牛骨降解菌的筛选及其发酵制备胶原多肽螯合钙的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为综合开发利用畜禽骨骼资源,提高畜禽骨骼加工附加值,本文以牛骨为研究对象,从自然界筛选诱变高产胶原蛋白酶、降解骨骼的菌种,将其应用于发酵牛骨制备功能性的补钙产品—胶原多肽螯合钙(Bovine bone collagen-derived polypeptide chelated calcium, BBCP-Ca)的研究。主要的研究内容和结果如下:
     从骨骼加工厂堆积骨骼处采集土样和水样,通过自行设计的筛选模式选出降解骨骼和产酶能力强的菌株MBL13(酶活为25.60±0.93 U/mL)。经鉴定该菌株为蜡样芽孢杆菌(Bacillus cereus)。对其进行亚硝基胍(NTG)处理和紫外线照射复合诱变,选育出一株遗传稳定性好,高产胶原蛋白酶的菌株B. cereus MBL13-U(酶活为36.80±1.39 U/mL),酶活较诱变前显著提高了43.75%(p<0.05)。
     为进一步提高菌株产胶原蛋白酶和降解骨的能力,针对菌株发酵产酶条件进行了优化,以酶活为指标,确定了菌株产酶最佳的培养基组成为蔗糖10.0 g/L,骨明胶20.0 g/L,CaCl20.50 g/L, NaH2PO4·2H2O 0.50 g/L, K2HPO4·3H2O 2.50 g/L。通过响应面分析法确定了最佳发酵工艺条件为:接种量为3%,发酵温度为37℃、pH为7.0,发酵时间为36 h、装瓶量为25 mL/250 mL三角瓶,可获得到最大的酶活的实验值为48.24±0.71 U/mL,较优化前提高了31.09%。
     对B. cereus MBL13-U菌株所产胶原蛋白酶(B. cereus collagenase, BCC)的分离纯化和酶学特性进行了研究。在产酶最佳发酵条件下,从发酵液中分离出分子量为38.0±1.5 kDa的纯化酶BCC。经酶学特性分析表明其富含天冬氨酸、赖氨酸和丝氨酸;最适的反应温度和pH分别为40℃和8.0;经金属离子、抑制剂和蛋白质底物对酶活影响实验,表明它是一种金属蛋白酶,对Ⅰ型胶原蛋白底物具有显著水解性。通过对比实验证实了其酶解牛骨胶原的能力显著优于标准的Ⅰ型胶原酶和常用于骨骼酶解的蛋白酶(p<0.05);进一步证实了B. cereus MBL13-U为降解牛骨的优良菌株。
     为了解菌株降解牛骨的机理,探讨了BCC对牛骨胶原蛋白的酶解动力学。实验确定了牛骨胶原蛋白最佳的提取工艺条件为:乙醚低温回流脱脂,0.48 mol/L盐酸脱钙,骨粒径为5 mm×10mm,提取介质为1%柠檬酸和1%胃蛋白酶复合液;经紫外(UV)光谱、傅里叶红外光谱(FT-IR)、差示扫描量热法(DSC)和SDS-PAGE凝胶电泳等对其结构表征,表明所提蛋白为保持完整三股螺旋结构的Ⅰ型胶原蛋白。然后以水解度(DH)为指标,实验确定了BCC酶解牛骨胶原蛋白的优化条件为底物浓度为30.0 g/mL,温度为45℃,0.35%(g/100 mL)的初始酶浓度,pH为8.0,酶解的时间为6 h;并拟合出了酶解动力学方程。
     将单菌种B. cereus MBL13-U用于牛骨粉发酵制备牛骨胶原多肽(Bovine bone collagen-derived polypeptides, BBCP),研究结果表明发酵能显著提高牛骨粉溶液中游离氨基酸的含量;以水解度(DH)和胶原多肽含量为指标进行对比实验,确定预处理后的牛骨粉即骨素粉为发酵原料。经响应面分析法确定了最佳发酵条件为:接种量1%,pH值为6.0,骨素添加量为30.0 g/L,发酵温度为27℃,发酵时间为42 h,获得最大胶原多肽含量的实验值为5.54±0.09 mg/mL,骨胶原蛋白的转化率约为43%。
     为进一步提高多肽得率,针对混合菌种(B. cereus MBL13-U+保加利亚乳杆菌Lactobacillus bulgaricu, Lb)发酵牛骨素粉制备BBCP进行了研究。以胶原多肽含量为指标,确定了最佳的菌种配比为MBL13-U:Lb=1:1;最佳的培养基组成为蔗糖含量10.00 g/L,牛骨素添加量30.00 g/L。在此基础上通过响应面分析法确定了最佳发酵工艺条件为:接种量2%,pH 7.5,发酵温度37°C、发酵时间48 h,获得最大胶原多肽含量的实验值为6.72±0.07 mg/mL,骨胶原蛋白的转化率约为52%。结果表明了混合菌种发酵效果优于单菌种发酵。为能指导生产,构建了混合菌种的发酵动力学模型。
     为了获得螯合钙能力强的BBCP,对混合菌种发酵制备的BBCP进行了超滤膜(UF)分离研究。经过BBCP的氨基酸组成测定和UV光谱分析表明,发酵使骨中胶原蛋白降解为多肽、小分子量的短肽和氨基酸等。以膜透过速率(Tv)为指标,确定了四种超滤膜(截留分子量(MWCO)分别为10 kDa、6 kDa、4 kDa、2 kDa)在分离浓度为20 g/L的BBCP时,膜的最佳操作参数范围:压力为0.20 MPa-0.22 MPa,料液温度为30°C-35℃,料液的pH为6.0-7.0,运行周期为50 min-60 min。UF分离后发酵液中以分子量为2 kDa-4 kDa的BBCP为主,占了总肽量59.71%;对超滤各段经SDS-PAGE和Sephadex G-25凝胶层析分析分子量分布表明超滤能够较好的对胶原多肽进行分离纯化。
     以超滤后的胶原多肽为基础,对BBCP-Ca的制备进行了研究,确定了钙源为牛骨钙,有机沉淀剂为无水乙醇,胶原多肽为2 kDa-4 kDa超滤片段,以螯合率和螯合物得率为指标,确定最佳螯合工艺参数为:多肽与骨钙的质量比为4:1,pH为7.0,多肽浓度为40.0 g/L,螯合温度和螯合时间分别为55℃和1.5 h,有机沉淀剂无水乙醇与水的体积比为8:1。在此条件下,得到钙的螯合率为47.85±2.24%,螯合物得率为77.89±3.32%。
     对制备的BBCP-Ca理化性质和结构进行了研究。通过定性检测、成分分析、溶解度测定、持钙能力测定,确定BBCP-Ca是一种富含多肽和钙,且在水中有较好的溶解性和持钙能力较强的多肽螯合物。通过Tricine-SDS-PAGE、质谱(MS)、扫描电镜(SEM)、UV光谱、荧光光谱、IR、拉曼光谱(Raman)、园二色谱(CD)、X-射线能谱(EDS)、X-衍射(XRD)、核磁共振氢谱(HNMR)、HPLC对其结构进行测定,结果表明:螯合钙的胶原多肽大部分分子量在2000 Da-3326.4 Da之间,但仍含有部分胶原多肽的分子量<2000 Da;BBCP中氨基和羧基都参与了与Ca2+的配位结合,除此之外,还可能与骨钙之间有一定的吸附作用;BBCP-Ca的二级结构主要含有β-回折结构和无规则卷曲结构,几乎不含α-螺旋结构;且其富含钙和P元素,由结晶结构和无定型结构两部分组成,至少含有5个级分成分的一种新型螯合物。
