海洋富油微藻球等鞭金藻(Isochrysis galbana)CCMM5001的优化培养
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对日益严峻的能源和环境问题,生物柴油越来越受到各国研究者的关注。微藻油脂的主要成分为甘油三酸酯,是一种理想的生物柴油原料。由于微藻具有不争耕地与淡水资源,不影响粮食安全,生长迅速且不受季节影响等优势而倍受青睐。然而由于成本的居高不下,微藻生物柴油一直没能进行大规模商业化生产。在制备微藻生物柴油过程中,富油微藻的培养是最为基础的一个环节,选育含油量高、生物量产量大、培养成本低的富油微藻是目前研究的热点问题。本文选择一株富油微藻,球等鞭金藻(Isochrysis galbana)CCMM5001,对其异养生长的条件和可行性,粗脂含量的快速测定方法以及生长过程中环境因子的影响等作了一系列研究。
     首先研究了四种不同碳源葡萄糖、果糖、乙酸钠和甘油对球等鞭金藻CCMM5001异养生长的影响。结果表明,球等鞭金藻CCMM5001对碳源具有选择性,果糖对其异养生长促进效果最好,其次为葡萄糖,再者乙酸钠,甘油最差。果糖在50mM浓度时促进异养生长的效果好于5mM浓度时;葡萄糖、乙酸钠和甘油则相反。
     综合考虑异养效果和经济因素,研究不同浓度的葡萄糖、光照强度以及通气水平对球等鞭金藻CCMM5001异养生长的影响。结果表明,球等鞭金藻CCMM5001利用葡萄糖异养生长的最佳浓度为2g/L,低于或高于2g/L时,最高细胞密度均有所下降;生长能力正常光照下高于弱光条件,非通气培养高于通气培养,其异养生长能力低于光合自养生长能力。
     分析了粗脂含量和尼罗红染色荧光强度的关系。球等鞭金藻CCMM5001细胞中累积的脂类物质为中性脂,被尼罗红染色后发金黄色荧光,在480nm激发波长时,脂的发射峰为575nm,其荧光强度与总脂含量线性相关。根据线性相关曲线,建立了利用尼罗红染色配合荧光分光光度计快速测定球等鞭金藻CCMM5001细胞粗脂含量的方法。
     分析了球等鞭金藻CCMM5001细胞密度与TD-700叶绿素荧光仪测定的活体荧光值之间的关系,确定两者的线性相关曲线。建立通过测定活体荧光值快速测定细胞密度的方法,以表示其生长情况。
     设计不同的温度、盐度、光照强度和初始pH梯度,并以温度和盐度、光照强度和初始pH分别作为双因子进行正交试验。结果表明,球等鞭金藻CCMM5001生长的适宜温度为18~36℃,最适温度为24℃;适宜盐度为12~38,最适盐度为24;适光范围为2000lux~9000lux,饱和光强为3500lux;适宜初始pH范围4.8~8.8,最适pH范围6.8~7.8。在温度24℃,盐度24,光照强度3500lux,初始pH7.8的条件下培养,第15天可以得到最高细胞密度值7.24×10~6 cells/ml,为基础培养条件下细胞密度的1.08倍,培养周期缩短14天。其中,温度和盐度的双因子正交试验进一步表明,球等鞭金藻CCMM5001对高温高盐条件有一定耐受力,随着温度上升,高盐组的生长逐渐占优势。在温度为36℃,盐度为38时,最高细胞密度可达到3.90×10~6 cells/ml,高于相同温度下其他盐度组。
Biodiesel has received much attention by global researchers recently for dealing with the energy crisis and environment problems which become worse each day. The major components of lipids in microalgae are triglycerides, ideal materials in the prodution of biodiesel. Microalgae are more considerable because of several advantages: the cultivation of microalgae can reduce the competition for arable land and fresh water, has no effection on the food safety, and microalgae grow rapidly in every season in the year. However, the cost of biodiesel from microalgae is still too high for the sweeping production in commercial field. The culture of oil-rich microalgae is the basal step during biodiesel production, selecting microalgae with rich oil content, high biomass and low culture cost is a main problem recently.
