聚球藻7942光自养本征生长动力学及其能量利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻及其代谢产物在食品和医药工业、能源供应和环境保护等领域有广泛的应用前景,但目前大规模培养微藻仍是一个难题,如何提高微藻的培养密度和光能利用效率是其走向应用的关键技术之一。聚球藻7942(Synechococcus sp.PCC7942)是一个优良的光自养模式蓝藻,其在微藻光合作用机理和光能利用等研究方面具有重要的地位。本文以聚球藻7942作为研究对象,分别从生长动力学、叶绿素荧光诱导动力学和代谢流分析等角度对其在不同培养条件下的生长特性和能量利用进行了较为深入的研究。研究结果为揭示微藻光自养生长的本征动力学规律和提高微藻光能利用效率奠定了重要基础。
     在1.5 L气升式光生物反应器上对聚球藻7942的光自养生长特征进行了研究。结果表明,藻细胞在光自养培养下基本呈线性生长特征,而且随着入射光强的增加,聚球藻7942的线性生长速率和最大比生长速率不断增加,但叶绿素α含量会逐渐下降。同时,分析了培养过程中光传递对藻细胞生长的影响,结果表明,利用平均光强作为聚球藻7942的限制因子更能反映培养过程本质,以此为基础建立了基于平均光强的生长动力学模型,并初步估算得聚球藻7942光自养条件下的最大比生长速率μm=1.53 d-1。
     利用连续培养技术,在2.5 L平板式光生物反应器上对不同光强下聚球藻7942的光能吸收与利用进行了分析,结果表明聚球藻7942细胞的最大光能得率为1.15×10-2 g/kJ,相应的最大生物能量得率为24.23%。
     利用叶绿素荧光技术,分析了光自养培养中氮、磷浓度对于细胞的生长和光合作用.的影响。结果表明适当提高BG-11中的NaN03和K2HP04浓度可以促进聚球藻7942的生长,并且能够增加细胞内蛋白质和叶绿素α的含量。BG-11培养基中NaN03和K2HP04的浓度分别为1.5 g/L和60 mg/L时具有较高光合效率。研究还发现,在氮、磷限制的条件下,聚球藻7942细胞的光合系统Ⅱ(PSⅡ)的光合反应中心会发生可逆性失活。
     根据微藻光合作用机理,结合叶绿素荧光参数,建立了一个新的光能利用模型(?)和m。分别表示藻细胞基于吸收光能的实际最大细胞生长得率系数和实际光能维持系数)。并根据该模型,获得了聚球藻7942在光自养条件下的本征动力学参数,藻细胞的实际最大光能得率系数(Ymaxθ)和实际光能维持系数(mΘ分别为,0.0119 g/kJ和0.705 kJ/(g·h)。这个新模型解决了微藻光自养生长动力学与传统生长动力学之间的矛盾。
     建立了聚球藻7942光自养培养代谢网络,并通过代谢通量方法分析了不同入射光强下的碳代谢流分布和能量代谢。结果表明光合磷酸化是ATP和NADPH的主要产生途径,而将CO2固定的Calvin循环则是代谢能量和还原力消耗的主要途径。在一定光强范围,基于ATP生成的细胞得率和最大细胞得率基本维持不变,分别约为2.80 g/mol ATP和2.95 g/mol ATP,而相应的实际光能转化效率分别为13.65%,10.02%和7.86%。
     聚球藻7942能在以葡萄糖和乙酸为有机碳源的培养基上进行光混养培养。4.0 g/L的葡萄糖和2.0 g/L乙酸均对藻细胞的的生长有明显促进作用,并且能改变藻细胞中碳水化合物、脂类和叶绿素α的含量。运用代谢通量分析方法对聚球藻7942在混养条件下的碳代谢特征进行研究表明,葡萄糖和乙酸能明显促进糖酵解途径和TCA循环的代谢流量,同时发现混养条件下细胞得率和能量转化率均要高于光自养。
     本研究不仅从宏观的细胞生长的角度,而且还从光合作用机制和代谢的微观角度上探讨了聚球藻7942细胞光自养生长的本征动力学特征和光能利用规律。这为实现微藻的大规模培养奠定了理论基础。
Microalgal cells and their metabolites were widely applied in food and pharmaceutical industry as well as energy supply and environmental protection. However, so far the large-scale cultivation of microalgae is still difficult and it is crucial to increase the cell density and improve the light energy efficiency for its practical industrial application. Synechococcus sp. PCC7942 is a superior typical cyanobacterium for autophototrophic cultivation and it holds a special place in the development of the photosynthesis mechanisms and light energy utilization of microalgae. In the present work, we investigated the growth characteristics and energy utilization of Synechococcus sp. PCC7942 under different culture conditions by the application of growth kinetics, chlorophyll fluorescence kinetics and metabolic flux analysis. This study will lay a foundation for revealing the intrinsic growth kinetics and improving the efficiency of light energy conversion of microalgae in autophototrophic culture.
     Synechococcus sp. PCC7942 was cultivated in a 1.5 L airlift photobioreactor and the characteristics of cell growth were investigated. The results showed that the growth curve of Synechococcus sp. PCC7942 cell was linear in the autotrophic culture. The linear growth rate and the maximum specific growth rate both increased while the content of chlorophyll a decreased with the elevation of incident light intensity. Furthermore, the effect of light transmission on cell growth was also studied and it was found that the average light intensity was more appropriate to serve as a key factor for cell growth. Therefore, a growth kinetic model was setup based on the conception of average light intensity and the maximum specific growth rate of Synechococcus sp. PCC7942 under autophototrophic condition was estimated to be 1.53 d-1.