In order to develop comprehensive utilization of livestock and poultry bone resources and enhance products added value, bovine bone was chosen as research object. The study was that the strain with high bone-degraded collagenase activity, being screened out and mutagensised from nature, was applied to ferment bovine bone powder for preparation of a novel functional calcium tonic of bovine bone collagen-derived polypeptides chelated calcium (BBCP-Ca). The main studies and results are as follows:
     By self-designed screening model, strains with bone-degraded and collagense-produced ability were isolated from soil and water samples that were collected in the bone factories. The MBL13 strain with the highest bone-degraded ability was screened (enzyme activity was 25.60±0.93 U/mL). It was identified as a Bacillus cereus. B. cereus MBL13 was mutated by nitrosoguanidine (NTG) and ultraviolet (UV) complex mutagenesis and a mutant named MBL13-U with stable higher collagenase-productivity was obtained (collagenase activity was 36.80±1.39 U/mL). The enzyme activity significantly improved 43.75% compared with initial enzyme activity (p<0.05).
     In order to increase the ability of the strain's producing collagenase and degrading bones, the optimal fermentation conditions for production of collagenase was investigated as guided by enzyme activity. The optimum fermentation medium was established as follows:sugar 10.0 g/L, bone gelatin 20.0 g/L, CaCl20.50 g/L, NaH2PO4-2H2O 0.50 g/L and K2HPO4-3H2O 2.50 g/L. The fermentation conditions were also optimized by response surface methodology (RSM) and the optimum conditions were inoculum 3%, fermentation temperature 37℃, pH7.0, fermentation time 36 h and medium volumes 25 mL in the 250 mL flask. The highest practice enzyme activity was 48.24±0.71 U/mL, increasing by 31.09% compared with initial fermented conditions.
     From the culture supernatant under optimum conditions, B. cereus collagenase (BCC) with the molecular mass of 38.0±1.5 kDa was purified. And then the enzymatic properties were studied. After being hydrolyzed, it had high contents of amino acid of asparagine, lysine and serine. The optimum temperature and optimum pH for the enzyme activity were 40℃and pH=8.0, respectively. The results of the effects of some metal ions, inhibitors and protein substrates suggested that the purified collagenolytic protease was a member of the metalloproteases. The enzyme exhibited high hydrolytic activity for type I collagen. The comparative test indicated that BCC's hydrolysis capacity of bovine bone collagen was significantly higher than those of type I collagenase and other proteases which were commonly used in hydrolyzing bones (p<0.05). All these demonstrated that B. cereus MBL13-U was a fine strain to ferment bovine bone.
