腺病毒介导NF-κB p65的siRNA抗大鼠移植肝缺血再灌注损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:我国是世界上肝病发病率最高和因肝病导致死亡人数最多的国家之一,同时也是接受肝移植治疗的患者较多和肝移植发展较快的国家。肝移植后,肝脏无功能或肝衰仍然是一个重要的临床问题。同时,移植器官的短缺迫使人们不得不采用一些边缘供肝,而这些供肝对缺血再灌注损伤更敏感,使移植肝原发性功能障碍的发生率显著提高,这在相当程度上限制了肝移植的发展。如何避免这些损伤是目前肝移植研究领域的重点和热点。
     研究表明,肝移植缺血再灌注损伤过程中,NF-κB的激活导致其下游基因-炎性介质的大量表达,从而在移植后缺血再灌注损伤过程中发挥重要作用。因此,我们可以设想抑制NF-κB的激活或表达有望调节或减轻缺血再灌注损伤。RNAi技术可以高效沉默特定基因,去除移植过程中不利基因的表达,在器官移植方面具有广泛的应用前景。有效的基因治疗方案需要将目的基因稳定、高效地转入移植物的细胞。腺病毒载体因具有嗜肝性、能够转染处于非增殖期的实质细胞而在肝脏疾病研究方面具有优势。
     第一部分siRNA转染BRL细胞时转染条件的优化
     目的:探讨用RNAi-mate试剂转染siRNA至BRL细胞的最佳转染条件。
     方法:设立不同的2种RNAi-mate量和4种siRNA量,交叉组合成8个不同比例的复合物,即8个实验组,分别转染接种培养的BRL细胞,24小时后,观察细胞阳性转染率和细胞存活率。
     结果: siRNA的量为1.5ug,RNAi-mate为3.0ul时,其转染效率为89%,细胞的生存率为84%,优于其它条件时的转染效率并能保证相对小的细胞毒性。
     结论:在本实验中,用siRNA转染BRL细胞,当siRNA与RNAi-mate比例为1:2时,为最佳转染条件。
     第二部分siRNA对BRL大鼠肝细胞NF-κB p65表达影响的研究
     目的:筛选出能高效抑制NF-κB p65表达的siRNA序列。
     方法:设计制备4对针对大鼠NF-κB p65的siRNA,结合对照共分为7个实验组,采用研究一的转染条件体外转染培养的BRL细胞,采用逆转录PCR和Western blotting检测siRNA的基因沉默效果。
     结果:设计合成的4对siRNA均不同程度的从mRNA和蛋白表达水平抑制了BRL细胞NF-κB p65的表达,其中第二对siRNA mRNA和蛋白水平的抑制率分别为90%和80%。
     结论:4对siRNA转染BRL细胞后,均能发挥RNA干扰作用。第二对siRNA抑制效率最高。
     第三部分针对NF-κB p65的siRNA重组腺病毒的制备及病毒包装、扩增和滴度测定
     目的:构建针对NF-κB p65的siRNA重组腺病毒。
     方法:将NF-κB p65 shRNA表达框插到穿梭质粒pShuttle H1的启动子下游,鉴定包含目的基因的正确克隆,将其线性化后与腺病毒骨架质粒pAdEasy-1体外同源重组,共转化感受态细菌,筛选重组子并扩增。重组子线性化后,转染293A细胞中进行病毒的包装,同时大量扩增病毒,氯化铯密度梯度离心纯化。重组腺病毒转染BRL细胞检测NF-κB p65基因沉默效率。
     结果:穿梭载体插入序列及重组腺病毒质粒的鉴定均完全正确。病毒扩增纯化后滴度为3.0×1010 pfu/ml,并能在体外抑制NF-κB p65蛋白表达。
     结论:成功构建了针对NF-κB p65的siRNA重组腺病毒。
     第四部分大鼠原位肝脏移植模型的建立
     目的:用改良二袖套法建立稳定的大鼠原位肝脏移植模型。
     方法:在Kamada“二袖套法”的基础上,在取肝、肝上下腔静脉的吻合、围手术期处理等几方面进行改良,共施行大鼠原位肝移植动物实验140例,观察术后并发症及存活率。
     结果:经过140例次的训练,建立了稳定的大鼠原位肝脏移植模型。在实验的第三阶段,受体无肝期平均12分钟,手术成功率93%,两周存活率90%。
     结论:改良的二袖套法具有无肝期短、手术成功率高、大鼠术后存活时间长的优点,是大鼠原位肝移植的理想术式。娴熟细致的外科操作、受体无肝期的长短是决定动物存活的关键。
     第五部分Ad-shRNA-p65在大鼠移植肝缺血再灌注损伤中的保护作用
     目的:观测构建的Ad-shRNA-p65腺病毒载体在大鼠体内的基因沉默效果及其在大鼠原位移植肝缺血再灌注损伤中的保护作用。
     方法:术前36小时将Ad-shRNA-p65通过门静脉注入实验组供体大鼠肝脏,3.0×109/只。移植术前处死一批大鼠,检测血ALT、AST、LDH,肝脏病理,NF-κB p65的mRNA、蛋白表达。供肝获取后冷保存4小时,改良的二袖套法行原位肝脏移植术。门静脉复流6小时后观测受体胆汁分泌情况,处死受体大鼠,检测血ALT、AST、LDH,肝脏病理,肝组织MDA水平,NF-κB p65的mRNA、蛋白表达以及免疫组化;TNF-α、MIP-2、ICAM-1mRNA表达,TNF-α的免疫组化,TUNEL法检测肝脏细胞凋亡水平。
     结果:移植术前,实验组NF-κB p65的mRNA、蛋白表达降低,实验组和空病毒组血生化指标升高。术后6小时,实验组胆汁分泌量多于对照组,血生化指标降低,MDA水平、NF-κB p65的mRNA、蛋白表达明显低于对照组,TNF-α、MIP-2、ICAM-1mRNA低表达,实验组细胞形态变化较轻,凋亡水平明显低于对照组。
     结论:构建的腺病毒载体Ad-shRNA-p65能成功地转染供肝,并有效沉默NF-κB p65表达,转染本身对供肝可能有轻微的损害。Ad-shRNA-p65预处理的供肝能够抑制移植肝缺血再灌注损伤引起的NF-κB p65激活和表达,并减轻移植肝的缺血再灌注损伤,其机制与下调TNF-α、MIP-2及ICAM-1表达,进而减少肝脏内中性粒细胞的浸润有关。
Background: Our country is one of countries with the higher morbidity and mortality of liver ailment in the world. Liver transplantation is developing quickly and the number of patients been performed liver transplantation is increasing in our country. Liver dysfunction or failure is a significant clinical problem after liver transplantation. The dramatic organ shortage forces lots of marginal grafts been used. These grafts have a higher susceptibility to ischemia-reperfusion injury and a higher possibility of primarily liver dysfunction after transplantation, which directly limits the developing of clinic liver transplantation. How to avoids or limits its happen is the focal point of the liver transplantation research.
