栉孔扇贝生理活动对近海碳循环的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是地球表面第一大活跃碳库,它极大调节了全球气候变化。海洋碳循环也因此成为全球碳循环过程中最为关键的一个环节。生物在海洋碳循环中起了非常重要的作用,海洋碳循环“溶解度泵”、“生物泵”、“碳酸盐泵”的三个过程是在生物的直接或间接作用下完成的。在近海海区,其生产力远远高于远海,生物作用更加强烈,生物对碳循环的影响也就更加突出。特别是近海贝藻养殖区的存在,其高密度、高强度的生物作用必将对近海碳循环产生深远影响。目前全球大洋碳循环的格局已经探明,但对近海碳循环的研究仍存在许多问题。对养殖生物活动在近海碳循环中作用的认识,能够有助于加深人类了解近海碳循环的过程。因此,本文选取我国主要贝类养殖种栉孔扇贝作为研究对象,采用“Alkalinity anomaly technique”的方法测定了栉孔扇贝温度、盐度变化和海洋酸化对其呼吸、钙化的影响,探讨分析了可能对近海碳循环产生的影响;同时通过室内实验模拟了贝类养殖、藻类养殖、贝藻混养对海水二氧化碳系统以及碳循环过程“溶解度泵”的影响。主要结果如下:
     1.栉孔扇贝的钙化和呼吸活动受盐度影响显著。钙化率在盐度15-25范围内呈上升趋势,后随盐度上升而下降。呼吸率在盐度15-25范围内上升,25-35范围内下降。钙化率与呼吸率均在盐度25达到最高值,分别为0.33±0.02μmol.FWg~(-1).h~(-1) (钙化率)、2.32±0.10μmol.FWg~(-1).h~(-1) (碳呼吸)、2.87±0.14μmol.FW g~(-1).h~(-1)(氧呼吸),此时通过钙化和呼吸活动向环境释放CO2也最强烈。
     2.栉孔扇贝的钙化率和呼吸率随着温度的升高而升高,钙化率、CO2呼吸率RC和耗氧率RO都在5℃最低,分别为0.19±0.01μmol.FWg~(-1).h~(-1)、1.38±0.06μmol.FWg~(-1).h~(-1)、1.64±0.11μmol.FWg~(-1).h~(-1) ;在25℃最高,分别为0.39±0.02μmol.FWg~(-1).h~(-1)、5.44±0.29μmol.FWg~(-1).h~(-1)、6.34±0.33μmol.FWg~(-1).h~(-1)。随着温度的升高通过钙化和呼吸活动向环境释放CO2也会增加。
     3.栉孔扇贝的钙化和呼吸活动均随着酸化的加剧出现了明显下降。当pH降低到7.9时,栉孔扇贝的钙化率将会下降33%左右;当pH降到7.3左右时,栉孔扇贝的钙化率将趋近于0,栉孔扇贝无法产生贝壳,而此时栉孔扇贝碳呼吸率(RC)与耗氧率(RO)也分别下降了14%和11%。
     4.通过室内模拟实验发现贝藻养殖能够显著改变海水的CO2系统。大型藻类养殖能够有效吸收水体DIC,降低海水中P_(CO_2)贝类养殖由于其呼吸和钙化活动的影响,也会使水体中DIC和上升,对海洋溶解度泵也有一定的干扰作用。而适当比例的贝藻混养可消除贝类钙化和呼吸释放CO_2的负面影响,在实现生态养殖的基础上最终加强了海洋碳汇的作用。
     5.通过室内实验、数学模拟的方法研究了桑沟湾养殖栉孔扇贝通过呼吸、钙化以及生物沉积等活动对湾内碳循环的影响。研究发现,养殖扇贝每年通过呼吸和钙化分别放出碳1.22×10~4t和7.57×10~2t;通过生物沉积作用每年有8.71×10~4t碳被沉降到沉积物界面,通过贝壳钙化也可固碳1.06×10~3t,这些碳绝大部分被埋藏从而脱离了地球化学循环。尽管养殖扇贝通过呼吸和钙化释放出部分碳,但有更多的碳通过生物沉积作用被埋藏,因此,从整体上看,养殖栉孔扇贝在湾内碳循环中起到了碳汇的作用。
Ocean is the biggest active carbon sink on the earth, which adjust the global climate change effectively. Marine carbon cycle therefore is the most important link in the global carbon cycle. Marine carbon cycle is constituted by“Dissolve pump”、”Biology pump”and”Carbonate pump”, which are drived by mairne organisms life activities directly or indirectly. In coastal area, where have more rich primary production and more atctive organsims than off shore marine, so the biological impacts on carbon cycle more intensively in that area, especially in the shellfish and alga culture zones. Though we have known much on global marine carbon cycle now, there are many problems on the offshore carbon cycle. Studies of culture organisms’impacts on offshore carbon cycle can help us solving the problems above. So the impacts of salinity, temperature and marine acidification on calcification and respiration of Chlamys farreri, which is an important economic specie in northern of China are studied; and impacts of shellfish aqaculture, algea aquaculture and integrated multi-trophic aqaculture (shellfish-algea) on seawater’s system and“Dissolve pump”are simulated; Combining these research results and historical data evaluating ZhiKong scallops aqaculture’s role in jiaozhou bay carbon cycle. The main results as below:
     1. The calcification rate and respiratory rate of C. farreri are impacted by the salinity evidently. The calcification rate rises with salinity in the range of 15-25, then fails as salinity down. The respiratory rate increases with salinity in the range of 15-25, and decreases with salinity in the range of 25-35. And calcification rate, respiratory rate of CO2 and O2 all reach maximum in salinity 25, which are 0.33±0.02μmol.FWg~(-1).h~(-1), 2.32±0.10μmol.FWg~(-1).h~(-1) and 2.87±0.14μmol.FWg~(-1).h~(-1) respectively. CO2 relaxed by C. farreri also get max in that condition.
     2. The calcification rate and respiratory rate of C. farreri are impacted by the temperature evidently, which are raise with temperature in the range of 5-25℃. Calcification rate, CO_2 respiratory rate and O2 respiratory rate raise from 0.19±0.01μmol.FWg~(-1).h~(-1)、1.38±0.06μmol.FWg~(-1).h~(-1)、1.64±0.11μmol.FWg~(-1).h~(-1) to 0.39±0.02μmol.FWg~(-1).h~(-1)、5.44±0.29μmol.FWg~(-1).h~(-1)、6.34±0.33μmol.FWg~(-1).h~(-1) respectively.
     3. Calcification and respiration of C. farreri decreased as pH declined significantly. Calcification rate decreased by 33% when the pH of water was 7.9. And at pH 7.3, calcification rate would be close to 0. CO_2 and O2 respiratory rates were reduced by 14% and 11% respectively at pH 7.3. 4. Seawater CO_2 system can be changed by the shellfish, algea aqaculture significantly. DIC can be absorbed by algea aqaculture, which result in the decreasing of P_(CO_2).DIC and P_(CO_2)raising for the calcification and respiration of shellfish which can disturb the“dissolve pump”. Suitable proportion of shellifsh aqaculture and algea aqaculture may eliminate the negative effcets of releasing CO_2 from the respiration and calcification of shellfish. 5. Impacts on carbon cycle of C. farreri by respiration, calcification and biodeposition in Sanggou Bay was researched by the method of laboratory experiment and mathematical stimulating. These were 1.22×10~4t and 7.57×10~2t carbon releasing each year by respiration and calcification of C. farreri respectively; and these was 8.71×10~4t carbon sinking to the bottom of sea by biodepositon, most of which would been buried and leaving geochemical circulation. Though carbon was releasing by respiration and calcification, more carbon was buried by biodepositon. So C. farreri should be considerd as carbon sink as a whole.
引文
[1]陈泮勤,马振华,王庚辰译.地球系统科学.北京,1992:地震出版社.