     Continuous culture was conducted in a 2.5 L flat photobioreactor and the light absorption and utilization of Synechococcus sp. PCC7942 cell were discussed. Results demonstrated that the cell jgrowth yield and the maximum-bioenergy efficiency based on the absorbed light energy were evaluated to be 1.15×10-2 g/kJ and 24.23%, respectively.
     The effect of concentration of nitrogen and phosphorus on cell growth and photosynthesis were also investigated with application of the chlorophyll fluorescence analysis in the present studies.It was suggested that the appropriate increase of the concentration of NaNO3 and K2HPO4 in BG-11 medium can promote the cell growth and enhance the content of protein and chlorophyll a of Synechococcus sp. PCC7942 and high photosynthesis efficiency was achieved at the concentration of 1.5 g/L NaN03 and 60 mg/L K2HPO4.'Moreover, the photochemical reaction center of photosynthetic system (PSII) would inactivate reversibility under condition of nitrogen or phosphorus limitation.
     On the basis of the mechanism of photosynthesis and chlorophyll fluorescence analysis, a new light utilization model which express as Eabθ=μ/Ymaxθ+mθ(here Ymaxθand mθwere the actual maximum cell growth yield and the actual maintenance coefficient respectively) was established. According to the model, the intrinsic parameters of cell growth in autotrophic culture were obtained. The actual maximum cell growth yield (Ymaxθ) and the actual maintenance coefficient (mθ) of Synechococcus sp. PCC7942 was 0.0119 g/kJ and 0.705 kJ/(g-h). The new model can well resolve the conflict between the autophototrophic growth kinetics and the traditional growth kinetics.
     A comprehensive network structure for the autotrophic growth of Synechococcus sp. PCC7942 was proposed, and the carbon and energetic metabolism under different incident light intensity was investigated based on metabolic flux analysis in this paper. Results showed that the photophosphorylation and Calvin cycle were the main producer and trapper of ATP and NADPH.The values of cell growth yield and the maximum cell growth yield based on ATP generation were more stable which were 2.80 g/mol-ATP and 2.95 g/mol-ATP respectively under given conditions. The corresponding actual light conversion efficiencies were 13.65%,10.02% and 7.86%, respectively.
     Synechococcus sp. PCC7942 can grow in the mixotrophic culture in the presence of glucose and acetate.4.0 g/L glucose or 2.0 g/L acetate can improve the cell growth and alter the contents of carbohydrates, lipids and chlorophyll a of cell. Furthermore, the glucose acetate can also enhance the metabolic flux through glycolysis pathway and TCA cycle. On the basis of metabolic flux analysis, the cell growth yield and energy conversion efficiency under the mixotrophic conditions was higher than that in the photoautotrophic condition.
     In the present work, the intrinsic growth kinetics and light utilization were discussed based on the cell growth characteristics, photosynthetic mechanism and metabolic flux analysis. The results will establish a solid foundation for microalgae mass cultivation.
引文
[1]Duysens L, Sweers H. Studies on microalgae and photosynthetic bacteria. Tokyo:Univ. Tokyo,1963:353-372.
    [2]Shimizu Y. Microalgal metabolites:a new perspective. Annu Rev Microbiol,1996,50 (l):431-465.
    [3]Vonshak A. Recent advances in microalgal biotechnology. Biotechnol Adv,1990,8 (4):709-727.
    [4]Becker E. Microalgae:biotechnology and microbiology.Cambridge Univ Pr,1994.
    [5]Williams P. Biofuel:microalgae cut the social and ecological costs. Nature,2007,450 (7169):478-478.
    [6]Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol,2008,26 (3):126-131.
    [7]Kobayashi M, Kakizono T, Nagai S. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. Journal of Fermentation and Bioengineering,1991,71 (5):335-339.
    [8]Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng,2006,101 (2):87-96.
    [9]Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biot,2004,65 (6):635-648.
    [10]陆开宏,林霞.13种饵料微藻的脂肪酸组成特点及在河蟹育苗中的应用.宁波大学学报:理工版,2001,14(3):27-32.
    [11]Chisti Y. Biodiesel from microalgae. Biotechnol Adv,2007,25 (3):294-306.
    [12]Yu J, Takahashi P. Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Mendez-Vilas, A.(Ed.). Badajoz, Spain:Formatex Publishing, 2007:79"C89.
    [13]Benemann J. Hydrogen production by microalgae. J Appl Phycol,2000,12 (3):291-300.
    [14]Melis A, Seibert M, Ghirardi M. Hydrogen fuel production by transgenic microalgae. Transgenic Microalgae as Green Cell Factories,2007:110-121.
    [15]Kruse O, Hankamer B. Microalgal hydrogen production. Curr Opin Biotech,2010,21 (3):238-243.
    [16]Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances. The Plant Journal,2008,54 (4):621-639.
    [17]Raja R, Hemaiswarya S, Kumar N, et al. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol,2008,34 (2):77-88.
    [18]Yehuda S, Rabinovitz S. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging,2002,23 (5):843-853.
    [19]Raja R, Hemaiswarya S. Microalgae and Immune Potential. Dietary Components and Immune Function,2010:515-527.
    [20]Vioque A. Transformation of cyanobacteria. Transgenic Microalgae as Green Cell Factories,2007:12-22.
    [21]席超,王春梅,施定基.蓝藻基因工程应用研究进展.中国生物工程杂志,2010,30(03):105-111.
    [22]刘凤龙,张宏斌,施定基,等.人肿瘤坏死因子α基因穿梭表达载体的构建和在鱼腥藻7120中的表达.中国科学C辑,1999,29(2):217-224.