     Some research indicated, in the processes of the ischemia-reperfusion injury of liver transplantation, the activation of NF-κB which leading into the expression of lots of inflammation cytokines plays a very important role. So we can suppose inhibit the activation or expression of NF-κB maybe have a use to lessen the ischemia-reperfusion injury in these process. The technique of RNA interference has a dominantly use of silencing special gene expression and an extensively utilize prospect in organ transplantation. Effective gene therapy requires a reliable gene transfer tools to efficiently insert target genes into the cells of the grafts. Adenovirus vectors have been favored because of their propensity to infect hepatic cells and their ability to infect proliferation and nonproliferation cells.
     PART I:Optimize the parameters for transfecting siRNA into cultivated rat BRL cells.
     Objective: To optimize the parameters for transfecting siRNA into cultivated rat BRL cells by RNAi-mate in vitro.
     Methods: Two different density of RNAi-mate were mixed with four different density of fluorescin - labeled siRNA respectively, and then eight mixtures were got. Each of the mixtures was used to transfect BRL cells.24 hours after transfection; cell count was made by fluorescent microscope to determine the percentage of the cells been transfected under each condition. The cell viability was calculated by using MTT assay at the same time.
     Results: In the case of 1.5ug siRNA plused with 3.0ul RNAi-mate, we found the transfection efficiency was 89%, the cell survival rate was 84%, and it was the best parameter.
     Conclusions: In our experiment, when transfectting BRL cells, the best ratio of siRNA: RNAi-mate was 1:2.
     PART II: The gene silence effect of the siRNA on the NF-κB p65 expression of the BRL cells
     Objective: To choose the NF-κB p65 siRNA with the highest gene silence efficacy from the 4 pairs of siRNA.
     Methods: We designed 4 pairs of siRNA targeting rat NF-κB p65 mRNA. Combined with control group there were 7 experiment groups altogether. Then we transfected those siRNA into the cultivated rat BRL cells use the way we conformed in part 1. The NF-κB p65 gene expression effectiveness was tested by reverse transcription-PCR and Western blotting.
     Results: Though the suppressing degree was different, each one of those 4 pairs of siRNA could suppress the NF-κB p65 gene expression from the mRNA and protein level. The second siRNA was the most efficient one and the NF-κB p65 mRNA expression was decreased 90%, the protein expression was decreased 80% compared with the blank group.
     Conclusions: Our experiment confirmed, each one of those 4 pairs of siRNA has the function of gene silence and the second one was the most efficient one.
     PART III: Construct a recombinant Ad containing NF-κB p65 specific siRNA expression cassette and its amplification, purifying and titrating.
     Objective:To construct a recombinant Ad containing NF-κB p65 specific siRNA expression cassette.
     Methods:The NF-κB p65 specific siRNA expression cassette was cloned behind the sequence of H1-RNA promoter, and the positive clones containing target gene were selected and appraised. A recombinant adenovirus was produced by a double-recombination event between cotransformed adenoviral backbone plasmid pAdEasy-1 and a linearized shuttle vector. Positive clones were selected and confirmed. Then they were linearized and transferred into the 293A cell to amplification, and then were purified by density gradient ultracentrifuge and titrated. The desired Ad vectors were transfected into the BRL cells to detect the gene silence efficiency.
     Results:Both the plasmid pShuttle-H1-p65 and the recombinant Ad were confirmed correct. The recombinant Ad were generated in a high titer which reached 3.0×1010 pfu/ml, and could efficiently knock down the NF-κB p65 expression in vitro.
     Conclusion: we successfully constructed the recombinant Ad which containing NF-κB p65 specific siRNA expression cassette.
     PART IV: The establishment of a model of rat orthotopic liver transplantation
     Objective:To establish a reliable animal model of rat orthotopic liver transplantation with modified cuff technique.
     Methods:140 cases of rat orthotopic liver transplantation were performed by using the two-cuffed technique with some modification in graft harvesting, the anastomoses of suprahepatic vena cava and the perioperative treatment.
     Results:Of the last 30 cases, the mean time of anhepatic period was 12min, The 24 hours and 2 week survival rates were 93% and 90% respectively.
     Conclusions: The modified two-cuffed technique is convenient and easy to repeat. It can enhance the stability and survival rate of rat orthotopic liver transplantation models. Skilled surgical techniques and shortening the anhepatic phase of recipient as much as possible are the keys to animal survival.
     PART V: Adenovirus expressing shRNA targeting p65 have the protective effect against the ischemia-reperfusion injury of rat liver grafts
     Objective:To test the Gene silencing efficacy of Ad-shRNA-p65 in vivo and its potential protective effect against the ischemia-reperfusion injury of liver grafts.
     Methods: The donor rats was infused with the Ad- shRNA- p65 in a titer of 3×109 pfu via portal vein. 36 hours later, half of the rats were executed to detect the items as below: Serum ALT、AST、LDH; the liver pathology changes; the expression of NF-κB p65 mRNA and protein in the liver. The other donor rats were re-laparotomized to harvest the grafts and the grafts were preserved for 4 hours in Ringer’s lactate solution. Then the orthotopic rat liver transplantation (OLT) was performed using the modified two-cuffed technique described in the partⅣ. Six hours after transplantation, the expression of NF-κB p65 mRNA and protein and TNF-α、MIP-2、ICAM-1mRNA in the liver were tested; the bile volume, content of MDA in the liver and serum ALT、AST、LDH were measured, while NF-κB p65 and TNF-αcontent were estimated by immunohistochemistry and apoptosis was analyzed by TUNEL.
