高密度二氧化碳技术对鲜榨梨汁主要品质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨汁饮料营养丰富,口感鲜美,备受消费者青睐。目前果汁加工中广泛采用热力杀菌技术进行杀菌灭酶,但热加工对果汁新鲜度和品质影响很大,对营养和功能性成分也有一定破坏。非热加工技术(Non-thermal Processing, NTP)最大限度保持食品新鲜度,是目前研究热点。本文以鲜榨梨汁为原料,研究了高密度二氧化碳(Dense Phase Carbon Dioxide, DPCD)技术不同工艺参数对梨汁中菌落总数、多酚氧化酶(Polyphenol Oxidase, PPO)和主要品质指标影响,筛选出有效工艺参数处理梨汁,并置于4℃下贮藏,对主要品质指标进行了跟踪观测。主要结论如下:
     (1)随压力和处理时间增加,DPCD对鲜榨梨汁中菌落总数杀灭效果显著增强(p<0.05)。处理温度对杀菌效果有协同作用,随温度升高细菌残存率显著降低(p<0.05)。30 MPa-40℃-60 min下鲜榨梨汁中菌落总数残存率最大降低了2.664个对数。Weibull模型能较好的拟合DPCD处理后梨汁中菌落总数的失活曲线,且随处理压力和温度升高,比例因子a和形状因子b逐渐降低。
     (2)一级反应动力学能较好分析DPCD对梨汁PPO的钝化效果。随温度和压力升高,D值下降,k值上升。30 MPa-40℃-60 min的DPCD处理鲜榨梨汁中PPO酶活降低了83.34%。40℃时,Eyring公式分析DPCD处理梨汁PPO钝化效果参数为ZP=37.88MPa, Va=-68.67 cm3/mol。30 MPa时,Arrhenius公式分析DPCD处理梨汁PPO钝化效果参数为ZT=86.21℃, Ea=20.19 KJ/mol。
     (3) DPCD处理后鲜榨梨汁可溶性固形物Brix值和黏度没有显著变化(p>0.05),总色差△E<2;pH值和亮度(L值)比未处理样品显著降低(p<0.05),但不同条件(温度和时间)处理差异不显著(p>0.05)。随DPCD处理压力、温度和时间延长,梨汁透光率显著下降,褐变程度显著抑制(p<0.05);粒径分布呈现低压低温时减小,高压高温时增大的变化规律。
     (4)筛选30 MPa-40℃-60 min作为鲜榨梨汁DPCD处理参数。4℃贮藏期内,DPCD处理后鲜榨梨汁第5周起梨汁褐变度显著上升(p<0.05),第6周起菌落总数、pH值和透光率变化显著(p<0.05);8周内可溶性固形物含量和L值变化不显著(p>0.05)。PPO酶活的活性有部分回复,但整体保持在低活性水平。一级反应动力学公式能较好地分析DPCD处理后贮藏期内鲜榨梨汁L值的变化。△E<1.5,没有发生可见变化,DPCD处理对梨汁色泽变化有较好的抑制效果。综上所述,DPCD处理后4℃下可以达到6周贮藏期。
Consumption of fresh pear juice has been increasing rapidly due to its flavor and nutritional value. At present fruit juice processing widely uses thermal treatment technology to carry on inactivation of microbe and enzyme. The traditional thermal pasteurization processes not only have effect on the fruit juice quality specially freshness, but also have destructive effect on some nutrition ingredient and functionality ingredient. While, non-thermal processing can keep freshness at high limit, and it's better than other methods. The objective of this article was to study effects of DPCD (Dense Phase Carbon Dioxide) on the processing of fresh pear juice, inactivation of microbe and enzyme, and effects on the quality of pear juice at 4℃.
     (1) More and significantly inactivation of total bacteria counts was achieved at higher pressure, temperature and exposure time (p<0.05). The maximum reduction was 2.664-log at 30 MPa and 40℃for 60 min. The survival curves of total bacteria counts in pear juice against pressure or temperature were fitted by Weibull Model with high regression coefficients, and a value (scale factor) and b value (shape factor) decreased with increasing pressure or temperature.