    [2]IPCC, 2007:气候变化2007:综合报告.政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[核心撰写组Pahauri R K & Reisinger A(编辑)]. IPCC,瑞士,日内瓦.
    [3]Millero F J, Degler E A, et al. The carbon doxide in the Arabian Sea. Deep-Sea ResearchⅡ,1998,45: 2225-2252.
    [4]Prentice I C, Farquhar G D, Fasham M J R, Goulden M L, Heimann M, Jaramillo V J, Kheshgi H S, QuéréC L, Scholes R J, Wallace D W R. The carbon cycle and atmospheric CO2. In:Houghton J T, Yihui D (Eds.), The Intergovernmental Panel on Climate Change (IPCC). Third Assessment Report.Cambridge:2001, Cambridge University Press.
    [5]Fasham M J S, Ballifio B M, Bowles M C. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS), AMBIO, 2001,Special Report, 10: 4-31.
    [6]Falkowski P, Scholes R J, Canadell J, Canfield D, et al. The global carbon cycle: A test of our knowledge of earth a system. Science, 2000,290: 291-295.
    [7]Laws E, Falkowski P G, Smith W O, Dockloe H, et al. Temperature effects on export production in the open sea. Global Biogeochemical cycles, 2000,14(4): 1231-1246.
    [8]Riebesell U, Zondervan I, Rost B, Tortell P D, et al. Reduced calcifation of marine plankton in response to increase atmospheric CO2. Nature,2000, 407: 364-367.
    [9]Riebesell U, Schulz K G, Bellerby R G J, Botros M, et al. Enhanced biological carbon consuption in a high CO2 ocean. Nature, 2007,450: 545-549.
    [10]Iglesias-Rondriguez M D, Halloran P R, Rickaby R E M, Hall I R, et al. Phytoplankton calcification in high-CO2 world. Science, 2008,320: 336-340.
    [11]Battle M, Bender M L, Tans P P, White J W C, Ellis J T, conway T, Francey R J. Global carbon sinks and their variability inferred from atmospheric O2 and 13C.Science, 2000,287: 2467-2470.
    [12]Fan S, Gloor M, Mahlman J, Pacalas S, Sarmiento J, Takahashi T, Tans P. A large in terrestrial carbon sink in north American implied by atmospheric and oceanic carbon dioxide date and models. Science, 1998,282: 442-446.
    [13] Zeebe R E, Wilf- Gladrow D. CO2 in sea water Equilibrium, Kinetics, Isotopes, Netherland, Amsterdam:2001, Elsevier Oceanography Book Series, 65:346 pp.
    [14]张正斌,海洋化学.青岛:中国海洋大学出版社.2004,pp. 71-81
    [15]Committee on Global Change. Toward an Understanding of Global Change. Washington, D C: National Academy Press, 1998,pp. 56.
    [16]Bali o B M, Fasham M J R, Bowles M C. IGBP Science No. 2. Ocean Biogeochemistry and Global Change: JGOFS Research Highlights 1988-2000. 2001, pp32.
    [17]Wanninkhof R, McGills W R. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 1999,26(13): 1889-1892
    [18]Weiss R F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Research, 1970,17: 721-735.
    [19]陈泮勤地球系统碳循环.北京, 2004:科学出版社.
    [20]高学鲁.中国近海典型海域溶解无机碳系统的地球化学特征.中国科学院海洋研究所博士学位论文, 2005, pp. 1-17.
    [21]Carlson C, Ducklow H, Michaels T.Annual flux of dissolved organic carbon from the euphotic zone of the northwest Sargasso Sea. Nature, 1994,371-379.
    [22]Six K, Maier-Reimer E. Effect of plankton dynamics on the seasonal carbon fluxes in a ocean general circulation model. Glob.Biogeochem.Cycles 1996,10: 559-583.
    [23]Charles S. Hopklnson Jr & Joseph J.Vallino. Efficent export of carbon to the deep ocean through dissolved organic matter. Nature,2005, 142-145.