     Results:The mRNA and protein expression of NF-κB p65 were decreased in the donor rats which infused in Ad- shRNA- p65. and infusing Ad would induce the heighten of serum ALT、AST、LDH. Six hours after reperfusion, in the experiment group, the bile volume was increased, the expression of NF-κB p65 mRNA and protein , TNF-α、MIP-2、ICAM-1mRNA in the liver, the content of MDA in the live, the level of ALT、AST、LDH in serum were all decreased, compared with control groups. The immunohistochemistry showed that lower expression of NF-κB p65 and TNF-αin the liver tissue of the experiment group and TUNEL showed less apoptosis cells .
     Conclusions: Administered via portal vein, the recombinant adenovirus expressing shRNA targeting p65 could obviously silencing the NF-κB p65 expression in rat liver. Infuse in Ad itself maybe had a little degree of liver damage. Donor adenovirus-mediated gene transfer of Ad- shRNA- p65 could decrease subsequent ischemia-reperfusion injury in rat liver transplantation. One of its mechanism maybe explained as down-expression of NF-κB p65 will lead into the inhibit expression of TNF-α、MIP-2、ICAM-1, and thus reduce the leukocytes infiltrating the liver.
引文
1. Fondevila C, Busuttil RW, Kupiec-Weglinski JW. Hepatic ischemia/reperfusion injury—a fresh look. Exp Mol Pathol, 2003, 74 (2): 86 -93
    2. Enomoto K, Nishikawa Y, Omori Y, et al. Cell biology and pathology of liver sinusoidal endothelial cells. Med Electron Microsc, 2004, 37 (4): 208-15.
    3. Balabaud C, Cunha AS, Bioulac-Sage P. Microvascular graft dysfunction. J Hepatol, 2004, 41(2): 340-3.
    4. Celec P. Nuclear factor kappa B--molecular biomedicine: the next generation. Biomed Pharmacother, 2004, 58 (6-7): 365-371.
    5. Yates LL, Górecki DC.The nuclear factor-kappaB (NF-kappaB): from a versatile transcription factor to a ubiquitous therapeutic target. Acta Biochim Pol, 2006, 53(4): 651-62.
    6. Aggarwal BB, Takada Y, Shishodia S, et al. Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol, 2004, 42(4): 341-53.
    7. Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets, 2007, 8(3): 469-82.
    8. Novobrantseva TI, Akinc A, Borodovsky A, de Fougerolles A. Delivering silence: advancements in developing siRNA therapeutics.Curr Opin Drug Discov Devel, 2008, 11(2): 217-24.
    9. Rácz Z, Hamar P. SiRNA technology, the gene therapy of the future? Orv Hetil, 2008, Jan 27; 149(4): 153-9.
    10. Morris KV. Therapeutic potential of siRNA-mediated transcriptional gene silencing. Biotechniques. 2006, Apr; Suppl: 7-13.
    11. Rácz Z, Hamar P. Can siRNA technology provide the tools for gene therapy of the future? Curr Med Chem, 2006, 13(19): 2299-307.
    12.朱珉,陈刚,陈实.核糖核酸干扰技术在移植免疫中的应用前景.中华器官移植杂志,2006,27(4):253-254
    13.朱志成,张兴义,姚宪章. RNA干扰技术及其在器官移植方面的应用及前景.中国老年学杂志,2006,26(1):131-133
    14. Yaron I,Hidetsugu S,Narsing RT,et a1.Adenovirus mediated gene therapy of liver disease.Seminars Liver Di, 1999, 19: 49-59
    15. Wilson JM. Adenovirus-mediated gene transfer to liver. Adv Drug Deliv Rev. 2001, 46(1-3): 205-9.
    1. Fire A, Xu S, Montogomery MK, et al. Potent and specific genetic interference by double - stranded RNA in Caenorhabditis elegans. Nature, 1998, 391 (6669): 806 - 811.
    2. John M, Geick A, Hadwiger P, et al. Gene silencing by RNAi in mammalian cells. Curr Protoc Mol Biol, 2003, Chapter 26: Unit 26.2.
    3. Zhang J, Hua ZC. Targeted gene silencing by small interfering RNA-based knock-down technology. Curr Pharm Biotechnol, 2004, 5(1):1-7.
    4. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus - mediated RNA interference. Cancer Cell, 2002, 2 (3): 243 - 247.
    5. Duxbury MS, Whang EE. RNA interference: a practical approach. J Surg Res, 2004, 117(2):339-44.
    6. Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet , 2003, 25; 362(9393):1401-3
    7. Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid - mediated DNA - transfection procedure. Proc Natl Acad Sci USA, 1987, 84 (21): 7413 - 7417.
    8. Zhang S, Zhao B, Jiang H, et al. Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release, 2007, 18; 123(1):1-10.
    9. Eastman SJ, Tousignant JD , Lukason MJ, et al. Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid: DNA complexes. Hum Gene Ther, 1997, 8(3): 313 - 322.
    10. Xu Y, Szoka FC Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry, 1996, 35 (18): 5616 - 5623.
    11. Yin J, Ma Z, Selliah N, et al. Effective gene suppression using small interfering RNA in hard-to-transfect human T cells. J Immunol Methods, 2006, 30; 312(1-2):1-11.
    12. Duxbury MS, Whang EE. RNA interference: a practical apporach. J Surg Res, 2004, 117: 339-344.
    1. Schütze N. siRNA technology. Mol Cell Endocrinol, 2004, 213(2): 115-9.
    2. Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets, 2007, 8(3): 469-82.
    3. Novobrantseva TI, Akinc A, Borodovsky A, et al. Delivering silence: advancements in developing siRNA therapeutics.Curr Opin Drug Discov Devel, 2008, 11(2): 217-24.
    4. Rácz Z, Hamar P. SiRNA technology, the gene therapy of the future? Orv Hetil, 2008, 149(4): 153-9.
    5. Morris KV. Therapeutic potential of siRNA-mediated transcriptional gene silencing. Biotechniques, 2006, Suppl: 7-13.
    6. Rácz Z, Hamar P. Can siRNA technology provide the tools for gene therapy of the future? Curr Med Chem, 2006, 13(19): 2299-307.