     (2) Analysis of first-order reaction kinetic data showed that D value of PPO in pear juice decreased and k value increased with increasing pressure and temperature of DPCD treatment.83.34% of PPO inactivation was achieved at 30 MPa and 40℃for 60min. The ZP and Va value of PPO was 37.88 MPa and -68.67 cm3/mol treated by DPCD with 40℃. The ZT and Ea value of PPO was 86.21℃and 20.19 KJ/mol treated by DPCD with 30 MPa.
     (3) After DPCD treatment, Brix value and viscosity of fresh pear juice were not significantly changed (p>0.05) and the total color difference (ΔE) value was less than 2. But pH value and L value were significantly reduced (p<0.05). And they were not significantly changed with different treatment (temperature and time). T value decreased and browning degree was inhibited significantly with higher pressure, temperature and exposure time (p<0.05). The average particle size decreased under low temperature low pressure and increased under high temperature high pressure.
     (4) 30 MPa and 40℃for 60 min was suitable treatment for fresh pear juice. After DPCD treatment, browning degree significantly rose from the fifth week (p<0.05), and the total bacteria counts, pH value, T value were significantly changed (p<0.05) form the sixth week during 8 weeks storage time at 4℃. Brix value and L value of pear juice were not significantly changed (p>0.05). The activity of PPO recorded partly during storage time, but it was at low level. The L data followed first-order reaction kinetics during 8 weeks storage time after DPCD treatment.ΔE value of pear juice treated with 30 MPa and 40℃for 60min was less than 1.5, and the color was not obviously changed during storage time. Incorporation of low temperature, the storage time could reach 6 weeks after DPCD treatment.
引文
1.贝君,吴继红,廖小军等.高密度二氧化碳对脂肪氧化酶活性与结构变性的影响.中国食品学报,2008,5(8):51-56
    2.陈复生.食品超高压加工技术.北京:化学工业出版社,2005,106-107
    3.陈计峦,梨香气成分分析、变化及理化特征指标的研究.中国农业大学博士学位论文,2005
    4.陈其勋.中国食品辐照进展.北京:原子能出版社,1998,16-17
    5.刁金男,张春鹤,常福明.辐照技术在食品安全中的应用.农产品标准与食品安全,2008,14(2):53-54
    6.方成泉,林盛华,李连文等.我国梨生产现状及主要对策.中国果树,2003(1):47-48
    7.桂芬琦.高密度二氧化碳技术对酶活性和苹果浊汁颜色影响分析.[硕士学位论文].中国农业大学,2006
    8.韩冰,谢宏,张德权.牛奶高密度C02杀菌效果及杀菌动力学研究.食品科技,2010,35(5):67-76
    9.韩晶,李开雄,李丽华.食品辐照技术的特性及在肉制品中的应用研究.肉类研究,2009,1(119):57-62
    10.胡长海,丁元凯.梨汁的酶法保鲜.辽宁工学院学报,1997,17(4):85
    11.蒋和体,吴永娴主编.软饮料工艺学.北京:中国农业科学技术出版社,2004:123-124
    12.姜萍萍,吕洪波,赵庆丹等.超高压处理对胡萝卜汁品质影响的研究.食品科技,2009,34(7):28-30
    13.焦中高,刘杰超,王思新.果蔬汁非热加工技术及其安全性评析.食品科学,2004,11(25):340-345
    14.晋海,窦明.颜色管理的标准化(Ⅱ).检测与评价,2005(2):50-54
    15.金声琅,殷涌光,王莹等.高压脉冲电场对番茄汁杀菌效果的研究.食品工业科技,2010,11(31):91-93
    16.李汴生,阮征编.非热杀菌技术与应用.化学工业出版社,2004,121-123
    17.李秀根,张绍铃.世界梨产业现状与发展趋势分析.中国果业信息,2006,11: 1-5
    18.林河通,席玛芳,陈绍军.果实贮藏期间的酶促褐变.福州大学学报2002,30:699-793