    [24]Rivkin R B, Legendre L. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science,2001, 291.2398-2400.
    [25]Giorgio P A, Cole J J, Cimbleris A. Respiration rates in bacteria exceedphytoplankton production in unproductive aquatic systems. Nature, 1997,385: 148-151.
    [26]Duarte C M, Agusti S. The CO2 balance of unproductive aquatic ecosystems. Science, 1998,281: 234-236.
    [27]Williams P J le B. The balance of plankton respiration and photosynthesis in the ocean. Nature, 1998, 394: 55-57.
    [28]Robinson A R, MaCarthy J J, Rothschild B J(Eds.). in the sea biological–physical interaction in the oceans. New York: Wiely Press, 2002,12: 337-399.
    [29]Kolber Z S, Grerald F, Plumey et al. Contribution of Aerobic Photoheterotrophic Bacteria to the carbon cycle in the ocean. Science, 2001,292, 2492-2495.
    [30]孙军.今生颗石藻的有机碳泵和碳酸盐反向泵.地球科学进展,2007,22(12),1231-1239.
    [31]Chisholm J R M, Gattuso J-P. Validation of the alkalinity anomaly technique for investing calcification and photosynthesis in coral reef communities. Limnol. Oceanorgr, 1991,36: 1232-1239.
    [32]Boucher-Rodoni R, Boucher G. Respiratory quotient and calcification of Nautilus macromphalus(Cephalopoda: Nautiloidea). Marine Biology, 1993,117: 629-633.
    [33]Gattuso J P, Buddemeire R W, 2000. Calcifation and CO2. Nature, 407: 311-313.
    [34]Frankignoulle M, 1994. A complete set of buffer factors for acid/base CO2 system in seawater. Journaol of Marine Systems, 5:111-118.
    [35]Frankignoulle M, Canon C, Gattuso. Marine calcification as source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limno and Oceanogr. 1994,39: 458-462.
    [36]Berger. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Kurze Orignialmitteilungen, 1982, 69: 87-88.
    [37]Feely R A, Sabine C L, Lee K et al. Impact of anthropogenic on the CaCO3 system in the oceans. Science, 2004, 305: 362-366.
    [38]Wilson R W, Millero F J, Taylor J R, et al. Contribution of fish to the marine inorganic carbon cycle. Science, 2009, 323: 359-362.
    [39]Byrne R H, Mecking S, Feely R A, Liu X. Direct observations of basin-wide acidification of the North Pacific Ocean. Geophysical Research Letters, 2010,37.L02601,doi:10.1029/2009GL0400999.
    [40]Joos F, Plattner G K, Stocker T F, Marchal O, Schmittner A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 1999,284: 464-467.
    [41]Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH. Nature, 2003,425, pp. 365.
    [42] Orr J C, Fabry V J, Aumont O, Bopp L, et al. Anthropogenic ocean acidfication over the twenty-first century and its impact on calcifying organisms. Nature, 2005, 437: 681-686.
    [43]Doney S C, Fabry V J, Feely R A, Kleypas J A. Ocean acidfication: the other CO2 problem. Annu. Rev. Mar. Sci., 2008, 1: 169-192
    [44]Stocker T F, Schmittner A. Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 1997, 388: 862-865.
    [45]Bakun A. Global climate change and intensification of coastal ocean unwelling. Science,1990, 247:198-201.
    [46]Christopher D G, Harey A, Randall Hughes, Kristin M et al. The impacts of climate changes in coastal marine system. Ecology Letters,2006, 9: 228-241.
    [47]Roemmich D, McGowan J A. Climate warming and the decline of zooplankton in the California current. Science, 1995, 267: 1324-1326.
    [48]Gattuso J P, Frankignoulle M, Bourge I, Romaine S, Buddemeier R W. Effect of calcium carbonate saturation of seawater on coral calcification. Glob. Planet. Change., 1998, 18: 37-46.