     The present study investigate the oil-rich Isochrysis galbana CCMM5001. The heterotrophic growth characteristics, the fast measurement of lipid content and the effect of some environmental factors are investigated.
     Effcets of four different carbonaceous glucose, fructose, acetic natrium, glycerol on heterotrophic growth of Isochrysis galbana CCMM5001 are studied. The results show that the utilization of carbonaceous in Isochrysis galbana CCMM5001 is selective. Fructose is the best carbonaceous for heterotrophic growth, secondly glucose, then acetic natrium, glycerol is the worst. The heterotrophic productivity is better with fructose at 50mM concentration than 5mM, which opposite with other three carbonaceous.
     Consider with the heterotrophic productivity and commercial factor, effects of a variety of glucose concentration, light intensity and aeration level on heterotrophic growth of Isochrysis galbana CCMM5001 are studied. The results show that the optimal glucose concentration for heterotrophic Isochrysis galbana CCMM5001 is 2g/L. The maximum cells concentration reduces at both higher and lower glucose concentration value. The productivity is better under normal intensity of light than low intensity, non-aeration than aeration, and photoautotrophic than heterotrophic.
     The relation between lipid content and fluorescent intensity from Nile Red is investigated. The lipid content in Isochrysis galbana CCMM5001 cells is neutral, which can make the fluorescence from Nile Red become golden. The emission maximum of lipid is at 575nm wavelength, while the excitation wavelength is 480nm. The fluorescent intensity is linear relative with lipid content. The method that determining the lipid content in Isochrysis galbana CCMM5001 quickly by fluorescent measurement of Nile Red is found on the linear equation.
     The relation between the cells concentration of Isochrysis galbana CCMM5001 and fluorescent intensity determined by TD-700 fluorometer is investigated, and the linear equation is found out. A method that determining the cells concentration by fluorescent measurement using TD-700 fluorometer is found, in order to describe the growth of the microalgae.
     Effects of temperature, salinity, light intensity and pH on Isochrysis galbana CCMM5001 growth are studied when cultivated under a variety salinity with different temperature conditions and a variety pH with different lingt intensity. The results show that the temperature ranges for Isochrysis galbana CCMM5001 growth is 18~36℃, the optimal temperature is 24℃; the salinity ranges for growth is 12~38, the optimal salinity is 24; the light intensity ranges for growth is 2000lux~9000lux, the saturated light intensity is 3500lux; the pH ranges for growth is 6.8~7.8, the optimal pH range is 5.8~8.8. The maximum biomass concentration is 7.24×10~6 cells/ml when cultivated under the condition temperature 24℃, salinity 24, light intensity 3500lux, PH 7.8, which is 1.08 times compared with normal condition. Meanwhile, the investigation about effects of both temperature conditions and salinity show that Isochrysis galbana CCMM5001 can grow under high level of both temperature and salinity. The productivity under high salinity level becomes better while the temperature increased. The maximum biomass concentration can reach 3.90×10~6 cells/ml when cultivated under the condition temperature 36℃, salinity 38, much more than that cultivated under the same temperature with other variety of salinity.