     For research on the mechanism of strain degrading bones, the kinetics of BBC hydrolyzing bovine bone collagen was studied. The optimum process conditions of extracting collagen from bovine bones were defatted by reflowing ether at low-temperature,0.48% hydrochloric acid as decalcification solutions, bone particle size of 5 mm×10 mm and the compound of 1% citric acid and 1% pepsin as extraction medium. The structure of bone collagen was analyzed with UV spectrum, fourier transform infrared spectrum (FT-IR), differential scanning calorimetry (DSC) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The results confirmed that the extracted collagen was type I collagen, keeping three helical structure very well. The optimum conditions of BCC hydrolyzing bovine bone collagen were studied with the indexes degress of hydrolysis (DH%). The optimum conditions were 30 g/L bone collagen concentration, temperature of 45℃,0.35% (g/100 mL) the initial enzyme concentration, pH of 8.0 and hydrolysis time 6 h. Based on the experimental data, a kinetic model equation was obtained.
     Bovine bone collagen-derived polypeptides (BBCP) were preparaed by B. cereus MBL13-U fermentation. The results showed that the fermentation could significantly improve the contents of free amino acid of bovine bone powder culture. Comparative experiment was performed choosing the degree of hydrolysis (DH) and concentration of polypeptides as the index. The result determined that bovine bone ossein powder was chosen as material for fermentation. The response surface showed that the optimum conditions for fermentation were inoculum 1%, pH 6.0, adding ossein amount 30.0 g/L, fermentation temperature 27℃and fermentation time 42 h. Under these fermentation conditions, the highest practice concentration of BBCP was 5.54±0.09 mg/mL, and conversion rate of bone collagen was about 43%.
     BBCP were prepared by mixture strains fermentation in order to improve yield. Taking concentration of polypeptides as the index, the result indicated that the optimum conditions for preparation of BBCP were ratio of B. cereus MBL13-U to Lactobacillus bulgaricus (Lb) 1:1, sucrose concentration 10.0 g/L and ossein content 30.0 g/L. Based on these experiments, the response surface analysis indicated that the optimum fermentation conditions were inoculum 2%, pH7.5, fermentation temperature 37℃and fermentation time 48 h. Under these conditions, the highest practice concentration of BBCP was 6.72±0.07 mg/mL, and conversion rate of bone collagen was 52%-53%. The results showed that mixed fermentation was more effective than a single strain. The kinetics models of fermentation were established to guide production.
     For the preparation of BBCP with the strong ability of chelated calcium, BBCP prepared by mixed strains fermentation were isolated through ultrafiltration (UF) membrane. Determination of the amino acid composition and UV spectrum analysis showed that the fermentation made the bone collagen degrade to polypeptides, small molecular mass peptides and amino acids. Taking the permeation rate as the index, the optimum separation parameters for different UF membranes (MWCO 10 kDa,6 kDa,4 kDa and 2 kDa) were that pressure 0.20 MPa-0.22 MPa, solution temperature 30℃-35℃, solution pH 6.0-7.0 and cycle time 50 min-60 min. The results of UF showed that polypeptides of MW 2 kDa-4 kDa were the main ingredient, about 59.71% of the total concentration of BBCP. The analysis of SDS-PAGE and sephadex G-25 gel chromatography on molecular weight distribution indicated that UF was an efficient method of separation and purification for BBCP.
     Based on collagen peptides separated by UF, the preparation of the BBCP-Ca was studied. The result confirmed that calcium resource was bone calcium, organic precipitant was anhydrous ethanol, and molecular weight of collagen peptide ranged from 2 kDa to 4 kDa. Taking the chelation rate and the chelate yield as indexes, the optimum chelating parameters were that BBCP/bone calcium(w/w) was 4:1, pH was 7.0, concentration of BBCP was 40 g/L, temperature and time were 55℃and 1.5 h, organic precipitant/water (V/V) was 8:1. Under these conditions, chelation rate was 47.85±2.24%. chelate yield was 77.89±3.32%.
     The physicochemical properties and structure characteristic of BBCP-Ca were researched. By qualitative detection, composition analysis, solubility test and ability of holding calcium determination, the results proved that BBCP-Ca was polypeptides chelate with high content of calcium and polypeptides, good solubility in water and high ability of holding calcium. The structure properties of BBCP-Ca products were characterized by Tricine-SDS-PAGE, MS, SEM, UV spectrum, Fluorescence, IR, Rman, CD, EDS, XRD, HNMR and HPLC measurements. The results indicated that the molecular weight of most chelated BBCP ranged from 2000 Da to 3326.4 Da, but also some collagen polypeptides MW<2 kDa. The amino group (-NH2) and the carboxyl group (-C=O) of BBCP participated in chelated calcium ion reaction. Except for these coordinate bonds, it may exist a certain adsorption effect between BBCP and bone calcium. The secondary structure of BBCP-Ca was mainlyβ-sheet and random coil, but the content of a-helix was very low. BBCP-Ca was a new type of chelate which were rich in mineral contents of Ca and P, consisted of crystalline structure and amorphous structure and contained at least five components.