    [49]Gazeau F, Quiblier C,Jansen J M, Gattuso J P, et al. Impacts of elevated CO2 on shellfish calcification. Geophysical Research Letters. 2007, 34: doi: 10.1029/206Gl028554.
    [50]Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate changes and ocean acidification. Science,2007, 318, 1737-1742.
    [51]Carpenter K E, Abrar M, Aeby G, et al., 2008. One-third corals face elevatedextinction risk from climate change and local impacts. Science, 2008, 321, 560-563.
    [52]Bibby R, Widdicomde S, Parry H, et al. Effect on ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquatic Biology,2008, 2:67-74.
    [53]Michael J O, Anne E T, Mary A S, et al. Ocean acidification alters skeletogennesis and gene expression in larval sea urchins. Marine Ecology Progress Series,2010, 398: 157-171.
    [54]Dupont S, Ortega-Martinez O, Thorndyke M. Impact of near-future ocean acidification on echinoderms. Ecotoxicology, 2010, doi: 10.1007/s10646-010-0463-6.
    [55]Sunda W G. Iron and carbon pump, Science, 2010, 327, 654-655.
    [56]Shi D, Xu Y, Hopkinson B M, et al. Effect of ocean acidification on iron availabilty to marine phytoplankton. Science, 2010, 327:676-679.
    [57]Riccardo R M, Chiara L. Silvia C, Jason M. H-S, Maria C G. Effect of ocean acidification and high temperature on the bryozoan Myriapora trancata at natural CO2 vents. Marine Ecology, 2010, doi: 10.1111/j.1439-0485.2009.00354.x
    [58]Borges A V, Gypens N. Carbonate chemistry in the coastal zone responds more strongly to entrophication than to ocean acidification. Limnol. Oceanogr.,2010, 55(1):346-353.
    [59]Fabry VJ, Seibel B A, Feely R A, et al. Impacts of ocean acidification on marine fauna and ecosystem process. Journal of Marine Science,2008, 65:414-432.
    [60]Spero H J, Lea D W, Bemis B E. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 1997,390: 497-500.
    [61]Bijma J, Spero H J, Lea D W. Ressessing foraminiferal stable isotope geochemistry: impact of the oceanin carbonate system(experimental results). In use of proxies in paleoceangraphy: Examples from the South Atlantic, 1999, p459-512.Ed. by Fisher G and Wefer G. Springer-Verlag, New York.
    [62]Bijma J, Honisch B, Zeebe R E. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: comment on“carbonate ion concertration inglacial-age deepwaters of the Caribbean Sea”by Broecher W S and Clark E. Geochemistry, Gophysics, Geosystems. 2002, 3:1064. doi: 10.1029/2002Gc000388.
    [63]Attrill M J, Wright J and Edwards M. Climate-related imcrease in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnogy and Oceanography,2007, 52: 480-485.
    [64]Harris J O, Maguire G B, Edwards S J, et al. Effect of pH on growth rate, oxygen consumption rate, and histopathology of gill and kidney tissue for jurenile greenlip abalone, Halistosis laevigata and blackip abalone, Halitosis rubra leach. Journal of Shellfish Research, 1999, 18:611-619.
    [65]Lindinger M I, Lauren D J, McDonald D G. Acid-base balance in the sea mussel Mytides edulisⅢ.Effect of environmental hypercapnia on intra- and extracelluar acid-base balance. Marine Biology Letters, 1984, 5: 371-381.
    [66]Michaelidis B, Ouzounis C, Paleras A, and Porner H O. Effects of long-term moderate hypercapria on acid-balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series., 2005, 293:109~118.
    [67]Desrosiers R R, Desilets J, Pube F. Early developmental events following fertilization in the giant scallop Placopecten magelanicus. Canadian Journal of Fisheries and Aquatic Science, 1996, 53:1382-1392.
    [68]Alvara-Albarez R, Gould M C, Stephano J L. Spawning in vitro maturation and changes in oocyte eletrophysiology induced serotonin in Tivela stultorum. Biological Bulletin,1996, 190:322-328.