引文
[1] Fischer G, Schrattenholzer L. Global bioenergy potential through 2050. Biomass Bioenergy , 2001, 20:151–159
    [2] Sheehan J, Cambreco, Duffield J, Graboski M, Shapouri H. An overview of biodiesel and petroleum diesel life cycles. US Department of agriculture and Energy Report. 1998. p. 1–35
    [3] Antolin G, Tinaut F V, Briceno Y. Optimisation of biodiesel production by sun?ower oil transesterification. Bioresour Technol, 2002, 83:111–114
    [4] Vicente G, Martinez M, Aracil J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol, 2004, 92:297–305
    [5] Sharp C A. Emissions and lubricity evaluation of rapeseed derived biodiesel fuels [R]. Final Report for Montana Department of Environmental Quality. Southwest Research Institute, November 1996
    [6] Cadenas A, Cabezndo S. Biofuels as sustainable technologies: perspectives for less developed countries. Technol Forecast Social Change, 1998, 58:83–103
    [7] Ma F, Hanna M A. Bidiesel production: a review. Bioresour Technol, 1999, 70:1–15
    [8] Fulton L. Biomass and agriculture sustainability, markets and policies. International Energy Agency (IEA) biofuels study–interim report: result and key messages so far. IEA, France, OECD Publication Service. 2004. p. 105–112
    [9] COM(2006) 34 final. An EU strategy for biofuels. Commission of the European Communities, Brussels, 8.2.2006
    [10] Moore A. Biofuels are dead: long live biofuels(?)—part one. New Biotechnology , 2008, 25(1):6–12
    [11] Krawczyk T. Biodiesel– alternative fuel makes inroads but hurdles remain. INFORM , 1996, 7:801–829
    [12] Haas M J. Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol, 2005,86:1087–1096
    [13] Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage, 2003, 44:2093–2109
    [14] Demirbas A. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manage, 2002, 43:2349–56
    [15] IEA. IEA technology essentials—biofuel production. International Energy Agency, 2007
    [16] Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial Applications of Microalgae. BIOSCIENCE AND BIOENGINEERING, 2006, 101( 2): 87–96
    [17] Jensen, G S, Ginsberg, D I, and Drapeau, M S. Blue-green algae as an immuno-enhancer and biomodulator. Am.Nutraceutical Assoc, 2001, 3: 24–30
    [18] Teresa M. Mata, Antonio A. Martins, Nidia. S. Caetano. Microalgae for biodiesel productionand other applications: A review. Renewable and Sustainable Energy Reviews, 2010,14:217-232
    [19] Cohen Z, Norman H A, Heimer Y M. Microalgae as a source of x-3 fatty acids. World Rev Nutr Diet, 1995,77:1–31
    [20] Burlew JS, editors. Algal culture from laboratory to pilot plant. Washington(DC): Carnegie Institution of Washington Publication, 600,1953.
    [21] Meier R L. Biological cycles in the transformation of solar energy into useful fuels. In: Daniels F, Duffie J A, eds. Solar Energy Research University of Wisconsin Press. Madison: Wisconsin pp, 1955. 179-184
    [22] J. Sheehan, et al. A look back at the US Department of Energy’s Aquatic Species Program-- Biodiesel from Algae. National Renewable Energy Laboratory, Golden, CO, 1998
    [23] Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25:294–306
    [24] Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng, 2006, 101:87–96
    [25] Peer M,et al. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenerg. Res, 2008, 1:20-43
    [26] Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 2008, 19(3):235–40
    [27] Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology, 1999, 70(1–3):313–21
    [28] Setlik I, Veladimir S, Malek I. Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of a pilot plant. Algologie Studies, Trebon, 1970,1:11
    [29] Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresource Technology, 2008, 99(10):4021–8
    [30] Grobbelaar J U. Physiological and technological considerations for optimisingmass algal cultures. Applied Phycology, 2000, 12:201-206
    [31] Rodolfi et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2008, 102(1): 100–112
    [32] HuntleyM, Redalje D. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaptation Strategies for Global Change, 2007, 12(4):573–608
    [33] Lewin J C. Heterotrophy in diatoms. Gen Microbiol, l953, 9:305~3l3
    [34]刘晓娟.三角褐指藻的自养、兼养和异养特性研究:[博士学位论文].广州:暨南大学,2008
    [35] Chen G-Q, Chen F. Growing phototrophic cells without light. Biotechnology Letters, 2006,28(9):607–16
    [36] Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 2006, 97(6):841–6
    [37] Gladue R M, Maxey J F. Microalgal feeds for aquaculture. Applied Phycology, 1994, 6:131-141.