    [23]戴溦,施定基.人表皮生长因子(hEGF)基因在蓝藻中的表达.植物学报:英文版,2001,43(012):1260-1264.
    [24]章军,秦燕.蓝藻Synechococcus sp. PCC7942穿梭表达质粒的构建及胸腺素α 1基因的表达.实验生物学报,2003,36(001):1-4.
    [25]Blunt J, Copp B, Hu W, et al. Marine natural products. Nat Prod Rep,2007,24 (1):31-86.
    [26]Wiencke C, Clayton M. Biology of polar benthic algae. Bot Mar,2009,52 (6):479-481.
    [27]Wang B, Li Y, Wu N, et al. CO2 bio-mitigation using microalgae. Appl Microbiol Biot, 2008,79(5):707-718.
    [28]Kim M K, han M S, jin E S, et al. Microalgae with high-efficient ability to remove carbon dioxide and use thereof.WO Patent WO/2009/142,459,2009.
    [29]Larsdotter K, Jansen J, Dalhammar G. Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ Technol,2007,28 (9):953-960.
    [30]Shi J, Podola B, Melkonian M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers:an experimental study. J Appl Phycol, 2007,19(5):417-423.
    [31]Gruber N. A bigger nitrogen fix. Nature:International Weekly Journal of Science,2005, 436 (8):786-787.
    [32]Dugdale R. Nitrogen fixation in the Sargasso Sea. Deep Sea Research Part II:Topical Studies in Oceanography,1961,7:297-300.
    [33]丁昌玲,孙军,顾海峰,等.海洋蓝藻固氮基因.海洋科学,2008,32(007):75-80.
    [34]Metting John W. Biologically active compounds from microalgae. Enzyme Microb Tech, 1986,8 (7):386-394.
    [35]Metting F. Biodiversity and application of microalgae. Journal of Industrial Microbiology and Biotechnology,1996,17 (5):477-489.
    [36]Yamaguchi K. Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites:a review. J Appl Phycol,1996,8 (6):487-502.
    [37]Kratz W, Myers J. Photosynthesis and respiration of three blue-green algae. Plant Physiol, 1955,30(3):275-280.
    [38]Hoare D S, Hoare S L, Moore R B. The photoassimilation of organic compounds by autotrophic blue-green algae.Microbiology+,1967,49 (3):351-370.
    [39]Pelroy R, Rippka R, Stanier R. Metabolism of glucose by unicellular blue-green algae. Arch Microbiol,1972,87 (4):303-322.
    [40]Pearce J, Carr N G. The metabolism of acetate by the blue-green algae, Anabaena variabilis and Anacystis nidulans. Microbiology+,1967,49 (2):301-313.
    [41]Khoja T, Whitton B. Heterotrophic growth of blue-green algae. Arch Microbiol,1971,79 (3):280-282.
    [42]Lange W, Buscher T, Frantsi C, et al. Enhancement of algal growth in Cyanophyta-bacteria systems by carbonaceous compounds. Can J Microbiol,1971,17 (3):303-314.
    [43]Takahashi H, Miyake M, Tokiwa Y, et al. Improved accumulation of poly-3-hydroxybutyrate by a recombinant cyanobacterium. Biotechnol Lett,1998,20 (2):183-186.
    [44]汪晶,康瑞娟,施定基,等.有机碳源对转hTNF-α基因聚球藻生长和光合作用的影响.植物生理与分子生物学学报,2003,29(05):405-408.
    [45]Kang R, Wang J, Shi D, et al. Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett,2004,26 (18):1429-1432.
    [46]Shestakov S, Khyen N. Evidence for genetic transformation in blue-green alga Anacystis nidulans. Molecular and General Genetics MGG,1970,107 (4):372-375.
    [47]Kuhlemeier C, Van Arkel G. Host-vector systems for gene cloning in cyanobacteria. Method Enzymol,1987,153:199-215.
    [48]Golden S, Brusslan J, Haselkorn R. Genetic engineering of the cyanobacterial chromosome. Method Enzymol,1987,153:215-231.
    [49]Maeda S, Price G, Badger M, et al. Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate. J Biol Chem,2000,275 (27):20551.
    [50]Tchernov D, Helman Y, Keren N, et al. Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3- in cyanobacteria are driven by a photosystem Ⅰ-generated deltamuH+. J Biol Chem,2001,276 (26):23450-23455.
    [51]Lee H, Vazquez-Bermudez M, De Marsac N. The global nitrogen regulator NtcA regulates transcription of the signal transducer PⅡ (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol,1999,181 (9):2697-2702.
    [52]Vazquez-Bermudez M F, Paz-Yepes J, Herrero A, et al. The NtcA-activated amt1 gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology+,2002,148 (3):861-869.
    [53]Durham K, Porta D, McKay M, et al. Expression of the iron-responsive irpA gene from the cyanobacterium Synechococcus sp. strain PCC 7942. Arch Microbiol,2003,179 (2):131-134.
    [54]Michel K, Pistorius E, Golden S. Unusual regulatory elements for iron deficiency induction of the idiA gene of Synechococcus elongatus PCC 7942. J Bacteriol,2001, 183(17):5015.
    [55]Sane P, Ivanov A, Sveshnikov D, et al. A Transient Exchange of the Photosystem II Reaction Center Protein D1:1 with D1:2 during Low Temperature Stress of Synechococcus sp. PCC 7942 in the Light Lowers the Redox Potential of QB. J Biol Chem,2002,277 (36):32739-32745.
    [56]Sarcina M, Tobin M J, Mullineaux C W. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition. J Biol Chem,2001,276 (50):46830-46834.