    [69]Green M A, jones M E, Boudreau C L, et al. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography, 2004, 49:727-734.
    [70]Portner H O and Reipschlager A. Ocean disposal of anthropogenic CO2: physiological effects on tolerant and intolerant animals. In Ocean storage of Carbon Dioxide. Workshop 2- Environmental Impact,1996, p57-81. Ed. By Ormerod B and Angel M V, Greenhouse Gas R & D Programme, Cheltenham, UK.
    [71]Kurihara H and Shirayama Y. Effect on increased atmospheric CO2 on sea urchin early development. Marine Ecological Press Series,2004, 274:161-169.
    [72]Kurihara H, Shinji S, Shirayama Y. Effects of raised CO2 on the egg production rate and early development of two marine copepods(Acartia steari and Acartia erythraea). Marine Pollution Bulletin, 2004, 49:721-727.
    [73]Watanabe Y, Yamaguchi A, Ishida H et al. Lethality of increasing CO2 levels on deep-sea copepods in the wastern North Pacific. Journal of Oceanography, 2006, 62:185-196.
    [74]Yamada Y and Ikeda T. Acute toxicity od lowered pH to some oceanic zooplankton. Plankton Biology and Ecology. 1999,46:62-67.
    [75]Metzger R, Satoris F J, Langebuch M, et al. Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. Journal of Thermal Biology, 2007, 32:144-151.
    [76]Barry J, Seible B A, Drazen J et al., 2002. Field experiments on direct ocean CO2 sequestration: the response of deep-sea faunal assemblages to CO2 injection at 3200m off central California. EOS Transactions of the American Geophysical Union,83:OS51F-02.
    [77]Hayashi M, Kita J, Ishimatsu A. Acid-base responses to lethal aquatic hypercapnia in three fishes. Marine Biology, 2004, 144:153-160.
    [78]Kikkawa T, Sata T, Kita J, et al. Acute toxicity of temporally varying seawater CO2 conditions on juveniles of Japanese sillago(Sillago japonica). Marine Pollution Bulletin, 2006, 52:621-625.
    [79]Kikkawa T, Ishimatsu A, Kita J. Acute CO2 tolerance during the early development stages of four marine teleosts. Environmental Toxicology, 2003, 18:375-382.
    [80]Michaelidis B, Spring A, Portner H O. Effect of long-term acclimation to enviromental hypercapnia on extracelluar acid-base status and metabolic capacity in Mediterranean fish Sparus aurata. Marine Biology,2007, 150:1417-1429.
    [81]Cecchini S, Saroglia M, Caricato G, et al. Effects of graded environmental hypercapnia on sea bass(Dicentrarchus labrax L.) feed intake and acid-basebalance. Aquaculture Research, 2001,32:499-502.
    [82] Tsungogai S, Watanabe S, Sato T, et al. Is there a“Continental Shelf Pump”for the aborption of atmospheric CO2? Tellus B, 1999, 51(3): 701-712.
    [83]Yool A, Fasham M J R. An examination of the continental shelf pump in an open ocean general circulation model. Global Biogenchem Cycles. 2001, 15: 831-844.
    [84]Thomas H, Bozec Y, Elkalay K, et al. Enhanced open ocean storage of CO2 from“shelf pump hepothesis”. Science, 2004, 304: 1005-1008.
    [85]Cai Weijun and Dai Minhan. Comment on“enhanced open ocean storage of CO2 from“shelf pump hypothesis”. Science, 2004, 306: pp.1477.
    [86]张继红,方建光,唐启升.中国浅海贝藻养殖对海洋碳循环的贡献.地球科学进展, 2005, 20(3):359-365
    [87]Chauvaud L, Thompson J K, Cloern J E, Thouzeau G, 2003. Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. American Society of Limnology and Oceanograpy, 2003, 48(6): 2086-2092.
    [88] Martin S, Thouzeau G, Richard M, Chauvaud L, Jean F, Clavier J. Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicata. Marine Ecology Progress Series, 347:51-60.