    19.刘敏,郝中宁,肖奕等.水果蔬菜贮藏加工技术方法大全.北京:地震出版社,1993,125-127
    20.刘言宁,杨瑞金,伍玉洁.熟制对虾虾仁的辐照保鲜.贮运与保鲜,2005,9(31):113-116
    21.廖红梅,廖小军,胡小松.影响DPCD技术杀菌效果的因素与杀菌机理分析.食品与发酵工业,2007,1(33):96-99
    22.廖红梅,周林燕,廖小军等.高密度二氧化碳对牛初乳的杀菌效果及对理化性质影响.农业工程学报,2009,4(25):260-263
    23.路福绥.果汁的流变特性研究.食品工业科技,1998,2(20):24-25
    24.卢蓉蓉,钱平,何红艳等.超高压杀灭低酸性食品中耐压菌的动力学模型.农业工程学报,2010,9(26):350-355
    25.马霞,王瑞明,关凤梅等.果汁非酶褐变的反应机制及其影响因素.粮油与食品,2002:46-48
    26.孟丽芬,许德春,付立新等.绿色大米辐照保鲜技术及加工-工艺的研究.黑龙江农业科学,2006,(2):48-50
    27.孟少帅,王玉静,曹晓燕.高压脉冲电场用于食品灭菌研究进展.安徽农业科学,2008,36(18):7535-7537
    28.倪元颖,张欣,葛毅强.温带、亚热带果蔬汁原料及饮料制造.北京:中国轻工出版社,1999
    29.荣瑞芬,李红卫,陈燕等.果品加工技术.贵阳:贵州科技出版社,2001,115-116
    30.孙源源,张德权,李春红等.肉馅高密度C02杀菌效果和杀菌动力学研究.核农学报,2009,23(6):1014-1020
    31.唐佳妮,张爱萍,孟瑞锋等.非热物理加工新技术对食品品质的影响及应用.食品工业科技,2010,3(31):393-397
    32.田世平,徐勇,姜爱丽等.冬雪蜜桃在气调冷藏期间品质及相关酶活性的变化.中国农业科学,2001,34(6):656-661
    33.王新磊,吴继红,张燕等.高压CO2处理对西瓜汁的影响.食品与发酵工业,2008,11(34):76-80
    34.夏远景,薄纯智,张胜勇.超高压食品处理技术.食品与药品2006,8(2):62-67
    35.夏文水,钟秋千.食品冷杀菌技术研究进展.中国食品卫生杂志,2003,15(6):4-7
    36.肖建,张静,孟艳霞等.高密度二氧化碳技术对哈密瓜汁中多酚氧化酶的钝化效果研究.食品科技,2009,5(34):42-45
    37.徐芹.砀山酥梨果汁褐变机理及控制技术研究.[硕士学位论文].南京农业大学,2008
    38.薛源,桂芬琦,孙志健等.高压CO2技术杀菌灭酶效果.食品工业科技,2006,3(27):203-205
    39.余静,白珍明.超高压技术在肉类加工中的应用研究.肉类研究,2008,12(118):54-57
    40.张朝飞,钟海雁,郑仕宏.5种沙梨主要营养成分分析.食品与机械,2005,21(3):41-42
    41.张素.不同梨品种加工特性及加工品质控制技术研究.[硕士学位论文].山东农业大学,2008
    42.赵光远,王璋,许时婴.浑浊苹果汁加工中苹果PPO热失活条件的研究.食品科技,2003,(7):84-87
    43.赵光远,王璋,许时婴.浑浊苹果汁加工中影响果汁浊度因素的研究.食品科学,2005(5):77-79
    44.赵光远,李娜,白艳红等.热协同高压处理对鲜榨桃汁品质影响的研究.广西轻工业,2006(6):1-2
    45.赵光远,王璋,许时婴.混浊苹果汁加工过程中的理化变化.食品与发酵工业,2006(9):144-147
    46.赵光远,李娜,纵伟.超高压处理对梨汁中多酚氧化酶活性的影响.食品与药品,2007,9(1):15-17
    47.赵光远,王璋.破碎时蒸汽热处理对混浊梨汁稳定性的影响.郑州轻工业学院学报(自然科学版),2008,1(23):28-31
    48.赵晋府.食品工艺学.北京:中国轻工业出版社,2001,318-362
    49.邹波.果蔬加工过程中的褐变及护色措施.黔东南民族职业技术学院学报,2008,3(4):24-25
    50.张微,李汴生.超高压和热灭菌对芒果原浆品质影响的比较.食品工业科技,2010,4(31):104-107
    51.张静,肖建,杨新涛等.高密度C02和常压处理对哈密瓜汁浊度、色度、褐变度变化的研究.中国酿造,2009,2(203):43-46
    52.郑宝刚.果汁行业市场分析及本土产品营销策略研究.[硕士学位论文].天津大学,2004
    53.钟葵,廖小军,梁楚霖等.脉冲电场和热处理对鲜榨苹果汁贮藏期品质的影响.食品与发酵工业,2004,8(34):49-53
    54.周婧琦,赵光远,张培旗等.热协同超高压处理对浑浊梨汁中微生物的影响.食品科学,2008,29(8):50-52
    55. Arreola A G, Balaban M O, Marshall M R, et al.Supercritical CO2 effects on some quality attributes of single strengh orange juice. Journal of Food Science,1991, 56(4):1030-1033
    56. Balaban M O, Arreola A G, Marshall M, et al. Inactivation of pectinesterase in orange juice by supercritical carbon dioxide. Journal of Food science,1991,56: 743-746
    57. Basak S, Ramaswamy H S. Ultra high pressure treatment of orange juice:a kinetic study on inactivation of pectin methyl esterase. Food Research International,1996, 29:601-607
    58. Damar S, Balaban M O. Review of dense phase CO2 technology:microbial and enzyme inactivation, and effects on food quality. Journal of Food Science,2006,71: 1-10