引文
1. 阿伯特·莱特.蛋白质的结构与功能.北京:高等教育出版社,1982,163-165
    2. 奥斯伯(美),等主编,马学军,等译校.精编分子生物学实验指南(第五版),科学出版社,2005
    3. 白恩侠,张卫柱.动物骨生产小肽的工艺研究.经济动物学报,2003,7:56-57
    4.曹雁平.我国禽畜骨综合加工利用的现状.粮油加工与食品机械,2001,9:6-8
    5.程妍,余群力,赵莉,左丽娟,袁军,岳翔.牦牛骨营养粉对大鼠骨密度及血清生化指标的影响.食品科学2009,9:204-206
    6.陈丹,张传林,朱冬眉,杨志荣,孙群.超微粉碎牦牛骨泥经发酵和酶解后游离钙和氨基酸态氮的变化.中国酿造,2008,178:41-43
    7.陈广德,徐贞梅.固相法合成甘氨酸钙配合物.精细化工,2002,19:701-702
    8.陈亚非.酪蛋白磷酸肽促进人体钙吸收的作用研究.食品科学,2002,23:130-132
    9.戴红,张新申,蒋小萍.酶水解猪皮胶原的色谱分离研究.中国皮革,2001,30:10-12
    10.邓尚贵,杨桑,秦小明.低值鱼蛋白多肽—铁(Ⅱ)螯合物的酶解制备及其抗氧化、抗菌活性.湛江海洋大学学报,2006,26:54-58
    11.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001,246
    12.付刚,李诚,马长中,黎曦等.猪骨抗氧化肽的酶解制备研究.现代食品科技,2006,3:136-138
    13.高英立.钙制剂进展与合理应用.解放军保健医学杂志,2007,9:43-46
    14.耿秀芳,张义军,康白.胶原蛋白酶解物的降压作用及生物学特征.淮坊医学院学报,2001,23:275-277
    15.郭明勋,史玉敏.骨的成分与胶原蛋白.明胶科学与技术,2001,21:204-209
    16.郭燕.水解米渣蛋白及制备氨基酸螯合钙的工艺研究.[硕士生学位论文].四川农业大学图书馆,2006
    17.郭勇.酶工程.北京:中国轻工业出版社,1994,46-49
    18.郝永清,张爱荣,周树玲等.乳酸菌发酵骨泥的研究.内蒙古农业大学学报,2003,24:61-65
    19.华中师范大学,东北师范大学,陕西师范大学,北京师范大学.分析化学实验.北京:高等教育出版社,1981,111-113
    20.菅景颖.胶原多肽螯合钙的制备及其壮骨、骨质疏松防治作用研究.[硕士学位论文].河北农业大学图书馆,2007
    21.蒋挺大.胶原与胶原蛋白.化学工业出版社,2006,45-48
    22.金勇,旷文峰.金属离子与明胶的相互作用研究.四川皮革,1999,21:40-42
    23.柯惟中,余乡慰.胰蛋白酶溶液的激光拉曼谱光散射学报,1996,8:142-146
    24.李文灿.对Logistic方程的再认识.北京林业大学学报,1999,12:121-129
    25.李玉娥.动物骨粉的应用研究.贵州畜牧兽医,2005,29:20-22
    26.李展振,龙亨国,刘静.骨肽注射液促进骨折愈合的疗效观察.中华实用中西医杂志,2001,14:2583
    27.李金元,袁锡贵.牛骨的综合利用.食品研究与开发,2009,8:175-177
    28.梁松平.生物化学与分子生物学实验教程.北京:高等教育出版社,2003,18:146-150
    29.刘降光,张海鸿.小分子肽分离方法研究进展.中国生化药物杂志,2005,26:244-246
    30.刘丽莉,马美湖,杨协力.产骨胶原蛋白酶菌的筛选及发酵条件优化的研究,肉类工业,2009,8:42-45
    31.刘苏锐,王坤余,琚海燕.猪皮Ⅰ型胶原蛋白的提取及其结构表征.中国皮革,2007,36:43-46
    32.刘小玲.鸡骨明胶的制备、结构及功能性质研究.[博士学位论文].江南大学图书馆,2006
    33.刘新梅,高宇,董明盛.原生质体紫外诱变选育纳豆激酶高产菌株.食品科学,2005,26:69-72
    34.刘玉花,马俪珍,孔保华.羊骨胶原钙螯合肽酶解工艺的研究.肉类研究,2008,4:26-29
    35.刘悦,吴刚,李磊.骨肽注射液治疗中老年骨质疏松症疗效观察.海南医学院学报,2004,10:404
    36.刘正伟,高学军,吕丹娜,石薇琳.低分子质量牛骨多肽制备及对大鼠破骨细胞的影响.药物生物技术,2007,14:51-55
    37.鲁伟,任国谱,宋俊梅.蛋白水解液中多肽含量的测定方法.食品科学,2005,26:169-171
    38.马俪珍.羊骨酶解多肽营养饮料贮藏性能研究.肉类工业,2007,6:26-28
    39.马美湖.畜禽骨骼综合利用的研究进展.现代食品科技,2005,1:138-143
    40.麦克兰德斯博拉夫Mclandsborough, L(美)著,张柏林等译.食品微生物学实验指导,2007
    41.穆华荣,于淑萍.食品分析.化学工业出版社,2004,7
    42.牛天贵.食品微生物学实验技术.北京:中国农业出版社,2002
    43.邱红霞,陈惟昌等.大鼠大脑皮层与纹状球体显微拉曼光谱的研究.生物物理学报,2001,17:457-461
    44.RE布坎南,N E吉本斯.伯杰细菌鉴定手册(第八版).北京:科学出版社,1984,234
    45.任维栋,李耀辉,耿秀芳,王守训,郭健.猪骨胶原蛋白酶解物中血管紧张素转换酶抑制剂的提纯.生物化学杂志,1996,12:693--697
    46.宋俊梅,曲静然.促进骨钙生物可利用性的研究.食品科技,2002,2:60-62
    47.孙凤祥,王守训,任维栋,刘长江,杨晓云等.亲和色谱法从猪骨胶原蛋白酶解物中分离纯化血管紧张素转化酶抑制剂.中国生化药物杂志,2004,2004,25:347-349
    48.唐传核,彭志英.胶原的开发及利用.肉类研究,2000,3:41-44
    49.唐勇.乳酸菌富集钙及发酵超微粉碎猪骨的研究.[硕士学位论文].西南农业大学图书馆,2002
    50.陶慰孙.蛋白质分子基础.北京,人民教育出版社,1981,93-95
    51.体育运动学校教材组编.运动解剖学.北京:人民体育出版社,1983
    52.万佳蓉,马美湖,周传云,等.蜡样芽孢杆菌的二阶导数红外光谱研究.光谱学与光谱分析,2007,27:904-906
    53.王俊,程薇.L-天门冬氨酸钙螯合物的合成研究.湖北农业科学,2007,4:634-636
    54.王立晖,袁永俊,张勇民等.生物活性多肽分离与检测的研究进展.农产品加工,2008,6:21-27
    55.王守业,徐小龙.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,7:257-260
    56.王稳航,刘安军,王丽鼓.酪蛋白酶解多肽—Fe2+的制备及性质研究.食品工业科技,2004,25:53-56
    57.王友同,吴文俊,张庆建.不同部位猪四肢骨提取骨宁的质量比较.脏器生化制药,1982,4:3
    58.沃德A G,考茨A(英).明胶的科学与工艺学,轻工业出版社,1982
    59.无锡轻工业大学等.食品分析.北京:中国轻工业出版社,1998,216-221
    60.吴广来.钙的食品强化.食品工业科技,2004,1:111-115
    61.吴立芳,王立晖,袁永俊.生物活性多肽分离与检测的研究进展.农产品加工,2008,6:21-27
    62.吴琦,李军,李陈等.一株产胶原蛋白酶短小芽孢杆菌的分离与鉴定.中国皮革,2007,36:6-19
    63.夏松养,谢超,霍建聪.鱼蛋白酶水解物的钙螯合修饰及其功能活性.水产学报,2008,32:31-32
    64.向聪,马美湖,胡子骥.乳酸菌发酵降解牛骨粉的研究.肉类研究,2008,1:31-36
    65.忻欣,马俪珍,孔保华,卢军.采用酶解和发酵联用技术提高羊骨中钙转化率.食品与发酵工业,2009,8:59-63
    66.杨光垚,谢君,徐宁等.具胶原蛋白酶活性铜绿假单胞菌的筛选.微生物学通报,2004,31:43-48