    [89]Claire G, Franck G, Dominique D.Secondary production, calcification and CO2 fluxes in the cirripedes Chthamalus montagui and Elminius modestus. Ecosystem Ecology, 2007, DOI: 10.1007/s00442-007-0895-8.
    [90]Smith, S V and Kinsey D W, 1978. Calcification and organic carbon metabolism as indicated by carbon dioxide, In: Stoddart, D. R., Johannes, R. E. (eds.) Coral reefs: research methods. UNESCO, Manila, 469-484.
    [91] Dickson, A.G. and Goyet, C. Handbook of methods for analysis of the various parameters of the carbon dioxide system in seawater, 1994, version 2. ORNL/CDIAC-74: 5-15.
    [92] Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M. Community metabolism and air-sea CO2 fluxes in a Coral reef ecosystem(Moorea French Polynesia). Mar. Ecol. Prog. Ser., 1993,96: 259-267.
    [93]Hitchman M L, 1978. Measurement of dissolved oxygen. John Wiley & Sons.New York
    [94]Malone P G & Dodd J R. Temperature and salinity effects on calcification rate in mytilus edulis and its paleoecological implicatons. Limnology and Oceanography, 1967, 12(3):432-436.
    [95]袁有宪,陈聚法,陈碧娟,曲克明,过锋,李秋芬,崔毅.栉孔扇贝对环境变化适应性研究—pH对存活、呼吸、摄食及消化的影响.中国水产科学,2001, 7(4):73-77.
    [96]Barber B J and Blake N J. Substrate catabolism related to reproduction in the bay scallop Argopecten irradians concertricus as determined by O/N and RQ physiological indexes. Marine Biology, 1985, 87(1):13-18.
    [97] Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., 2007. Climate change 2007: The physical science basis: Contribution of working groupⅠto the fourth assessment report of the intergovernmental panel on climate change. New York: Cambridge university Presss.
    [98] Li Xuegang, Song Jinming, Niu Lifeng et al. Role of the Jiaozhou Bay as source/sink of CO2 over a seasonal cycle. Scientia Marine, 2007, 71(3):441-450.
    [99]Munday P L, Dixson D L, Donelson J M, Jones G P, et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS, 2009, 105(6): 1848-1852.
    [100]Hofmann M & Schellnhuber H J. Ocean acidification affects carbon pump and triggers extended marine oxygen holes. P.N.A.S., 2009, 106(52):3017-3022.
    [101] Miller, A. W., A. C. Reynolds, C. Sobrino & G. F. Riedel. Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in essuaries. PloS ONE 2009, 4(5):e5661. doi:10.1371.journal.pone.0005661.
    [102] Cooley S R & Doney S C. Anticipatiing ocean acidification’s economic consequences for commercial fisheries. Environ. Res. Lett. 2009, 4 doi:10.1088/1748-9326 /4/2/024007.
    [103]Guo X M, Ford S E, Zhang F S. Molluscan aquaculture in China. J. Shellfish. Res. 1999, 18:19-31.
    [104]Dickson A G. An exact definition of total alkalinity and procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Research, 1981, 28(A):609-623.
    [105] Sabine C L, Feely R A, Gruber N, Key R M, Lee K, et al. The ocean sink for anthropogenic CO2. Science, 2004, 305:367-371.
    [106]Guinotte J M & Fabry V J. Ocean acidification and its potential effects on marine ecosystems. Ann.N.Y.Acad. Sci. 2008, 1134:320-342.
    [107] Ridgwell, A. & D. N. Schmidt. Past constraints on the vulnerability of marine calcifers to massive carbon dioxide to massive carbon dioxide release. Nature Geoscience 2010, 3: 196-200.
    [108]Wood H L, Spicer J I, Widdicombe S. Ocean acidification may increase calcification rates, but at a cost. Proc. R.Soc. B,2008, 275:1767-1773
    [109] Ries J B, Cohen A L, McCorkle D C. Marine calcificers exhibit mixed respinses to CO2-induced ocean acidification. Geology, 2009,37(12):1131-1134.