    [57]Kulkarni R, Schaefer M, Golden S. Transcriptional and posttranscriptional components of psbA response to high light intensity in Synechococcus sp. strain PCC 7942. J Bacteriol,1992,174 (11):3775-3781.
    [58]Van Waasbergen L, Dolganov N, Grossman A. nblS, a Gene Involved in Controlling Photosynthesis-Related Gene Expression during High Light and Nutrient Stress in Synechococcus elongatus PCC 7942. J Bacteriol,2002,184 (9):2481-2490.
    [59]Schmitz O, Boison G, Bothe H. Quantitative analysis of expression of two circadian clock-controlled gene clusters coding for the bidirectional hydrogenase in the cyanobacterium Synechococcus sp. PCC7942. Mol Microbiol,2008,41 (6):1409-1417.
    [60]Andersson C, Tsinoremas N, Shelton J, et al. Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Method Enzymol,2000,305:527-542.
    [61]Tandeau de Marsac N, Torre F, Szulmajster J. Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystis nidulans R2. Molecular and General Genetics MGG,1987,209 (2):396-398.
    [62]Wada H, Combos Z, Murata N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature,1990,347:200-205.
    [63]Sode K, Tatara M, Hatano N, et al. Foreign gene expression in marine cyanobacteria under pseudo-continuous culture. J Biotechnol,1994,33 (3):243-248.
    [64]Suzuki T, Miyake M, Tokiwa Y, et al. A recombinant cyanobacterium that accumulates poly-(hydroxybutyrate). Biotechnol Lett,1996, 18 (9):1047-1050.
    [65]Zahalak M, Beachy R, Thiel T. Expression of the movement protein of tobacco mosaic virus in the cyanobacterium Anabaena sp. strain PCC 7120. MPMI-Molecular Plant Microbe Interactions,1995,8 (2):192-199.
    [66]Lightfoot D, Baron A, Wootton J. Expression of the Escherichia coli glutamate dehydrogenase gene in the cyanobacterium Synechococcus PCC6301 causes ammonium tolerance. Plant Mol Biol,1988,11 (3):335-344.
    [67]Price G, Badger M. Expression of Human Carbonic Anhydrase in the Cyanobacterium Synechococcus PCC7942 Creates a High CO2-Requiring Phenotype:Evidence for a Central Role for Carboxysomes in the CO2 Concentrating Mechanism. Plant Physiol, 1989,91 (2):505.
    [68]Elanskaia I, Morzunova I. Cloning the alpha-amylase gene of Bacillus amyloliquefaciens in cyanobacteria cells. Mol gene,1989, (9):7-11
    [69]Wouters J, Bergman B, Janson S. Cloning and expression of a putative cyclodextrin glucosyltransferase from the symbiotically competent cyanobacterium Nostoc sp. PCC 9229. Ferns Microbiol Lett,2003,219 (2):181-185.
    [70]Lunn J, Price G, Furbank R. Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol, 1999,40(2):297-305.
    [71]Luinenburg I, Coleman J. Expression of Escherichia coli Phosphoenolpyruvate Carboxylase in a Cyanobacterium (Functional Complementation of Synechococcus PCC 7942 ppc). Plant Physiol,1993,101 (1):121-126.
    [72]Takeshima Y, Takatsugu N, Sugiura M, et al. High-level expression of human superoxide dismutase in the cyanobacterium Anacystis nidulans 6301. Proceedings of the National Academy of Sciences of the United States of America,1994,91 (21):9685-9689.
    [73]周杰,施定基,武宝,等.人肝金属硫蛋白突变体β基因通过同源重组在蓝藻中的克隆与表达.中国生物化学与分子生物学报,1999,15(6):907-911.
    [74]章军,宋新强.利用同源重组质粒pUTK转化蓝藻Synechococcus sp. PCC9742及胸腺素α 1的表达.海洋科学,2001,25(006):1-3.
    [75]徐虹,章军.胸腺素α 1-基因在钝顶螺旋藻中的表达.高技术通讯,2002,12(012):83-87.
    [76]Lee Y. Microalgal mass culture systems and methods:Their limitation and potential. J Appl Phycol,2001,13 (4):307-315.
    [77]Richmond A, Cheng-Wu Z. Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol,2001,85 (3):259-269.
    [78]Zou N, Richmond A. Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. J Biotechnol,1999,70 (l-3):351-356.
    [79]Molina E, Fernandez J, Acien F, et al. Tubular photobioreactor design for algal cultures. J Biotechnol,2001,92 (2):113-131.
    [80]Torzillo G, Carlozzi P, Pushparaj B, et al. A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng,1993,42 (7):891-898.
    [81]闫海,张宾,王素琴,等.小球藻异养培养的研究进展.现代化工,2007,27(004):18-21.
    [82]张义明.钝顶螺旋藻在混合营养培养中异养生长能力的估算.贵州工业大学学报,1999,28(02):70-74.
    [83]成静,郭勇.转基因鱼腥藻7120光异养生长的研究.华南理工大学学报(自然科学版),2000,28(09):69-72.
    [84]陈涛,刘红涛,吕鹏举,等.杜氏盐藻异养表达载体的构建及异养转化株的鉴定.生物工程学报,2009,25(03):392-398.
    [85]Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J,2000,6 (2):87-102.
    [86]徐芳,胡晗华,丛威,等.有机碳源对产EPA微藻(Nannochloropsis sp.)生长及光合作用的影响.过程工程学报,2003,3(006):560-563.
    [87]Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, et al. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol,2008,20 (3):245-251.
    [88]Jeon Y, Cho C, Yun Y. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Tech, 2006,39 (3):490-495.