    [38] Gladue R M. Heterotrophic microalgae prodution: potential for application to aquaculture feeds. In: Fulks W,Main KL(EDs), Rotifer and Microalgae culture systems. Honolulu: Proceedings of a US-Asia workshop, 1991, 28-31: 275-286
    [39] Kelly D P. Autotrophy: concepts of lithotrophic bacteria and their orhanic metabolism. Annual Review of Microbiology, 1971, 25:177-210
    [40] Rittenberg S C. The obligate autotroph-the demise of a concept. Antonie van Leeuwenhoek, 1972,38: 457-478
    [41] Hellbust J. A. ,Lewin J. Heterotrophic nutrition. In: D. Werner. The Biology of the Diatoms. University of Califonia Press, Berkeley.PP, 1977,169-197
    [42] Cox G B, Gibson F, Mccann L. Oxidative phosphorylation in Escherichia coli K-12. An uncoupled mutant with altered membrane structure. Biochemical Journal, 1974,138: 211-215
    [43] Van Baalen C, Hoare D S, Brandt E. Heterotrophic growth of Blue-Green algae in dim light. Journal of Bacteriology. 1971,105(3):685-689
    [44] Mannar R M, Pakrasi H B. Dark heterotrophic growth conditions result in an increase in the content of photosystemⅡunits in the filamentous Cyanobacterium Anabaena variabilis ATCC29413. Plant Physiology. 1993,103:971-977
    [45] Pelroy R A, Bassham J A. Kinetics of glucose incorporation by Aphanocapsa 6714. Journal of Bacteriology. 1973,115(3):943-948.
    [46] Schneegurf M A, Sherman D M, Sherman L A. Growth, physiology, and ultrastructure of a diazotrophic Cyanothece sp. Strain ATCC 51142 in mixotrophic and chemoheterotrophic cultures. Journal of Phycology. 1997,33:632-642.
    [47] Ingram L O, Calder J A, Vanbaalen C, et al. Role of reduced exogenous organic compounds in the physiology of the blue-green bacteria(algae): photoheterotrophic growth of a“heterotrophic”blue-green bacterium. Journal of Bacteriology. 1973,114(2):695-700.
    [48] Marquez F J, Saski K, Kakizono T,et al. Growth characteristic of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering. 1973,76:408-410.
    [49] Chojnacka K, Andrzej N. Evaluation of Spirulina sp. Growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology. 2004,34:461-465.
    [50] Tsavalos A J, Day J G. Development of media for the mixotrophic/heterotrophic culture of Brachiomonas submarina. Journal of Applide Phycology. 1994,6:431-433.
    [51] Chen F, Johns M R. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochemistry. 1996,31:601-604.
    [52] Laliberte G, Noiie J D L. Auto-, hetero- and mixotrophic growth of Chlamydomonas humicola (Chlorophyceae) on acetate. Journal of Phycology. 1993,29:612-620.
    [53] Endo H, Sansawa H, Nakajima K. Studies on Chlorella regularis heterotrophic fast growing stain.Ⅱ. Mixotrophic growth in relation to light intensity and acetate concentration. Plant and Cell Physiology. 1977,18:199-205.
    [54] Tan C K, Johns M R. Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia. 1991,215:13-19.
    [55] Kobayashi M, KakizonoT, Yamaguchi K, et al. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. Journal of Fermentation and Bioengineering. 1992,74:12-20.
    [56] Bouarab L, Dauta A, Loudiki M. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Research. 2004,38:2706-2712.
    [57] Ogawa T, Aiba S. Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnology and bioengineering. 1981,23:1121-1132.
    [58] Lewin J C, Lewin R A. Culture and nutrition of some apochlorotic diatoms. Journal of General Microbiology. 1967. 11:361-367.
    [59] Wen ZY, Chen F. Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis: effects of silicate and glucose. Journal of Industrial Microbiology and Biotecnology. 2000, 25: 218– 224.
    [60] Jiang Y, Chen F. Effects of medium glucose concentration and PH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry. 2000,35:1205-1209.
    [61] Ogbonna J C, Tomiyama S, Tanaka H. Heterotrophic cultivation of Euglena gracilis Z for efficient production ofα-tocopherol. Journal of Applied Phycology. 1998,10:67-74.
