wide-band Propagation Channel. IEEE transactions on antennas and propagation. 2002, 50(5): 561-570.
    91 Q. H. Spencer. Modeling the Statistical Time and Angle of Arrival Characteristics of an Indoor Multipath Channel. MD: Computer engineering. 1996: 45-49.
    92 A. SALEH, R. VALENZUELA. A Statistical Model for Indoor Multipath Propagation. IEEE selected areas in communications journal. 1987, 5: 128-137.
    93 Y. Chao, R. A. Scholtz. Optimal and Suboptimal Receivers for Ultrawideband Transmitted Reference Systems. IEEE global telecommunications conference. San Francisco. 2003, 2: 759-763
    94 X. Cheng, A. Dinh. Ultrawideband Synchronization in Dense Multi-path Environment. IEEE pacific rim conference on communications, computers and signal processing. Victoria. 2005: 29-32.
    95 X. Cheng, A. Dinh. A Synchronization Technique for Ultrawideband Systems using IEEE Channel Models. Canadian conference on electical and computer engineering. Saskatoon. 2005: 1778-1781.
    96范永亮.转移概率流图的概率理论基础与应用方法-转移概率函数的基本概念与性质.数理统计与管理. 1998, 17(1): 45-51.
    97李振涛.状态转移矩阵及系统相应函数.航天控制.1991,3:8-17.
    98李贤平.概率论基础(第二版).高等教育出版社. 1997: 35-46.
    99陈昆.多普勒频偏校正研究.南京理工大学.硕士论文. 2004: 4-17.
    100周刘蕾,程晋,朱洪波.高斯脉冲的超宽带系统抗时间抖动性能分析.中国电子科学研究院学报. 2007, 2: 131-135.
    101王辉宇. IR-UWB系统脉冲参数的研究.哈尔滨工业大学. 2007: 48-50.
    102叶扬,刘发林.超宽带时变移动信道下的尺度时延分集接收.中国科学技术大学学报. 2007, 37(2): 113-118.
    103王辉宇,张钦宇,张乃通. TH-UWB的码间干扰分析.南京邮电大学学报(自然科学版). 2006, 2: 26-33.
    104王辉宇,张钦宇,张乃通. TH-UWB的码间干扰分析. 2005年全国超宽带无线通信技术学术会议. 2005, 11: 285-289.
    105邓兵,陶然.分数阶傅立叶变换与时频滤波.系统工程与电子技术, 2004, 26(10) :1357-1359.
    106黄彩彩,郭继昌.分数傅立叶变换在啁啾信号检测中应用.电子测量技术, 2006, 29 (1): 41-80.
    107陈明杰.分数阶傅立叶变换的数值实现.重庆大学学报. 2003, 26(5): 129-132.
    108张怡霄,杜惊雷,高福华.分数域啁啾滤波及其在数字图像处理中的应用.激光技术. 2003, 27(1): 78-80.
    109李家强,金荣洪,耿军平.基于分数阶频率域混合相关的线性调频信号检测与参数估计.上海交通大学学报. 2005, 9: 1478-1482.
    110 A. W. Lohmann, B. H. Soffer. Relationships between the Radon-Wigner and Fractional Fourier transforms. J Opt Soc Amer A,1994,11(6):1798-1801.
    111 C. C. Shih. Fractionalization of Fourier Transform. Optics communications.1995(115): 495-498.
    112齐林,陶然.基于分数阶傅立叶变换的多分量LFM信号检测和参数估计.中国科学E辑. 2003, 33(8): 749-759.
    113陶然,周云松.基于分数阶傅立叶变换的宽带LFM信号波达方向估计新算法.北京理工大学学报. 2005, 25(10): 895-899.
    114齐林,陶然,周思永,王越. LFM信号的一种最优滤波算法.电子学报. 2004, 32(9): 1464-1467.
    115 Q. Lin, T. Ran, S. Y. Zhou, Y. Wang. Adaptive Time-Varying Filter for Linear FM Signal in Fractional Fourier Domain. International conference on signal Processing. Beijing. 2002: 1425-1428.
    116齐林,陶然,周思永,王越.基于分数阶傅立叶变换的线性调频信号的自适应时频滤波.兵工学报. 2003, 4: 499-503.
    117邓兵,陶然,齐林,刘锋.分数阶傅立叶变换与时频滤波.系统工程与电子技术. 2004, 10: 1357-1405.
    118 D. C. Rife, R. R Boorsyn. Single-Tone Parameter Estimation from Discrete Obeservation. IEEE transactions information theory. 1974, 20(5): 591-598.