    [110]Beesley A, Lowe D M, Pascoe C K, Widdicombe S. Effect of CO2-induced seawater acidification on the health of Mytilus edulis. Climate Research, 2008, 37:215-225.
    [111]Mehrback C, Culberson C H, Hawley J E et al. Meaturement of the apparent dissociation constants of carbonic acid in seawater at atmosperic pressure. Limnol. Oceanogr, 1973, 18(6):897-907.
    [112] Dickson A G. Thermodynamics of dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research, 1990,37: 755-766.
    [113]孙颖颖,2007.环境因子对球等鞭金藻生长的影响.2007.大连理工大学.
    [114]郑国侠,宋金明,戴纪翠,王盖鸣.南黄海秋季叶绿素a的分布特征与浮游植物的固碳强度.海洋学报,2006, 28(3):109-118.
    [115]宋金明,李学刚,袁茂华,郑国侠,杨宇峰.中国近海生物固碳强度与潜力.生态学报,2008,28(2):551-558.
    [116]杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望.青岛海洋大学学报:自然科学版, 2003, 33(1) :53-57.
    [117]汤坤贤,游秀萍,林亚森,陈敏儿,沈东煜,林泗彬.龙须菜对富营养化海水的生物修复.生态学报,2005, 25(11):3044-3051.
    [118] Souchu P, Vaquer A, Collos Y, Labdrein S, Deslous-Padi J-M, Bibent B (2001) Influence of shellfish farming activities on the biogeochemical composition of water column in Thau Lagoon. Mar Eco Prog Ser 2001, 218:141-152
    [119]Newell R I E. Ecosystem influences of matural and cultured populations of suspension-feeding bivalve mollusks, a review. J Shellfish Res 2004, 23(1):51-61
    [120]Newell R I E , Fisher T R, Holyoke R R, Cornwell J C. Influence of eastern oyster on nitrogen and phosphorus regeneration in Cheaspeake Bay, USA. NATO Science Series 2005, 47: 93-120
    [121] Martin J L M, Sornin J M, Marchand M, Depauw N, Joyce J ,1991. The Significance of oyster biodepostion in concertrating organic matter and contaminants in the sediment. In Aquaculture and Environment, Special Publication of the European Aquaculture Society, 1991, No 14 Edited by N Depauw and J Joyce pp. 207
    [122] Ahn I Y. Enhanced particle flux through the biodepostion by the Antarctic suspention-feeding bivalve Lathrnula elliptica in Marian Core,king George Island. J Exp Mar Biol Ecol 1993, 171(1):75-90
    [123] Chiantore M, Cattaneo-Vietti R, Albertelli G, Misic C, Fabiano M ,1998. Role of filtering and biodeposition by Adamussium colbecki in circulation of organic matter in Terra Nova Bay (Ross Sea, Antarctica). J Marine Syst 1998, 17:411-424
    [124] Hayakawa Y, Kobayashi M, Izawa M ,2001. Sedimentation flux from mariculture of oyster (Crassostrea gigas) in Ofunato estuary, Japan. ICES J MAR SCI 58:435-444
    [125] Mitchell Iona M ,2006. In situ biodeposition rates of Pacific oyster(Grassotrea gigas) on marine farm in Southern Tasmania (Australia). Aquaculture 2006, 257:194-203
    [126]周毅,杨红生,毛玉泽,袁秀堂,张涛,刘鹰,张福绥.桑沟湾栉孔扇贝生物沉积的现场测定.动物学杂志,2003,38(4):40-44.
    [127]魏皓,赵亮,原野,史杰,樊星,刘志宇,王鲁宁,袁承仪,王玉衡,魏莱.桑沟湾水动力特征及其对养殖容量影响的研究—观测与模型.渔业科学进展,2010, 31(4):65-71.
    [128]张学雷,朱明远,陈尚,Grant J, Martin J-L.桑沟湾和胶州湾沉积物耗氧率研究.海洋科学进展,2006, 24(1):91-96.