    67.杨铭铎,沈春燕,张根生.猪骨水解液营养成分分析研究.食品科学,2009,14:272-275
    68.杨桂苹,李庆天.骨粉营养成分的分析.食品研究与开发,1997,18:32-35
    69.杨丽萍,张新明,白云清.利用动物皮、骨生产胶原多肽.山东食品发酵,2005,2:20-22
    70.杨燊,邓尚贵,秦小明.低值鱼蛋白多肽-钙螯合物的制备和抗氧化、抗菌活性研究.食品科学,2008,29:202-206
    71.游敬刚,赵勤,柏红梅,伍凯,潘红梅,陈功.骨味素酶解工艺的优化研究.食品与发酵科技,2010,1:65-68
    72.张根生,黄巧莉,杨春燕,韩冰.木瓜蛋白酶法制备猪骨胶原多肽工艺条件研究.食品科学,2009,17:262-265
    73.张纪忠.微生物分类学.复旦大学出版社,1988,89-109
    74.张经坤,张泽民,于傲.人体钙吸收理论探讨.科学通报,2004,5:114-115
    75.张俊杰,曾庆孝.鱼鳞中羟脯氨酸的测定.淮海工学院学报(自然科学版),2004,7:53-55
    76.张巍,杨翔华,洪新.微生态调节剂型活性钙粉的研制.食品研究与开发,2003,24:74-76
    77.张亚丽,徐忠.脱脂豆粕多肽络合亚铁食品添加剂的制备及应用研究.食品工业科技,2004,25:120-122
    78.张智,朱宏亮,黄放,王婷婷.微生物发酵法生产松仁多肽的研究.中国食品学报,2009,9:488-495
    79.张忠楷.胶原、明胶和胶原水解物的物理化学性能及护肤功能的研究.[硕士学位论文].四川大学图书馆,2006
    80.赵利,苏伟,胡火根.胶原蛋白生物活性肽的研究进展.食品科学,2005,26:578-581
    81.赵新淮,冯志彪.蛋白质水解物水解度的测定.食品科学,1994,15:65-67
    82.郑捷,刘安军,何立蓉,王莹,赵莹.牛骨酶解制备牛肉香精及气质联用分析.现代食品科技,2010,3:306-310
    83.周瑞明,沈永嘉.蛋白质二级结构的红外光谱.华东理工大学学报.1997,23:422-425
    84.朱迎春,许小琴,马俪珍.鲶鱼骨酶解物的降血压肽活性研究.青岛农业大学学报(自然科学版)2009,1:61-65
    85.朱亮,闻荻江.Ⅰ型胶原蛋白的提取及其结构表征.苏州大学学报(工科版),2008,28:63-66
    86.祝德义,李彦春,靳丽强.胶原多肽与钙结合性能的研究.中国皮革,2005,34:26-29
    87. Adiguzel A C, Bitlisli B 0, Yasa I, Eriksen N T. Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J. Applied Microbiol,2009,107:226-234
    88. Adler-Nissen J. Enzymatic Hydrolysis of Food Proteins.Elsevier Applied Science Publishers, London,1986
    89. Adriane B P. Medeiros, Ashok Pandey, et al. Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochemical Engineering Journal,2000, 6:33-39
    90. Anderson J J B, Garner S C. Calcium and phosphorous nutrition in health and disease. In:Anderson JJB, Garner SC, editors. Calcium and phosphorous in health and disease. New York:CRC Press; 1996.1-5
    91. Anne-Marie B, Mare C. the efficacy of antibacterial peptide, pyrrhocoricin, is finely regulated by its amino acid residues and active domains. Peptide Science,2002, 8:201-209
    92. Antonio D L R, Pilar E M, et al. Optimization of fermentation conditions for the production of the mezcal from Agave salmiana using response surface methodology. Chemical Engineering and Processing:Process Intensification,2008,47:76-82
    93. Audinos R, Branger J L. Ultrafiltration concentration of enzyme hydrolysates. Journal of Membrane Science,1992,68:195-204
    94. Avadhani S K, Zheng Z X, Kalidas S. A mathematical model for the growth kinetics and syntlhesis of phenolics in oregano shoot cultures inoculated with Pseudomonas species. Process Biochemistry,1999,34:227-235
    95. Bae M, Park P Y. Purification and characterization of thermotolerable alkaline protease by alkalophilic Bacillus sp. No.8-16, Kor. J. Appl. Microbiol. Biotechnol, 1989,17:545-551
    96. Banik R M. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol. Res.2004,159:135-140
    97. Beck A B, Buegl S. A novel dual radio-and stable-isotope method for measuring calcium absorption in humans:comparison with the whole-body radioisotope retention method. Am J Clin Nutr,2003,77:399-405
    98. Beg Q K, Saxena R K, Gupta R. Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnol Bioeng,2002,78:289-295
    99. Bernard F G, Alexandre Z, Robert M, et al. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International,2004,37:123-131
    100.Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials,2004,25:5675-5680
    101.Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
    102.Cameron M A, Paton L M, Nowson C A. The effect of calcium supplementation on bone density in premenarcheal females:a co-twi approach. J Clin Endocrinol Metab, 2004,8:4916-4922