    59. Enomoto A, Nakamura K. Lethal effect of high-pressure carbon dioxide on a bacterial spore. Journal of Fermentation and Bioengineering,1997,83(3):305-308
    60. Erkmen O. Effect of carbon dioxide pressure on Listerria monocytogenes in physiological saline and foods. Microbiology,2000a,17(6):589-596
    61. Erkmen O. Antimicrobial effects of pressurized CO2 on Brocothrix thermosphacta in physiological saline and foods. Journal of the Science of Food and Agriculture, 2000b,80:1365-1370
    62. Evrendilek G A, Zhang Q H, Richter E R. Application of pulsed electric fields to skim milk inoculated with Staphylococcus aureus. Biosystems Engineering,2004, 87(2):137-144
    63. Fraser D. Bursting bacteria by release of gas pressure. Nature,1951,167:33-34
    64. Giribet M, Ribas A. Kinetics of colour development in aqueous glucose systems at high temperatures. Journal of Food Engineering,2000,44(3):181-189
    65. Hong S I, Pyun Y R. Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. Journal of Food Safety,1989,9(4):253-365
    66. Hong S I, Pyun Y R. Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. International Journal of Food Microbiology,2001,63:19-28
    67. Isenschmid A, Marison I W, Stockar U V. The influence of pressure and temperature of compressed CO2 on the survival of yeast cells. Journal of Biotechnology,1995,39: 229-237
    68. Ishikawa H, Shimoda M, Shiratsuchi H, et al. Sterilization of microorganisms by the supercritical CO2 micro-bubble method. Bioscience Biotechnology and Biochemistry, 1995,59:1948-1950
    69. Ishikawa H, Shimoda M, Yonekura A, et al. Inactivation of enzymes and decomposition of a-helix structure by supercritical carbon dioxide microbubble method. Journal of Agricultural and Food Chemistry,1996,44:2646-2649
    70. Karaman H, Erkmen O. High carbon dioxide pressure inactivation kinetics of Escherichia coli in broth. Food Microbiology,2001,18(1):11-16
    71. Kincal D A. Continuous high pressure carbon dioxide system for cloud retention, microbial reduction and quality change in orange juice. Gainesville, Florida University of Florida,2000:10
    72. Lado B H, Yousef A E. Alternative food-preservation technologies:efficacy and mechanisms. Microbes and Infection,2002(4):433-440
    73. Lin H M, Chan E C, Chen L F, et al. Disintegration of yeast cells by pressurized CO2. Biotechnology Progress,1991(7):201-204
    74. Lin H M, Yang Z, Chen, L F. Inactivation of Saccharomyces cerevisiae by super critical and subcritical CO2. Biotechnology Progress,1992(8):458-461
    75. Lin H M, Yang Z, Chen L F, Inactivation of Leuconostoc dextranicum with CO2 under pressure, Journal of Chemical and Engineering,1993,52:27-33