    7. Pushparaj PN, Melendez AJ. Short interfering RNA (siRNA) as a novel therapeutic. Clin Exp Pharmacol Physiol, 2006, 33(5-6): 504-10.
    8. Ui-Tei K, Saigo K. Molecular mechanism of RNA interference and the selection of highly effective siRNA sequences. Tanpakushitsu Kakusan Koso, 2004, 49(17 Suppl): 2662-70.
    9. Lisa JS, John JR. Approaches for the sequence-specific knockdown of mRNA. Nature Biotechnology, 2003, 21(12): 1457-1465
    10. Jorgensen R. Altered gene expression in plants due to trans interaction between hohologous genes. Trends Biotechnol, 1990, 8: 340-344
    11. Bernstein E, Caudy AA, Hammond SM, et al. Roll for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409: 363-366
    12. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers conver mRNA into dsRNAs that are degrate new siRNAs. Cell, 2001, 107: 297-307
    13. Elbashir SM, Lendeckle W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev, 2001, 15(2): 188-200
    14. Yamada T, Naito Y, Ui-Tei K, et al. Designing functional siRNA sequences. Seikagaku, 2005, 77(12):1519-25.
    15. Ui-Tei K, Saigo K. Molecular mechanism of RNA interference and the selection of highly effective siRNA sequences. Tanpakushitsu Kakusan Koso, 2004, 49(17 Suppl): 2662-70.
    16. Yoshinari K, Miyagishi M, Taira K. Efects on RNAi of the tight structuer, sequence and position of the targeted region. Nucleic Acids Res, 2004, 32: 691-9.
    17. Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res, 2003, 31: 4417-24.
    18. Inoue A, Sawata SY, Taira K. Molecular design and delivery of siRNA. J Drug Target, 2006; 14(7): 448-55.
    19. Castanoto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products. RNA, 2002, 8: 1454-60.
    20. Miyagishi M, Taira K. U6 pormoter-driven siRNAs with four uridine 3' overhangs efficiently supperss targeted gene expression in mammalian cells. Nat Biotechnol, 2002, 20: 497-500.
    21. Donze O, Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res, 2002, 30: e46.
    22. Yang D, Buchholz F, Huang Z, et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate efective RNA interference in mammalian cells. Proc Natl Acad Sci U S A, 2002, 99: 9942-7.
    23. Shinagawa T, Ishii S. Generation of Ski-knock down mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev, 2003, 17: 1340-5.
    24. Amarzguioui M, Rossi JJ, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 2005 Oct 31; 579(26): 5974-81.
    25. Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol. 2007 Aug; 76(1): 9-21.
    26. Kumar LD, Clarke AR.Gene manipulation through the use of small interfering RNA (siRNA): from in vitro to in vivo applications.Adv Drug Deliv Rev. 2007, 30; 59(2-3): 87-100.
    1. Templeton NS. Liposomal delivery of nucleic acid in vivo DNA Cell Biol, 2002, 21(12): 857-867.
    2. Kishida T, Asad AH, Gojo S, et al. Seqence-special gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA. J Gene Med, 2004, 6: 105-110.
    3. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature, 2004, 431(7006): 371-378.
    4. Lewis DL. Hagstrom JE, Loomis AG, et al. Efficient delivery of siRNA for inhibition of gene expression in postnatant hepatitis.Nature Genet, 2002, 32: 107-108.
    5. Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003, 9(3): 347-351.
    6. Yu JY, Deruiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. RNA, 2002, 99(9): 6047-6052.
    7. Machida Y, Okada T, Kurosawa M, et al. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse.Biochem Biophys Res Commun, 2006, 28; 343(1): 190-197.
    8. Chen WZ, Liu MQ, Jiao Y, et al. Adenovirus-Mediated RNA Interference against Foot-and-Mouth Disease Virus Infection both In Vitro and In Vivo. Journal of Virology, 2006, 80(7):3559–3566.
    9. Uprichard SL, Boyd B, Althage A, Chisari FV, et al.Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc. Natl Acad Sci USA, 2005, 102(3):773-778.
    10. Stephan A, Vorburger, Kelly K, Adenoviral Gene Therapy. The Oncologist, 2002, 7: 46-59.
    11. Adám E, Nász I. Adenovirus vectors and their clinical application in gene therapy. Orv Hetil, 2001, 142(38): 2061-70.
    12. Nász I, Adám E. Recombinant adenovirus vectors for gene therapy and clinical trials. Acta Microbiol Immunol Hung, 2001, 48(3-4): 323-48.
    13. Tsai SY, Schillinger K, Ye X. Adenovirus-mediated transfer of regulable gene expression. Curr Opin Mol Ther, 2000, 2(5): 515-23.
    14. Hehir K M, Armentano D, Cardoza L M, et al. Molecular characterization of replication competent variants of adenovirus vectors and genome modifications to prevent their occurrence. J Virol, 1996, 70: 8459~8467
    15. Shen C, Buck AK, Liu X, et al. Gene silencing by adenovirus- delivered siRNA. FEBS Lett, 2003, 539: 111-114.
    16. Hardy S,Kitamura M,Harris ST,et al. Constraction of adenovirus vectors through Cre-lox recombination,J Viral,1997,71: 1842-1489.
    17. Mittereder N,March K L,Trapnell B C.Evaluation of the Concentration and Bioactivity of Adenovirus Vectors for Gene Therapy.J Viro1, 1996, 70(11):7498-7509.
    1. Lee S, Charters C, Chandler J, et al. A Technique for orthotopic liver transplantation in the rat. Transplantation, 1973, 16: 664-669
    2. Lee S, Chaners C, Orloff M. Simplified technique for Orthotopic liver transplantation in the rat. Am J Surg, 1975, 130: 38-40
    3. Kamada N, Calne R, Orthotopic liver transplantation in the rat. Transplantation, 1979, 28: 47-50
    4. Kamada N, Calne R, A surgical experience With five hundred thirty liver transplantation in the rat. Surgery, l983, 93: 64-69
    5. Zimmerman FA, Butcher GW, Davies HS, et al. Techniques for orthotopic liver transplantation in the rat and some studies Of the immunologic responses to fully allogenetic liver grafts. Transplant Proc, 1979, 11: 571-574
    6. Miyata M, Fisher J, Fuhs M, et al. A simple method for orthotopic liver transplantation in the rat. Transplantation, 1980, 30: 335-338
    7. Engemann R, Thiede A, Thiede A, et al. Value of a physiological liver transplant model in rats. Induction of specific graft tolerance in a fully allogeneic strain combination. Transplantation, 1982, 33(5): 566-8
    8. Schemmer P,Schoonhoven R,Swenberg JA,et al. Gental in situ liver manipulation during organ harvest decreases survival after rat liver transplantation. Role Of Kupffer cells.Transplantation, 1998, 65: 1015
    9. Liu H, Cao H, Wu ZY. Isolation of Kupffer cells and their suppressive effects on T lymphocyte growth in rat orthotopic liver transplantation. World J Gastroenterol, 2007, 14; 13(22): 3133-6.