    103.Carolina A, Lima P, Rodrigues M B, Tantinana S P, et al. Production of a collagenase from Candida albicans URM3622. Biochemical Engineering Journal,2009, 43:315-320
    104.Carvalho R A, Grosso C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids,2004,18:717-726
    105.Chabeaud, Vandanjon L, Bourseau P, et al. Performances of ultrafiltration membranes for fractionating a fish protein hydrolysate:Application to the refining of bioactive peptidic fractions. Separation and Purification Technology,2009,66:463-471
    106.Chambers J, Rasmussen P B. Enzymic treatment of bones. J.Sci.Food Agric,1988, 42:87-94
    107.Chang M C, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials,2002,23:4811-4818
    108.Charras G T, Lehenkari P P, Horton M A. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy,2001,86:85-95
    109.Christensson C, Bratt H, Collins L J, Coolbear T, Holland R, Lubbers M W, Toole P W, Reid J R. Cloning and expression of an oligopeptidase, PepO, with novel specificity from Lactobacillus rhamnosus HN001 (DR20). Appl Environ Microbiol, 2002,68:254-262
    110.Daniele N D, Carbonelli M G, Candeloro N. Effect osupplementation of calcium and Vitamin D on bone mineral densit and bone mineral content in peri-and post-menopause women:A double-blind, randomized, controlled trial. Pharmcologica Research,2004,50:637-641
    111.Dasari M, Maroor K J, Andreas J, et al. Calcium and chlorpromazine binding to the EF-hand peptides of neuronal calcium sensor-1. Peptides,2004,25:909-917
    112.David O, Yang C L, Michael B, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Deli Rev,2003,55:1547-1567
    113.Decker E A, Livisay S A, Zhou S. Areevalution of the antioxidant activity of purified carnosine. Biochemistry.2000,65:766-770
    114.Deng S G, Peng Z Y, Chen F, et al. Amino acids composition and anti-anaemia action of hydrolyzed offal protein from Harengula zunasi Bleeker. Food Chemistry,2004, 87:97-102
    115.Detelina H P, Stoyan A S, Stoyan S V. Novel thermostable serine collagenase from Thermoactinomyces sp.21E:purification and some properties. Basic Microbiol,2006, 46:275-285
    116.Deeslie W D, Cheryan M. Fractionation of soy protein hydrolysates using ultrafiltra-tion membranes. J. Food Sci.1991,57:411-413
    117.Diaz M, Decker E A, Caseinophopsphopeptides and their cell modulating potential. Biofactors,2004,21:73-78
    118.Doyle B B, Bendit E G, Blout E R. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers,1975,14:937-957
    119.El-Hadj-Ali N, Agrebi R, Ghorbel-Frikha B, Sellami-Kamoun A, Kanoun S, Nasri M.. Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NHl. Enzyme Microb Technol,2007,40:515-523
    120.Ellaiah P, Adinarayana K. Response surface optimization of the cultural conditions for the production of alkaline proteas. J Sci Ind Res,2001,60:868-875
    121.Ellen M H, Stephan M, Klaus B. The fermentation of soybean meal by rumen microbes in vitro reveals different kinetic features for the inactivation and the degradation of trypsin inhibitor protein. Animal Feed Science and Technology,2003, 106:189-197
    122.Evans G W, Browman T D. Chromium Pocolinate increased memberane fluidity and rate of insulin intemalization. J. Inorg. Bioehem,1992,46:243
    123.Evenas J, Malmendal A, Forsen S. Calcium Curr. Opin. Chem. Biol.,1998, 2:293-302
    124.Fernando V S, Gisele S L, Joaquim A.et al. Study of the protein-bound fraction of calcium, iron, magnesium and zinc in bovine milk. Spectrochimica Acta Part B: Atomic Spectroscopy,2001,56:1909-1916