    [62] Zhang XW, Zhang YM, Chen F. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochemistry, 1999, 34(5):477–481
    [63] Andrade MR, Costa JAV. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 2007, 264(1–4):130–134
    [64] GuanHua Huang, et al. Biodiesel production by microalgal biotechnology. Applied Energy, 2010, 87:38-46
    [65] Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng, 2000, 6:87–102
    [66] Ratledge C. The Biochemistry and Molecular Biology of Lipid Accumulation in oleaginous microorganisms. Advanees in Applied Microbiology, 2002,51:1-51
    [67] Wichlen Y, Ward OP.ω-3 fatty acids: aitermative sources of production. Process Bigchem, 1989, 8(24): 117-118
    [68] Meireles LA, Guedes AC, Malcata FX. Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. Agri Food Chem, 2003, 51:2237–2241
    [69] Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from microalgae.Biotechnology Progress, 2008, 24(4):815–20
    [70] Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 2006, 101(2):87–96
    [71]曹春晖,孙世春,麦康林等.30株海洋绿藻的总脂含量和脂肪酸组成.青岛海洋大学学报,2000,30(3):428-434
    [72]李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究.海洋与湖沼,1999,30(1):34-40
    [73]黄鸿洲,康燕玉,梁君荣,等.五种底栖硅藻(鲍鱼饵料)的脂肪酸组成分析.植物生理学通讯,2007,3(2):349-354
    [74]孙利芹,杨林涛.环境因子对球等鞭金藻脂肪酸含量和组成的影响.食品研究与开发,2006,27(5):11-13
    [75]王海英,郭祀远,郑必胜,李存芝.自养、异养和混养下小球藻的生长及生化成分.华南理工大学学报(自然科学版),2004,32(5):47-55
    [76] Chunfang Gao, Yan Zhai, Yi Ding, Qingyu Wu. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 2010, 87(3):756-761
    [77] Tan C K, Johns M R. Fatty acid production by heterotrophic Chiorella saccharophila. Hydrobiologia, 1991, 215(1):13-19
    [78] Spoehr H A, Milner H W. The chemical composition of Chlorella:effect of environmental conditions. Plant physiol, 1949, 24
    [79] Varum K M, Myklestas S. Effects of light,salinity and nutrient limitation on the products ofβ-3-D-glucan and exo-D-glucanase activity in Skeletonema costatum(Grev.). CleveJ Exp Mar Biol Eco, 1984,83:13-25
    [80] Widjaja A, Chien C-C, Ju Y-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(1):13–20
    [81] Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renewable Energy, 2009, 34(1):1–5
    [82]韩笑天,郑立,孙珊,邹景忠.海洋微藻生产生物柴油的应用前景.海洋科学,2008,32(8):76-81
    [83] Chen F, Johns M R. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Appl Phycol, 1991,3:203-209
    [84]刘晓娟,段舜山,李爱芬.不同营养因子对微藻3种培养方式生产EPA的影响.食品研究与开发,2006,27(8):185-155
    [85] Brinda BR, Sarada R, Kamath BS, Ravishankar GA. Accumulation of astaxanthin in ?agellated cells of Haematococcus pluvialis– cultural and regulatory aspects. Curr. Sci, 2004, 87: 1290–1295
    [86] Yongmanitchai W, Ward OP. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under di?erent culture conditions. Appl. Environ. Microbiol, 1991, 57: 419–425
    [87] Werner D. The biology of diatoms. Berkeley, University of California Press, 1977