    10. Tokunaga Y,Ozaki N, Wakashiro S,et al.Effects of perfusion pressure during flushing on the viability of the procured liver using noninvasive fluorometry. Transplantation, 1988, 45(6):1031
    11. Xu C, Yang Y, Yi SH, et al. Standardization of rat stable orthotopic liver transplantation model and comparison of the effect of two liver graft perfusion methods. Nan Fang Yi Ke Da Xue Xue Bao, 2006, 26(11):1556-8.
    12. Goto M,Takei Y, Kawano S,et al. Tumor necrosis factor and endotoxin in thepathogenesis of liver and pulmonary injuries after orthotopic liver transplantation in rat. Hepatology , 1992, 16:487
    13. Liu ZJ, Li SW, Li XH, et al. The influence with block the endotoxin signal transduction for ischemia/reperfusion injury of graft liver in rats. Sichuan Da Xue Xue Bao Yi Xue Ban, 2006 , 37(5): 679-82.
    14. A Cuschierl,P R Baker,Laboratory animals &Basic techniques in animal experimentation In:A Cuschieri,P R Baker Introduction to research in medical sciences.Oxford,1985, p14-25,p128-13l
    15. Gao W, Lemaster J , Thurman R , Development of a new method for hepatic rearterialization in rat orthotopic liver transplantation.Transplantation, 1993, 56: 19-24
    16. Spiegel HU, Palmes D. Surgical techniques of orthotopic rat liver transplantation.J Invest Surg, 1998, 11(2): 83-96.
    1. Yinong W, John MK, Stephen Chung, et a1. In situ transfer rat auxiliary liver transplant. Transplantation, 1997,64:1537-1541
    2. Bagley J, Aboody-Guterman K, Breakefield X, et al. Long-term expression of the gene encoding green fluorescent protein in murine hematopoietic cells using retroviral gene transfer. Transplantation, 1998, 65(9):1233-1240.
    3. Douglas JT. Adenovirus-mediated gene delivery: an overview. Methods Mol Biol, 2004, 246: 3-14.
    4. Yaron I,Hidetsugu S,Narsing RT,et a1.Adenovirus mediated gene therapy of liver disease.Seminars Liver Di, 1999,19:49-59.
    5. Gilgenkrantz H, Duboc D, Juillard V, et al. Transient expression of genes transferred in vivo into heart using first-generation adenoviral vectors: role of the immune response. Hum Gene Ther, 1995, 6(10): 1265-1274.
    6. Seiler MP, Cerullo V, Lee B. Immune response to helper dependent adenoviral mediated liver gene therapy: challenges and prospects. Curr Gene Ther, 2007, 7(5): 297-305.
    7. Muruve DA.The innate immune response to adenovirus vectors. Hum Gene Ther, 2004, 15(12): 1157-66.
    8. Lu H, Sullivan D, Gerber MA, Dash S. Adenovirus induced acute hepatitis in non-human primates after liver-directed gene therapy. Chin Med J (Engl), 2002, 115(5): 726-31.
    9. Sullivan DE, Dash S, DU H, et al. Liver-directed gene transfer in non-human primates. Human Gen Ther, 1997, 8: 1195-1206
    10. Chia SH, Geller DA, Kibbe MR, et al, Adenovirus-mediated gene transfer to liver grafts: an inproved method to maximize infectivity. transplantation, 1998, 66 (11): 1545-1551
    11. Drazan KE, Csete ME. Hepatic function is preserved following liver-directed, adenovirus- mediated gene transfer. J Surg Res, 1995, 59(2): 299-304
    12. Bilbao G,Contreras JL,Gomez-Navarro J,et a1.Genetic modification of liver grafts With an adenoviral vector encoding the Bc1-2 gene improves organ preservation.Transplantation, 1999,67:775-783
    13. Kuriyama S, Yoshiji H, Kinekawa F, et a1. Adenovirus-mediated gene transfer into rat livers: comparative study of retrograde intrabiliary and antegrade intraportal administration. Oncol Rep, 2005, 13(1): 69-74.
    14. Aggarwal BB, Takada Y, Shishodia S, et al. Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol, 2004, 42(4): 341-53.
    15. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006, 30;25(51): 6680-4.
    16. Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev , 2001, 15: 2321–2342
    17. Piva R, Belardo G, Santoro MG. NF-kappaB: a stress-regulated switch for cell survival. Antioxid Redox Signal, 2006, 8(3-4): 478-86.
    18.李敬东,彭勇,彭祥玉,等.核因子KB圈套寡核苷酸减轻大鼠移植肝缺血/再灌注损伤的作用和机制.中华器官移植杂志. 2006, 17(10):587-590
    19. Matsui N, Kasajima K, Hada M, et al. Inhibiton of NF-kappaB activation during ischemia reduces hepatic ischemia/reperfusion injury in rats. J Toxicol Sci, 2005, 30(2): 103-10.
    20. Xu J, Xie J, Bao M, et al. NF-kappaB/I-kappaB pathway during ischemia reperfusion injury of rat liver. Chin Med J (Engl), 2003, 116(8):1146-9
    21. Xu MQ, Shuai XR, Yan ML, et al. Nuclear factor-kappaB decoy oligodeoxynucleotides attenuates ischemia/reperfusion injury in rat liver graft. World J Gastroenterol, 2005, 28; 11(44): 6960-7.
    22. Baeuerle PA, Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol, 1997, 65: 111–137.
    23. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18: 6853–6866.
    24. Lawrence T, Gilroy DW, Colville-Nash PR, et al. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med, 2001, 7: 1291–1297.