    125.Filipe S, Luciana C N, Cristina G, Antonio A F, Isabel M P L V O Ferreira, Natercia T. Electrophoretic and HPLC methods for comparative study of the protein fractions of malts, worts and beers produced from Scarlett and Prestige barley (Hordeum vulgare L.) varieties. Food Chemistry,2008,2:820-829
    126.Fujiwara N, Yamamoto K. Production of alkaline protease in a low-cost medium by alkalophilic Bacillus sp. and properties of the enzyme. J. Fermentation Technol,1987, 65:345-348
    127.Gaden E L. Fermentation process kinetics. Biochem. Microbiol. Technol. Eng.1959, 1:413-419
    128.Gaston T, Armida S E. Shear values of raw samples of 14 bovine muscles and their relation to muscle collagen characteristics. Meat Science,2003,641:85-91
    129.Gelita G. Osteoarthritis patients report improved function in collagen hydrolysate study. Biotech Business Week,2004,28:129
    130.Gelse K, Poschl E, Aigner T. Collagens-structure, function, and biosynthesis. Adv. Drug Del. Rev,2003,55:1531-1546
    131.Gueguen L, Pointillart A. The bioavailability of dietary calcium. Am Coll Nutr,2000, 19 (Suppl):119-136
    132.Gupta A, Roy I, Khare S K, Gupta M N. Purification and characterization of a solvent stable protease form Pseudomonas aeruginosa Pse A. J. Chromatogr,2005, 1069:155-161
    133.Gupta R, Beg Q K, Lorenz P. Bacterial alkaline proteases:molecular approaches and industrial applications. Appl Microbiol Biotechnol,2002,59:15-32
    134.Ghaly A E, Kamal M, Correia L R. Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production. Bioresource Technology,2005,96:1143-1152
    135.Hara H R, Funabiki M I, Yamazaki K. Prota labsorption of small peptides in rats under understand conditions. J. Nutr.1984,114:1122-1129
    136.Haroldo Y K, Helia H S. Influence of the fermentation parameters and optimisation of isomaltulose production from free Erwinia sp. D12 cells using response surface methodology. Process Biochemistry,2007,42:472-479
    137.Harrington W F, Josephs R, Segal D M. Physical chemical studies on proteins and polypeptides. Ann Rev Biochem,1966,35:599-650
    138.Harry L, Smith J R, Goodner K. Detection of bacterial gelatinases by gelatin agar plate methods. Journal of Bacteriology,1958,76:662-665
    139.He G Q, Chen Q H, Zhang L, et al. Influence of medium components on elastase production using crude sources by Bacillus sp. EL31410. J Zhejiang Univ SCI,2003, 4:142-151
    140.Heaney R P, Recker R R, Weaver C M. Absorbability of calcium sources the limited role solubility. Calcif Tissue Int,1990,46:300-304
    141.Hee G B. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack skin. Process biochemistry,2001, 36:1155-1162
    142.Heideman E, Roth W. Synthesis and investigation of collagen model peptides, Ady Polym Sci,1982,42:143-203
    143.Henning P A, Fsson E A, Crins J. Triclinic oxy-hydroxyapatite. Mater Sci,2001, 36:663-668
    144.Hirotaka I, Tsuyoshi O, Noriaki O, et al. A novel calcium-binding peptide from the cuticle of the crayfish, Procambarus clarkii'. Biochemical and Biophysical Research Communications,2004,318:649-654
    145.Hordur G K, Barbara A R. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture. Process Biochemistry,2000,36:131-139
    146.Jeon Y J, Byun H G, Kim S K. Improvement of functional properties of cnod frame proptein hydrolysates using ulteafitration membranes. Process Biochemistry,1999, 35:471-478
    147.Jiang L F. Optimization of fermentation conditions for pullulan production by Aureobasidium pullulan using response surface methodology. Carbohydrate Polymers,2010,79:414-417