    [89]Yeh K, Chang J. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences,2010,10 (3):201-208.
    [90]Hancke K, Hancke T, Olsen L, et al. Temperature effects on microalgal photosynthesis-light responses measured by O2 production, pulse-amplitude-modulated fluorescence, and 14C assimilation. J Phycol,2008,44 (2):501-514.
    [91]Durmaz Y, Monteiro M, Bandarra N, et al. The effect of low temperature on fatty acid composition and tocopherols of the red microalga, Porphyridium cruentum. J Appl Phycol,2007,19 (3):223-227.
    [92]Li X, Xu H, Wu Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng, 2007,98(4):764-771.
    [93]张晨;郭勇.pH值对转基因鱼腥藻培养的影响:生物技术,2002,12(003):31-32.
    [94]朱笃,李元广,叶勤,等.氮源和初始NaHCO3浓度对转T α 1基因聚球藻7942生长与表达的影响.高技术通讯,2003,13(12):76-80.
    [95]Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and light Intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technol,2010,
    [96]王克明,杨静.采用流加培养技术提高盐藻生物量的研究.海洋通报,1999,18(004):64-68.
    [97]王长海,孙颖颖.流加培养对球等鞭金藻生长和生化成分的影响.天津大学学报,2008,41(002):142-146.
    [98]Graverholt O, Eriksen N. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphur aria and production of phycocyanin. Appl Microbiol Biot, 2007,77 (1):69-75.
    [99]王克明.流加培养对杜氏盐藻生物量的影响.浙江科技学院学报,2005,17(003):167-170.
    [100]任莉红,孙利芹,王长海.用流加培养技术在光生物反应器中培养新月菱形藻的研究.大连水产学院学报,2008,23(003):210-214.
    [101]Chiu S, Tsai M, Kao C, et al. The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Engineering in Life Sciences,2009,9 (3):254-260.
    [102]朱笃.转基因聚球藻7942光自养培养及人源胸腺素α 1表达的研究[D].上海:华东理工大学,2003.
    [103]朱艺峰,林霞,徐同成,等.光,氮和半连续培养更新率对微绿球藻生长与采收量的影响.中国水产科学,2004,11(002):159-165.
    [104]Chiu S, Kao C, Chen C, et al. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technol,2008,99 (9):3389-3396.
    [105]徐志标,裴鲁青,骆其君,等.绿色巴夫藻的光生物反应器半连续培养研究.海洋水产研究,2005,26(4):64-69.
    [106]蒋冰飞.环境因子对球等鞭金藻生长和脂肪酸合成的影响[D].大连理工大学,2006.
    [107]刘建国,刘伟.雪藻高密度连续培养中生物量和花生四烯酸的高产率[J].海洋与湖沼,2002,33(5):499-508.
    [108]Ceron M, Garcia-Malea M, Rivas J, et al. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biot,2007,74 (5):1.112-1119.
    [109]曾文炉,李浩然,丛威,等.螺旋藻连续培养与动力学模型.植物学报:英文版,2001,43(012):1233-1236.
    [110]Ethier S, Woisard K, Vaughan D, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technol,2010,102 (1):88-93.
    [111]Pulz O, Scheibenbogen K. Photobioreactors:design and performance with respect to light energy input. Bioprocess and Algae Reactor Technology, Apoptosis, 1998:123-152.
    [112]Ogbonna J C, Tanaka H. Light requirement and photosynthetic cell cultivation Development of processes for efficient light utilization in photobioreactors. J Appl Phycol,2000,12 (3-5):207-218.
    [113]Janssen M, Tramper J, Mur L R,et al. Enclosed outdoor photobioreactors:Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng,2003,81 (2):193-210.
    [114]Barbosa M J, Hoogakker J, Wijffels R H. Optimisation of cultivation parameters in photobiore actors for microalgae cultivation using the A-stat technique.Biomol Eng, 2003,20 (4-6):115-123.
    [115]Aiba S. Growth kinetics of photosynthetic microorganisms. Microbial Reactions,1982, 23:85-156.
    [116]Lee H Y, Erickson L E, Yang S S. Kinetics and Bioenergetics of Light-Limited Photoautotrophic Growth of Spirulina Platensis. Biotechnol Bioeng,1987,29 (7):832-843.
    [117]Iehana M. Kinetic analysis of the growth of Chlorella vulgaris. Biotechnol Bioeng, 1990,36 (2):198-206.
    [118]Lee H, Erickson L, Yang S. Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis. Biotechnol Bioeng,1987,29 (7):832-843.
    [119]Janssen M, Janssen M, de Winter M, et al. Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol, 2000,78(2):123-137.
    [120]尤珊,郑必胜,郭祀远.光照对螺旋藻生长和形态的影响.微生物学杂志,2002,(006):58-59.
    [121]华雪铭,丁卓平.温度和光照对微藻的生长,总脂肪含量及脂肪酸组成的影响.上海水产大学学报,1999,8(004):309-315.
    [122]蒋霞敏.温度、光照、氮含量对微绿球藻生长及脂肪酸组成的影响.海洋科学,2002,26(8):9-13.
    [123]尤珊,郑必胜,郭祀远.光照对螺旋藻形态及胞外多糖的影响和机理.海湖盐与化工,2004,33(001):23-25.
    [124]韩博平,韩志国,付翔.藻类光合作用机理与模型.科学出版社,2003.
    [125]De Maagd P, Hendriks A, Seinen W, et al. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Res,1999,33 (3):677-680.
    [126]Chiswell R, Shaw G, Eaglesham G, et al. Stability of cylindrosperrriopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii:Effect of pH, temperature, and sunlight on decomposition. Environ Toxicol,1999,14 (1):155-161.