    25. Kulms D, Schwarz T. NF-kappaB and cytokines. Vitam Horm, 2006, 74: 283-300.
    26. Colletti LM, Kunkel SL, Walz A, et al. The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat. Hepatology, 1996; 23(3): 506-14.
    27. Ross SD,Kron IL,Gangemi JJ,et a1.Attenuation of lung reperfusion injury after transplantation using an inhibitor of nuclear factor-kappa B.Am J Physiol Lung Cell Mol Physiol,2000,279(3):L528-L536.
    28. Donnahoo KK,Meldrum DR,Shenkar R,et a1.Early renal isehemia,with or without reperfusion,activates NF- kappa B and increases TNF-alpha bioactivity in the kidney.J Urol,2000,163(4):1328-1332.
    29. Takahashi Y, Ganster RW, Gambotto A, et al.Role of NF-kappaB on liver cold ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol, 2002, 283(5): G1175-84.
    30. Hur GM,Ryu YS,Yun HY,et a1. Hepatic isehemia/reperfusion in rats induces iNOS gene transcription by activation of NF-KB.Bioehem Biophys Res Commun , 1999,261(3):917-922.
    31.徐明清,薛兰,龚建平,等.NF-κB在缺血再灌注肝脏枯否细胞活化中的作用.第三军医大学学报,2002,24 (2):149-151
    32. Rieeiardi R,Kim RD,McDade TP,et a1.NF-κB expression during cold ischemia correlates withpostreperfusion graft function.J Surg Res,2000,93(1):35-40.
    33. Bach FH,Ferran C,Heehenleitner P,et a1.Aceommodation of vaseularized xenografts: expression of‘‘protective genes”by donor endothelial cells in a host Th2 eytokine environment.Nat Med,1997,3(2):196-204.
    34. Colletti LM, Remick DG, Burtch GD, et al. Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest, 1990, 85: 1936-1943.
    35. Colletti LM, Cortis A, Lukacs N, et al. Tumor necrosis factor up-regulates intercellular adhesion molecule 1, which is important in the neutrophil-dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat. Shock, 1998, 10: 182-191.
    36. Kataoka M, Shimizu H, Mitsuhashi N, et al. Effect of cold-ischemia time on C-X-C chemokine expression and neutrophil accumulation in the graft liver after orthotopic liver transplantation in rats. Transplantation, 2002, 15; 73(11): 1730-5.
    37. Nakano H,Nagasaki H.Yoshida K,et a1.N-acetylcysteine and Anti-ICAM-1 Monoclonal Antibody Reduce Ischemia-reperfusion Injury of the Steatotie Rat Liver.Transplant Proc, 1998, 30(7): 3763.
    38. Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998, 281(5383): 1680-3.
    39. Piotrowska A, Izykowska I, Podhorska-Oko?ów M, et al. The structure of NF- kappaB family proteins and their role in apoptosis. Postepy Hig Med Dosw, (Online). 2008, 15; 62: 64-74.
    40. Beg AA, Baltimore D. An essential role for NF-kB in preventing TNF-alpha-induced cell death. Science , 1996, 274(5288): 782-784
    41. Wang CY, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996, 1; 274(5288): 784-7.
    42. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha-induced apoptosis by NF-kB. Science , 1996, 274(5288): 787-789
    43. de Vera ME, Kim YM, Wong HR, et al. Heat shock response inhibits cytokine-inducible nitric oxide synthase expression in rat hepatocytes. Hepatology, 1996, 24(5):1238-45.
    44. Radhakrishnan SK, Kamalakaran S. Pro-apoptotic role of NF-kappaB: implications for cancer therapy. Biochim Biophys Acta, 2006, 1766(1): 53-62.
    45. DeMeester SL, Buchman TG, Cobb JP. The heat shock paradox: does NF-kappaB determine cell fate? FASEB J, 2001, 15(1): 270-274.
    46. Dutta J, Fan Y, Gupta N, et al. Current insights into the regulation of programmed cell death by NF-kappa B. Oncogene, 2006, 30; 25(51): 6800-16.
    1. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism.Cell, 1986, 47(6): 921-8.
    2. Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol, 2005, 5(6): 435-45.
    3. Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene, 2006, 30; 25(51): 6758-80.
    4. Yates LL, Górecki DC.The nuclear factor-kappaB (NF-kappaB): from a versatile transcription factor to a ubiquitous therapeutic target. Acta Biochim Pol, 2006, 53(4): 651-62.
    5. Aggarwal BB, Takada Y, Shishodia S, et al. Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol, 2004, 42(4):341-53.
    6. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006, 30;25(51):6680-4.
    7. Egan LJ, Toruner M.NF-kappaB signaling: pros and cons of altering NF-kappaB as a therapeutic approach. Ann N Y Acad Sc, 2006, 1072:114-22.
    8. Tergaonkar V, Correa RG, et al. Verma IM. Distinct roles of I kappaB proteins in regulating constitutive NF-kappaB activity. Nat Cell Biol, 2005, 7(9):921-3.
    9. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol, 2000, 12(1):85-98.
    10. Scheidereit C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene , 2006, 30; 25(51):6685-705.
    11. O'Dea EL, Barken D, Peralta RQ, et al. A homeostatic model of IkappaB metabolism to control constitutive NF-kappaB activity. Mol Syst Biol, 2007, 3:111.
    12. H?cker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE, 2006, 17 (357):re13.
    13.Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev , 2001, 15:2321–2342
    14. Piva R, Belardo G, Santoro MG. NF-kappaB: a stress-regulated switch for cell survival. Antioxid Redox Signal, 2006, 8(3-4): 478-86.
    15. Rothwarf DM, Karin M.The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE, 1999, 26 (5):RE1.
    16. Campbell KJ, Perkins ND. Regulation of NF-kappaB function. Biochem Soc Symp, 2006, (73):165-80.
    17. Abraham E. NF-kappaB activation. Critical Care Medicine, 2000, 28(4 Suppl): N100-4.
    18. Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE, 1999, 26 (5):RE1.
    19. Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol, 2006, 6(2):111-30.
    20. Guttridge DC, Albanese C, Reuther JY, et al. NF-kappa B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol, 1999, 19(8):5785-99.