    76. Liu X F, Zhang B Q, Li T D. Effects of CO2 Compression and Decompression Rates on the Physiology of Microorganisms. Journal of the Chinese Institute of Chemical Engineers,2005,13:141-142
    77. Lowe E K, Anema S G, Bienvenue A, et al. Heat-induced redistribution of disultide bonds in milk proteins. Journal of Agricultural and Food Chemistry,2004,52(25): 7669-7680
    78. Meyer R S, Cooper K L, Knorr D. High pressure sterilization of foods. Food Technology,2000,54(11):66-73
    79. Nguyen T B T, Ketsa S, Vandoorn W G. Relationship between browning and the activities of polyphenoloxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biology Technology,2003,30:187-193
    80. Palaniappan S, Sastry S K. Effects of electricity on microorganisms. Food Processing and Preservation,1990,14:393-414
    81. Reiter M, Stuparic M, Neidhart S, et al. The role of process technology in carrot juice cloud stability. Swiss Society of Food Science and Technology,2003,36: 165-172.
    82. Rodrigo D, Ruiz P, Barbosa-Cdnovas G V, et al. Kinetic model for the inactivation of Lactobacillus plantarum by pulsed electric fields. International Journal of Food Microbiology,2003,81:223-229
    83. Roig M G, Bello J F, Riveraz S, et al. Studies on the occurrence of non-enzymatic browing during storage of citrus juice. Food Research International,1999,32: 609-619
    84. Smelt J. Recent advances in the microbiology of high pressure processing. Trends in Food Science and Technology,1998(9):152-158
    85. Soo R K, Min S R, Byoung C K, et al. Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline. Journal of Microbiological Methods,2007,70(1): 132-141
    86. Spilimbergo S, Bertucco A. Non-thermal Bacteria inactivation with dense carbon dioxide. Biotechnology and Bioenginerring,2003,84:628-636
    87. Spilimbergo S, Mantoan D, Dalser A. Supercritical gases pasteurization of apple juice. Journal of Supercritical Fluids,2007,40(3):485-489
    88. Tedjo W, Eshtiaghi M N, et al. Impact of supercritical carbon dioxide and high pressure on lipoxygenase and peroxidase activity. Journal of Food Science,2000, 65(8):1284-1287
    89. Toribio J L. Heat induced browning of clarified apple juice at high temperatures. Journal of Food Science,1986,51(1):172
    90. Weemase C A, Ludikhuyze L R, Van Den Breoeck I, et al. High pressure inactivation of polypheno PPO idases. Journal of Food Science,1998,63(5): 873-877
    91. Weemaes C A, Ludikhuyze L R, Broeck I V D, et al. Activity, electrophoretic characteristics and heat inactivation of polyphenoloxidases from apples,avocados, grapes, pears and plums. Lebensmittel-Wissenschaft und-Technologie,1998,31: 44-49
    92. Weibull W A. Statistical distribution function of wide applicability. Journal of Applied Mechanics,1951,51,293-297