    [127]Harada K, Tsuji K, Watanabe M, et al. Stability of microcystins from cyanobacteria-Ⅲ. Effect of pH and temperature. Phycologia,1996,35 (6S):83-88.
    [128]陈峰,姜悦.微藻生物技术.中国轻工业出版社,1999.
    [129]Lee L, Lustigman B, Chu I, et al. Effect of aluminum and pH on the growth of Anacystis nidulans. B Environ Contam Tox,1991,46 (5):720-726.
    [130]Volokita M, Zenvirth D, Kaplan A, et al. Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol,1984,76 (3):599-602.
    [131]Miller A, Espie G, Canvin D. Active transport of CO2 by the cyanobacterium Synechococcus UTEX 625:measurement by mass spectrometry. Plant Physiol,1988, 86 (3):677.
    [132]尹翠玲.营养盐限制对6株微藻叶绿素荧光特性的影响[D].中国海洋大学, 2006.
    [133]杨东方,张经,陈豫,等.营养盐限制的唯一性因子探究.海洋科学,2001,25(012):49-51.
    [134]李铁,胡立阁,史致丽.营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响.海洋与湖沼,2000,31(1):46-52.
    [135]许大全.光合作用效率.上海科学技术出版社,2002.
    [136]Campbell D, Hurry V, Clarke A K, et al. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol R,1998,62 (3):667-683.
    [137]Papageorgiou G. Chlorophyll fluorescence:an intrinsic probe of photosynthesis. Bioenergetics of photosynthesis,1975:319-371.
    [138]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(004):444-448.
    [139]林植芳,彭长连.强光诱导叶片和盐藻在505nm的差示吸收和叶绿素荧光的变化.热带亚热带植物学报,1997,5(003):27-34.
    [140]Baroli I, Do A, Yamane T, et al. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. The Plant Cell Online,2003,15 (4):992-1008.
    [141]Lavaud J, Rousseau B, van Gorkom H, et al. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol,2002,129 (3):1398-1406.
    [142]Morgan-Kiss R, Ivanov A, Williams J. Differential thermal effects on the energy distribution between photosystem Ⅱ and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochimica et Biophysica Acta (BBA)-Biomembranes,2002,1561 (2):251-265.
    [143]黄仿,武宝玕.热胁对球等鞭金藻作用机制的叶绿素荧光研究.广西师范大学学报(自然科学版),1995,13(2):72-76.
    [144]梁英,冯力霞,田传远,等.高温胁迫对盐藻和塔胞藻叶绿素荧光动力学的影响.中国水产科学,2007,14(6):961-968.
    [145]欧阳叶新,施定基.鱼腥藻7120响应NaCl胁迫的光合特性.水生生物学报,2003,27(001):74-77.
    [146]阮海华,沈文飚,叶茂炳,等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报,2001,46(023):1993-1997.
    [147]金月梅.氮磷限制对8株微藻叶绿素荧光特性及生长的影响[D].中国海洋大学,2008.
    [148]胡章喜,徐宁,李爱芬,等.氮磷比率对3种典型赤潮藻生长的影响.水生生物学报,2008,32(004):482-487.
    [149]左冬梅.铁对尖刺拟菱形藻生长及光合作用的影响.暨南大学学报:自然科学与 医学版,2002,23(095):8 1-87.
    [150]周党卫,韩发.UV-B辐射增强对植物光合作用的影响及植物的相关适应性研究.西北植物学报,2002,22(004):1004-1010.
    [151]王悠,杨震.7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(002):225-230.
    [152]陈善文.藻类对UV-B增强的响应及其分子基础.暨南大学学报:自然科学与医学版,2000,21(005):88-94.
    [153]Nilawati J, Greenberg B, Smith R. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms. J Phycol,1997,33 (2):215-224.
    [154]王山杉,刘永定.Zn2+浓度对固氮鱼腥藻(Anabaena azotica Ley)光能转化特性的影响.湖泊科学,2002,14(004):350-356.
    [155]周银环,刘东超.4种微量金属元素对绿色巴夫藻生长、叶绿素α及大小的影响.湛江海洋大学学报,2003,23(001):22-28.
    [156]Bertrand M, Schoefs B, Siffel P, et al. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. Febs Lett,2001,508 (1):153-156.
    [157]Cid A, Herrero C, Torres E, et al. Copper toxicity on the marine microalga Phaeodactylum tricornutum:effects on photosynthesis and related parameters. Aquat Toxicol,1995,31(2):165-174.
    [158]Stephanopoulos G Metabolic engineering. Curr Opin Biotech,1994,5 (2):196-200.
    [159]张星元,潘中明,牟奕,等.代谢网络刚性与代谢工程.生物工程进展,1999,19(6):37-42.
    [160]Cogne G, Gros J B, Dussap C G Identification of a metabolic network structure representative of Arthrospira (Spirulina) platensis metabolism. Biotechnol Bioeng, 2003,84 (6):667-676:
    [161]Nishioka M, Nishiuma H, Miyake M, et al. Metabolic flux analysis of a poly-β-hydroxybutyrate producing-cyanobacterium, Synechococcus sp. MA19,grown under photoautotrophic conditions. Biotechnology and Bioprocess Engineering,2002, 7 (5):295-302.
    [162]喻国策,蔡昭铃,施定基,等.应用细胞合成计量关系模型分析鱼腥藻7120的混合营养生长.应用与环境生物学报,2001,(05):420-427.
    [163]Ralph P, Gademann R. Rapid light curves:a powerful tool to assess photosynthetic activity. Aquat Bot,2005,82 (3):222-237.