    21. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science, 1996, 1; 274(5288):787-9.
    22. Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science, 1998, 281(5383):1680-3.
    23. Wu MX, Ao Z, Prasad KV, et al. IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science , 1998, 281(5379):998-1001.
    24. Piotrowska A, Izykowska I, Podhorska-Oko?ów M, et al. The structure of NF- kappaB family proteins and their role in apoptosis. Postepy Hig Med Dosw, (Online). 2008, 15; 62: 64-74.
    25. DeMeester SL, Buchman TG, Qiu Y, et al. Pyrrolidine dithiocarbamate activates the heat shock response and thereby induces apoptosis in primed endothelial cells. Shock, 1998; 10(1):1-6
    26. Ferran C, Millan MT, Csizmadia V, et al. Inhibition of NF-kappa B by pyrrolidine dithiocarbamate blocks endothelial cell activation. Biochemical & Biophysical Research Communications, 1995, 214(1):212-223
    27. Beg AA, Baltimore D. An essential role for NF-kB in preventing TNF-alpha-induced cell death. Science, 1996, 274(5288):782-784
    28. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-alpha-induced apoptosis by NF-kB. Science, 1996, 274(5288): 787-789
    29. Wang CY, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996, 1; 274(5288):784-7.
    30. de Vera ME, Kim YM, Wong HR, et al. Heat shock response inhibits cytokine-inducible nitric oxide synthase expression in rat hepatocytes. Hepatology, 1996, 24(5):1238-45.
    31. DeMeester SL, Buchman TG, Cobb JP. The heat shock paradox: does NF-kappaB determine cell fate? FASEB J, 2001, 15(1):270-274.
    32. Owyang AM, Tumang JR, Schram BR, et al. c-Rel is required for the protection of B cells from antigen receptor-mediated, but not Fas-mediated, apoptosis. J Immunol, 2001, 167(9): 4948-56.
    33. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol, 2002, 3(3): 221-7.
    34. Luo JL, Kamata H, Karin M. The anti-death machinery in IKK/NF-kappaB signaling. J Clin Immunol, 2005, 25(6):541-50.
    35. Papa S, Bubici C, Zazzeroni F, et al. The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ, 2006, 13(5):712-29.
    36. Nakano H, Nakajima A, Sakon-Komazawa S, et al. Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ, 2006, 3(5):730-7.
    37. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 2003, 25; 114(2):148-50.
    38. J??ttel? M, Tschopp J. Caspase-independent cell death in T lymphocytes. Nat Immunol, 2003, 4(5):416-23.
    39. Shishodia S, Sethi G, Konopleva M, et al. A synthetic triterpenoid, CDDO-Me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor kappaB-regulated gene products in human leukemic cells. Clin Cancer Res, 2006, 15; 12(6):1828-38.
    40. Chen C, Edelstein LC, Gélinas C. The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x (L). Mol Cell Biol, 2000, 20(8): 2687-95.
    41. Schwenzer R, Siemienski K, Liptay S, et al. The human tumor necrosis factor (TNF) receptor-associated factor 1 gene (TRAF1) is up-regulated by cytokines of the TNF ligand family and modulates TNF-induced activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem, 1999, 4(27):19368-74.
    42. Wertz IE, O'Rourke KM; Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20downregulate NF-kappaB signalling. Nature, 2004, 30(7000):694-9
    43. Tanaka H, Matsumura I, Ezoe S, et al. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell, 2002, (5):1017-29.
    44. Baetz D, Regula KM, Ens K, et al. Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation, 2005, 3; 112(24):3777-85.
    45. Chen F, Castranova V, Li Z, et al. Inhibitor of nuclear factor kappaB kinase deficiency enhances oxidative stress and prolongs c-Jun NH2-terminal kinase activation induced by arsenic. Cancer Res, 2003, 15; 63(22):7689-93.
    46. Kashatus D, Cogswell P, Baldwin AS. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes, 2006, 15; 20(2):225-35.
    47. HrdlickováR, Nehyba J, Liss AS, et al. Mechanism of telomerase activation by v-Rel and its contribution to transformation. J Virol, 2006, 80(1):281-95.
    48. Radhakrishnan SK, Kamalakaran S. Pro-apoptotic role of NF-kappaB: implications for cancer therapy. Biochim Biophys Acta, 2006, 1766(1):53-62.
    49. Dutta J, Fan Y, Gupta N, et al. Current insights into the regulation of programmed cell death by NF-kappa B. Oncogene, 2006, 30; 25(51):6800-16.
    50. Gerondakis S, Grumont R, Gugasyan R, et al. Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models.Oncogene, 2006, 30; 25(51):6781-99.
    51. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996, 14: 649–683.
    52. Li Q and Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol, 2002, 2: 725–734.
    53. Denk A, Wirth T, and Baumann B. NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev, 2000, 11: 303–320.
    54. Siebenlist U, Brown K, and Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol, 2005, 5: 435–445.
    55. Shishodia S and Aggarwal BB. Nuclear factor-kappaB: a friend or a foe in cancer? Biochem Pharmacol, 2004, 68: 1071–1080.
    56. Lobry C, Weil R. Regulation of NF-kappaB pathway in T lymphocytes. Med Sci , 2007, 23(10):857-61.
    57. Bonizzi G and Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol, 2004, 25: 280–288.
    58. Schmidt-Supprian M, Courtois G, Tian J, et al. Mature T cells depend on signaling through the IKK complex. Immunity, 2003, 19: 377–389.
    59. Corn RA, Aronica MA, Zhang F, et al. Cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response. J Immunol, 2003, 171: 1816–1824.
    60. Li Q and Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol, 2002, 2: 725–734.
    61. Laderach D, Compagno D, Danos O, et al. RNA interference shows critical requirement for NF-kappa B p50 in the production of IL-12 by human dendritic cells. J Immunol, 2003, 171: 1750–1757.
    62. Denk A, Wirth T, and Baumann B. NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev, 2000, 11: 303–320
    63. Sha WC, Liou HC, Tuomanen EI, et al. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell, 1995, 80: 321–330.
    64.Lavon I, Goldberg I, Amit S, et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-kappaB activation. Nat Med, 2000, 6: 573–577.