    [88] Enright CT, Newkirk GF, Craigie JS, Castell JD. Growth of juvenile Ostrea edulis L. fed Chaetoceros gracilis Schutt of varied chemical composition. J Exp Mar Biol Ecol, 1986, 96: 15– 26
    [89] Taguchi S, Hirata JA, Laws EA. Silicate deficiency and lipid synthesis of marine diatoms. J Phycol, 1987, 23: 260–267
    [90] Coombs J, Halicki PJ, Holm-Hansen O, Volcani BE. Studies on the biochemistry and fine structure of silicate shell formation in diatoms: II. Changes in concentration of nucleoside triphosphates in silicon-starvation synchrony of Navicula pelliculosa (Breb) Hilse. Exp Cell Res, 1967, 47:315– 28
    [91]刘少华,蔡小宁,陈舒泛,戴婷,钱亮.硒对异养小球藻生长及品质的影响.安徽农业科学,2006,34(9):1805-1806,1809
    [92] Zhi-Yuan Liu, Guang-Ce Wang, Bai-Cheng Zhou. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 2008, 99: 4717-4722
    [93]王永华.隐甲藻高密度发酵培养和油脂改性研究:[博士学位论文].广州:华南理工大学,2002
    [94]钱振明,邢荣莲,汤宁,王长海.光照和盐度对8种底栖硅藻生长及其生理生化成分的影响.烟台大学学报(自然科学与工程版),2008,21(1):46-52
    [95]石娟,潘克厚.不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响.中国水产科学,2004,11(2):121-128
    [96] Thompson P A, Harrison P J, Whyte JNC. Influence of irradiance on the fatty acid composition of phytoplankton. J Phycol, 1990,26(2): 278-288
    [97] Payer H.D, Chiemvichak Y, Hosakul K, Kongpanichkul C, Kraidej L,Nguitragul M, Reungmanipytoon S, and Buri P. Temperature as an important climate factor during mass production of microscopic algae. in: G. Shelef, C. J.Soeder (Eds.), Algae Biomass: Production and Use, Elsevier Biomedical Press, New York, 1980, pp. 389–399
    [98] Miao,X.L.,Wu,Q.Y. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol, 2004, 110: 85–93
    [99] Ohta S, Chang T, Aozasa O, Ikegami N, Miyata H. Alterations in fatty acid composition ofmarine red alga Porphyridium purpureum by environmental factors. Bot Mar, 1993, 36:103–107
    [100] Jiang Y, Chen F. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J Am Oil Chem Soc, 2000, 77:613– 617
    [101]黄冠华,陈峰.环境因子对异养小球藻脂肪酸组分含量和脂肪总酸产量的影响.可再生能源,2009, 27(3): 65-69
    [102] Beach D H, Holz G G. Environmental influences on the docosahexaenoate content of the triacylglycerols and phosphatidylcholine of a heterotrophic marine dinoflagellate Crypthecodinium cohnii. Biophy.Biochim.Acta, 1973,316: 56-65
    [103] Borowitzka M A,Borowitzka L J. Micro-algal Biotechnology.Cambridge: Cambridge University Press, 1988
    [104] Liu Shiming, Chen Feng, Liang Shizhong. Researches in the Heterotrophic culture of Chlorella Vulgaris. Journal of South China University of Technology(Natural Science), 1999, 27(4): 111-115
    [105]张丽君,杨汝德,肖恒.小球藻的异养生长及培养条件优化.广西植物,2001, 21(4): 353-357
    [106] Pahl, S.L., et al. Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): Effect of some environmental factors. Bioscience and Bioengineering, 2010, 109(3): 235-239
    [107] Liam Brennan, Philip Owende. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010, 14: 557-577
    [108] Sarmidi Amin. Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management, 2009, 50: 1834–1840