    [164]D'Ambrosio N, Arena C, De Santo A. Temperature response of photosynthesis, excitation energy dissipation and alternative electron sinks to carbon assimilation in Beta vulgaris L. Environ Exp Bot,2006,55 (3):248-257.
    [165]Kolmakov V I, Anishchenko O V,Ivanova E A, et al. Estimation of periphytic microalgae gross primary production with DCMU-fluorescence method in Yenisei River (Siberia, Russia). J Appl Phycol,2008,20 (3):289-297.
    [166]Gaevskii N A, Kolmakov V I, Popelnitskii V A, et al. Evaluation of the effect of light intensity on the measurement of the photosynthetic rate in plankton microalgae by the chlorophyll fluorescence method. Russ J Plant Physl+,2000,47 (6):820-825.
    [167]Serodio J, Vieira S, Cruz S, et al. Rapid light-response curves of chlorophyll fluorescence in microalgae:relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Photosynth Res,2006,90(1):29-43.
    [168]Hata J, Hua Q, Yang C, et al. Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells, Marchantia polymorpha. Biochem Eng J, 2000,6(1):65-74.
    [169]Ruban A, Horton P. Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Functional Plant Biology,22 (2):221-230.
    [170]朱笃,李元广,叶勤,等.转基因聚球藻7942培养中光传递及其对细胞生长的影响.过程工程学报,2003,3(3):231-237.
    [171]Molina Grima E, Garcia Camacho F, Sgnchez Perez J, et al. Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme Microb Tech,1997,21 (5):375-381.
    [172]Grima E, Sevilla J, Perez J, et al. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol,1996,45 (1):59-69.
    [173]Lichtenthaler H. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Methods Enzymol,1987,148 (2):350-382.
    [174]Hewitt B. Spectrophotometric determination of total carbohydrate. Nature,1958, 182:246-247.
    [175]Piorreck M, Baasch K, Pohl P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry,1984,23 (2):207-216.
    [176]Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72 (1-2):248-254.
    [177]Fresenius W, Quentin K, Schneider W. Water analysis.Berlin:Springer,1988.
    [178]萧能庚,余瑞元,袁明秀,等.生物化学实验原理和方法.北京:北京大学出版社,2005.
    [179]马蕙,仪宏,王丽丽.气相色谱法测定发酵液中丙酸和乙酸的含量.饲料工业,2008,(09):48-50.
    [180]Grima E M, Fernandez F G A, Camacho F G, et al. Photobioreactors:light regime, mass transfer, and scaleup. J Biotechnol,1999,70 (1-3):231-247.
    [181]Evers E G. A Model for Light-Limited Continuous Cultures-Growth, Shading, and Maintenance. Biotechnol Bioeng,1991,38 (3):254-259.
    [182]Pirt S, Lee Y, Richmond A, et al. The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilisation. J Chem Technol Biot,1980,30 (1):25-34.
    [183]Radmer R, Behrens P, Arnett K. Analysis of the productivity of a continuous algal culture system. Biotechnol Bioeng,1987,29 (4):488-492.
    [184]Fernandez F G A, Camacho F G, Perez J A S, et al. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol Bioeng,1997,55 (5):701-714.
    [185]Grima E M, Camacho F G, Perez J A S, et al. A mathematical model of microalgal growth in light-limited chemostat culture. Journal of Chemical Technology& Biotechnology,2004,61 (2):167-173.
    [186]Yun Y, Park J. Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Appl Microbiol Biot,2001,55 (6):765-770.
    [187]Rabe A, Benoit R. Mean light intensity-a useful concept in correlating growth rates of dense cultures of microalgae. Biotechnol Bioeng,1962,4 (4):377-390.
    [188]Yun Y S, Park J M. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnol Bioeng,2003,83 (3):303-311.
    [189]Grima E M, Camacho F G, Perez J A S, et al. Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme Microb Tech,1997,21 (5):375-381.
    [190]Falkowski P, Owens T, Ley A, et al. Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol,1981,68 (4):969-973.
    [191]Lee H Y, Erickson L E, Yang S S. The estimation of growth-yield and maintenance parameters for photoautotrophic growth. Biotechnol Bioeng,1984,26 (8):926-935.
    [192]Lee H Y, Erickson L E, Yang S S. Analysis of bioenergetic yield and maintenance parameters associated with mixotrophic and photoheterotrophic growth. Biotechnol Bioeng,1985,27 (12):1640-1651.
    [193]Liere L, Groot G, Mur L. Pigment variation with irradiance in Oscillatoria agardhii Gomont in nitrogen (nitrate)-limited chemostat cultures. Fems Microbiol Lett,1979,6 (5):337-340.
    [194]Iehana M. Kinetic analysis of the growth of Spirulina sp. on continuous culture. Journal of fermentation technology,1983,61 (5):457-466.
    [195]朱隆静:磷与钙对低温胁迫下番茄光合作用的影响及其机理研究[D].浙江大学,2004.
    [196]李铁,胡立阁,史致丽.营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响.海洋与湖沼,2000,(01):46-52.
    [197]王修林,张莹莹,杨茹君,等.不同浓度的营养盐(NO3-N,PO4-P)条件下Pb(II)对2种海洋赤潮藻生长影响的研究.中国海洋大学学报(自然科学版),2005,(01):133-136+141.
    [198]陈静峰,翁焕新,孙向卫.磷、铁营养盐的交互作用对隐藻(Cryptomonassp.)生长影 响的初步研究.海洋科学进展,2006,(01):39-43.
    [199]郑维发,王雪梅,王义琴,等.四种营养盐对舟形藻(Navicula)BT001生长速率的影响.海洋与湖沼,2007,(02):157-162.