    65. Gjertsson I, Hultgren OH, Collins LV, et al. Impact of transcription factors AP-1 and NF-kappaB on the outcome of experimental Staphylococcus aureus arthritis and sepsis. Microbes Infect, 2001, 3: 527–534.
    66. Mizgerd JP, Peschon JJ, and Doerschuk CM. Roles of tumor necrosis factor receptor signaling during murine Escherichia coli pneumonia. Am J Respir Cell Mol Biol, 2000, 22: 85-91.
    67. Rosenberger CM and Finlay BB. Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol, 2003, 4: 385–396.
    68. Choi M, Rolle S, Wellner M, et al. Inhibition of NF-kappaB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS delayed neutrophil apoptosis. Blood, 2003, 102: 2259–2267.
    69. Baeuerle PA and Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol, 1997, 65: 111–137.
    70. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18: 6853–6866.
    71. Lawrence T, Gilroy DW, Colville-Nash PR, et al. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med, 2001, 7: 1291–1297.
    72. Lawrence T, Bebien M, Liu GY, et al. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature, 2005, 434: 1138–1143
    73. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest, 2001, 107(2):135-42.
    74. Mattson MP. NF-kappaB in the survival and plasticity of neurons. Neurochem Res, 2005, 30(6-7):883-93.
    75. Baldwin AS, Jr. Series introduction: the transcription factor NF-kappaB and human disease. J ClinInvest, 2001, 107(1):3-6.
    76. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001, 107(1):7-11.
    77. Kulms D, Schwarz T. NF-kappaB and cytokines. Vitam Horm, 2006, 74: 283-300.
    78. Hiscott J, Kwon H, Genin P.Hostile takeovers:viral appropriation of the NF-kappaB pathway.J Clin Invest, 2001, 107(2):143-51.
    79. Santoro MG, Rossi A, Amici C. NF-kappaB and virus infection: who controls whom. EMBO J, 2003, 2; 22(11): 2552-60.
    80. Lee CH, Jeon YT, Kim SH, et al. NF-kappaB as a potential molecular target for cancer therapy. Biofactors, 2007, 29(1): 19-35.
    81. Karin M. NF-kappaB and cancer: mechanisms and targets. Mol Carcinog, 2006, 45(6): 355-61.
    82. Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer:from innocent bystander to major culprit.Nat Rev Cancer, 2002, 2(4): 301-10.
    83.Inoue J, Gohda J, Akiyama T, et al. NF-kappaB activation in development and progression of cancer. Cancer Sci, 2007, 98(3): 268-74.
    84. Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene, 1999, 18(49): 6938-47.
    85. Gilmore TD, Koedood M, Piffat KA, et al. Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene, 1996, 13(7): 1367-78.
    86. Kojima M, Morisaki T, Sasaki N, et al. Increased nuclear factor-kB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res, 2004, 24(2B):675-81.
    87. Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ, 2006, 13(5): 738-47.
    88. Hu J, Colburn NH. Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-kappaB/p65 DNA binding.Mol Cancer Res, 2005, 3(2): 100-9.
    89. Joyce D, Albanese C, Steer J, et al. NF-kappaB and cell-cycle regulation:the cyclin connection. Cytokine Growth Factor Rev, 2001, 12(1): 73-90.
    90. Radhakrishnan SK, Kamalakaran S. Pro-apoptotic role of NF-kappaB: implications for cancer therapy. Biochim Biophys Acta, 2006, 1766(1):53-62.
    91. Dutta J, Fan Y, Gupta N, et al. Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene, 2006, 30; 25(51): 6800-16.
    92.Inoue J, Gohda J, Akiyama T, et al. NF-kappaB activation in development and progression of cancer. Cancer Sci, 2007, 98(3):268-74.
    93. Ditsworth D, Zong WX. NF-kappaB: key mediator of inflammation-associated cancer.Cancer Biol Ther, 2004, 3(12):1214-6.
    94. Izzo JG, Malhotra U, Wu TT, et al. Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. J Clin Oncol,2006, 10; 24(5): 748-54.
    95. Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest, 2001, 107(3): 247-54.
    96. Bubici C, Papa S, Dean K, et al. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene, 2006, 30; 25(51):6731-48.
    97. Shi C, Zhao X, Wang X, et al. Role of nuclear factor-kappaB,reactive oxygen species and cellular signaling in the early phase of acute pancreatitis.Scand J Gastroenterol, 2005, 40(1): 103-8.
    98. Bowie A, O'Neill LA. Oxidative stress and nuclear factor-kappaB activation:a reassessment of the evidence in the light of recent discoveries.Biochem Pharmacol, 2000, 59(1): 13-23.
    99. Emmerich F, Meiser M, Hummel M, et al. Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood, 1999, 94(9): 3129-34.
    100. Paillard F. Induction of apoptosis with I-kappaB, the inhibitor of NF-kappaB.Hum Gene Ther, 1999, 10(1): 1-3.
    101. Guo J, Verma UN, Gaynor RB, et al. Enhanced chemosensitivity to irinotecan by RNA interference-mediated down-regulation of the nuclear factor-kappaB p65 subunit. Clin Cancer Res, 2004, 15, 10(10): 3333-41.
    102. Huang C, Yao JY, Li ZF, et al. Small interfering RNA-mediated nuclear factor-kappaB P65 suppression induces apoptosis of hepatic carcinoma SMMC-7721 cells. Nan Fang Yi Ke Da Xue Xue Bao, 2007, 27(12):1841-4
    103. Sawa Y, Morishita R, Suzuki K, et al. A novel strategy for myocardial protection using in vivo transfection of cis element'decoy'against NFkappaB binding site: evidence for a role of NFkappaB in ischemia-reperfusion injury. Circulation, 1997, 96(9 Suppl): II-280-4; discussion II-285.
    104. Kochetkova M, Shannon MF. DNA triplex formation selectively inhibits granulocyte-macrophage colony-stimulating factor gene expression in human T cells. J Biol Chem, 1996, 271(24):14438-44.
    105. Meduri GU, Muthiah MP, Carratu P, et al. Nuclear factor-kappaB- and glucocorticoid receptor alpha- mediated mechanisms in the regulation of systemic and pulmonary inflammation during sepsis and acute respiratory distress syndrome. Evidence for inflammation-induced target tissue resistance to glucocorticoids. Neuroimmunomodulation, 2005, 12(6):321-38.