    [109] Fowler SD, Brown WJ, Warfel J, Greenspan P. Use of Nile Red for the rapid in situ quantitation of lipids on thin-layer chromatograms. Journal of Lipid Research, 1979, 28: 1225–1232
    [110] Greenspan P, Fowler SD. Spectrofluorometric studies of the lipidprobe, Nile Red. Journal of Lipid Research, 1985, 26: 781–788
    [111] Lee SJ, Yoon BD, Oh HM. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 1998, 12: 553–556
    [112] Laughton C. Measurement of the specific lipid content of attached cells in microtitre cultures. Analytical Biochemistry, 1986, 156: 307–314
    [113]华汝成.单细胞藻类的培养与利用.北京:农业出版社,1980
    [114]孙颖颖.环境因子对球等鞭金藻生长的影响:[博士学位论文].大连:大连理工大学,2007
    [115]戴俊彪,吴庆宇.培养海洋微藻Isochrysis galbana生产EPA和DHA.海洋科学,1999,1(3):36-38
    [116]张秋会,马莺.高产EPA和DHA藻株的筛选.西部粮油科技,2003,1(6):51-53
    [117]陈淑芬,何义潮,谭桂英等.两种新分离的海洋金藻及其对贻贝幼虫的饲养效果.海洋湖沼通报,1985,14(2):44-56
    [118]孙珊.富油微藻筛选及油脂组分与影响因素研究:[硕士学位论文].青岛:青岛科技大学,2009
    [119] Guillard R R L, Hargraves P E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 1993,32(3): 234-236
    [120]尹建云,孟海华,张学松,梁世中.酶解糖异养培养微藻发酵条件的优化及生产试验.食品与发酵工业,2006(05):55-57
    [121]刘世名.小球藻(chlorella vulgaris)高密度异养培养:[博士学位论文].广州:华南理工大学,1999
    [122]魏东,刘龙军.异养小球藻产总脂肪酸的培养基优化.化学与生物工程,2008,25(3):35-40
    [123] Lalucat J, Imperial J, Pares R. Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79. Biotechnology and Bioengineering, 1984, 26: 677-681
    [124] Valiente E F, Nieva M, Avendano C, et al. Uptake and utilization of photosynthesis. Plant and Cell Physiology, 1992, 33: 307-313
    [125] Elsey D, et al. Fluorescent measurement of microalgal neutral lipids. Microbiological Methods, 2007, 68: 639–642
    [126]刘志媛.铁对几种不同代谢类型微藻的生长和油脂积累的影响:[博士学位论文].北京:中国科学院研究生院,2008
    [127]王敬国.尼罗红在测定细菌细胞中聚-β-羟基丁酸和其他脂类贮藏物质中的应用.微生物学报,1994, 34(1):71-75
    [128] Zhu C J, Lee YK, Chao TM. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. Applied phycology, 1997, 9:451-457
    [129] Irina KG, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 2006, 67:696-701
    [130]潘欣,李建宏,戴传超,浩云涛,马宇翔,王雪锋.小球藻异养培养的研究.食品科学,2002, 23(4): 28-33
    [131] Miao,X.L.,Wu,Q.Y. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol, 2004, 110: 85–93
    [132]陈明耀.生物饵料培养.北京:农业出版社,1995,65-71
    [133] W. Marshall Darley. Algal biology: a physiological approach. Blackwell. Scientific Publications. 1982, 45
    [134]崔峰华.盐生杜氏藻品系选育、营养调控和敌害防治:[硕士学位论文].青岛:中国海洋大学,2009
    [135]沈萍萍,王朝晖,齐雨藻,等.光密度法测定微藻生物量.暨南大学学报,2001,22(3):115-119
    [136]孙力.荧光法与分光光度法测定叶绿素a的对比试验.安徽化工,2003,5:46-57
    [137]任永霞,徐宁,段舜山.微藻叶绿素荧光值与传统生长指标的关联性研究.生态科学,2006,25(2):128-130
    [138]王珺,王永强,等.金藻0898培养的生态条件研究.海南大学学报自然科学版,2008,26(1):93-98
    [139]周汝伦,孙在仁,等.金藻8701的分离、培养和应用初报.海洋湖沼通报,1990,1:34-40
    [140]钱振明,邢荣莲,等.温度对8种底栖硅藻生长及其理化成分的影响.2009,22(1):30-34
    [141]张青田,胡桂坤.盐度对等鞭金藻生长的影响研究.盐业与化工,2009,38(6):8-10
    [142]陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社,1999.151-153
    [143]郭峰,朱凌俊,等.两种海洋底栖硅藻的培养条件研究.厦门大学学报:自然科学版,2005,44(6):831-835