    [200]吴国平.不同氮磷和光照水平对小球藻(Cholorella vulgaris)和谷皮菱形藻(Nitzchia palea)生长的影响[D].西南大学,2006.
    [201]陈中兵,郑广宏,黄钰铃.不同氮磷浓度对盘星藻生长的影响.生态环境,2008,(04):1338-1341.
    [202]董金利,庄惠如,占美怜,等.氮、磷营养盐对底栖硅藻的生长及生化组成影响.生物技术,2010,(02):64-67.
    [203]薛凌展,林泽,黄种持,等.不同氮磷质量浓度对鳗池优势藻生长的影响.福建师范大学学报(自然科学版),2010,(02):92-99.
    [204]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报,2000,(03):248-251.
    [205]Pardee A. Nucleic acid precursors and protein synthesis. Proc Natl Acad Sci USA,1954, 40 (5):263-270.
    [206]吴楚,范志强,王政权.磷胁迫对水曲柳幼苗叶绿素合成,光合作用和生物量分配格局的影响.应用生态学报,2004,15(006):935-940.
    [207]吴楚,王政权,孙海龙,等.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响.林业科学,2005,41(4):31-36.
    [208]李鹏民,高辉远, Strasser R.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报,2005,31(006):559-566.
    [209]杨晴,韩金玲,李雁鸣,等.不同施磷量对小麦旗叶光合性能和产量性状的影响.植物营养与肥料学报,2006,12(006):816-821.
    [210]Krause G, Weis E. Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Biology,1991,42 (1):313-349.
    [211]潘晓华,王永锐.无机磷对植物叶片光合作用的影响及其机理的研究进展.植物营养与肥料学报,1997,3(003):201-208.
    [212]冯力霞.环境胁迫对4株微藻叶绿素荧光特性的影响[D].中国海洋大学,2006.
    [213]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,2006,18(001):51-55.
    [214]Bryant D. The molecular biology of cyanobacteria.Kluwer Academic Pub,1994.
    [215]Strasser B, Strasser R. Measuring fast fluorescence transients to address environmental questions:the JIP-test. In:Mathis P (ed.) Photosynthesis:from light to biosphere. The Netherlands:Kluwer Academic Publishers 1995:977-980.
    [216]Han B. A mechanistic model of algal photoinhibition induced by photodamage to. photosystem-II. J Theor Biol,2002,214 (4):519-527.
    [217]Han B. Photosynthesis-irradiance response at physiological level:a mechanistic model. J Theor Biol,2001,213 (2):121-127.
    [218]Montero O, Sobrino C, Pares G, et al. Photoinhibition and recovery after selective short-term exposure to solar radiation of five chlorophyll c-containing marine microalgae. Cienc Mar,2002,28 (3):223-236.
    [219]Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. J Exp Bot,2000, 51 (345):659-668.
    [220]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展.西北植物学报,2006,26(010):2186-2196.
    [221]Rohacek K. Chlorophyll fluorescence parameters:the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica,2002,40 (1):13-29.
    [222]Ames A, Walseth T, Heyman R, et al. Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J Biol Chem,1986,261 (28):13034-13042.
    [223]潘瑞炽.植物生理学(第四版).高等教育出版社,2001,
    [224]Smith A, London J, Stanier R. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol,1967,94 (4):972-983.
    [225]Wiskich J. Control of the Krebs cycle. The Biochemistry of plants:a comprehensive treatise,1980,2:243-278.
    [226]Tolbert N. Photorespiration. The Biochemistry of plants:a comprehensive treatise (USA),1980,2:487-423.
    [227]Fowden L. A comparison of the compositions of some algal proteins. Ann Bot-london, 1954,18 (3):257-266.
    [228]Craig I W, Leach C K, Carr N G. Studies with deoxyribonucleic acid from blue-green algae. Arch Microbiol,1969,65 (3):218-227.
    [229]Biswas B B, Myers J. A methyl cytidine from the ribonucleic acid of Anacystis nidulans. Nature,1960,186:238-239.
    [230]Mott K, Jensen R, O'Leary J, et al. Photosynthesis and Ribulose 1,5-Bisphosphate Concentrations in Intact Leaves of Xanthium strumarium L. Plant Physiol,1984,76 (4):968.
    [231]沈同,王镜岩.生物化学.北京:高等教育出版社,2002.
    [232]Niyogi K. Safety valves for photosynthesis. Curr Opin Plant Biol,2000; 3 (6):455-460.
    [233]Nakajima Y, Ueda R. Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J Appl Phycol,1997,9 (6):503-510.
    [234]Nakajima Y, Ueda R. Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment. J Appl Phycol,1999,11 (2):195-201.
    [235]Nakajima Y, Tsuzuki M, Ueda R.Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocystis PCC 6714. J Appl Phycol,1998,10 (5):447-452.
    [236]Wang G H, Chen L Z, Li G B, et al. Improving photosynthesis of microalgae by changing the ratio of light-harvesting pigments. Chinese Sci Bull,2005,50 (15):1622-1626.
    [237]Morita M, Watanabe Y, Saiki H. Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng,2000,69 (6):693-698.
    [238]Lide D. CRC handbook of chemistry and physics.87th ed.Cleveland:CRC Press,2006.
    [239]Stadnichuk I, Rakhimberdieva M, Bolychevtseva Y, et al. Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of coproporphyrinogen III formation. Plant Sci,1998,136 (1):11-23.
    [240]Villarejo A, Orus M, Martinez F. Regulation of the CO2-concentrating mechanism in Chlorella vulgaris UAM 101 by glucose. Physiol Plantarum,2006,99 (2):293-301.