    148.John A T, Victoria A R, Elizabeth D G. Metal-binding sites in proteins. Current Opinion in Biotechnology,1991,2:582-591
    149.John R P, Rajeev K S, Nampoothiri K M, et al. Statistical optimization of simultaneous saccharification and l(+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochemical Engineering Journal,2007,36:262-267
    150.Johnston C. Miller. J, Slenenda. C., Calcium supplementation and increases in bone mineral density in children. Med,1992,327:82-87
    151.Jose Angel, Gomez-Ruiz, Ivan Lopez-Exposito. Antioxidant activity of ovine casein hydrolysates:identification of active peptides by HPLC-MS/MS. Eur Food Res Technol,2008,227:1061-1067
    152.Jung W K, Kim S K. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. Eur Food Technol,2007, 224:763-767
    153.Jung W K, Park P J. Preparation of hoki (Johnius belengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestine crude proteinase. Food Chemistry,2005,91:333-340
    154.Jung W K, Rohan K. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochemistry,2006,41:2097-2100
    155.Jung H J, Kim H K, Kim J I. Purification and characterization of Co2+-activated extracellular metallo protease from Bacillus sp. JH108. J. Microbiol. Biotechnol, 1999,9:861-869
    156.Kanekar P P, Nilegaonkar S S, Sarnaik S S, Kelkar A S. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresource Technol,2002,85:87-93
    157.Kang S, Jang Y B, Choi Y J. Purification and properties of a collagenolytic protease produced by Marine Bacterium Vibrio vulnificus CYK 279H. Biotechnology and Bioprocess Engineering,2005,10:593-598
    158.Kauko K M, Makinen P L, Loesche W J, Salam A. S. Purification and general properties of an oligopeptidase from Treponema denticola ATCC 35405—A Human Oral Spirochete. Archives of Biochemistry and Biophysics,1995,316:689-698
    159.Kay M I, Young R A. Crystal structure of hydroxyapatite. Nature,1964, 204:1050-1052
    160.Keil B. Some newly characterized collagenase from procaryotes and lower eucaryotes. Mol Cell Biochem.1979,23:87-108
    161.Kevin K, Wang W. Chapter 9 Intracellular calcium-binding proteins. Principles of Medical Biology,1996,4:255-274
    162.Kim S K, Yang J Y, Cha J. Cloning and seqence analysis of a novel metalloprotease gene from Vibrio parahaemolyticus. Gene,2002,283:277-286
    163.Kim S K, Byum H G, Park P J. Angiotensin I convertiny enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. J Agric Food Chem,2001b,49: 2992-2997
    164.Kim S K, Isuru W. Development and biological activities of marine-derived bioactive peptides:A review. Journal of Functional Foods,2010,2:1-9
    165.Kim S K, Kim Y T. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack Skin. J Agric Food Chem,2001a, 49:1984-1989
    166.Kim S K, Park P J, Kim J B, et al. Purification and characterization of a collagenolytic protease from the filefish, novoden modestrus. J Biochem Mol Biol, 2002,35:165-171
    167.Kim S, Mendis E. Bioactive compounds from marine processing byproducts-a review, Food Res. Int.2006,39:383-393
    168.Kittiphattanabawon P, Benjakul S, Visessanguan W, et al. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chem,2005,89:363-372
    169.Kristinsson H G, Rasco B A. Fish protein hydrolysates:production, biochemical, and functional properties. CRC Crit Rev Food Sci Nutr,2000a,40:43-81
    170.Kristinsson H G, Rasco B A. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture. Proc Biochem,2000b,36:131-139
    171.Kumar C G, Takagi H. Microbial alkaline proteases:From a bioindustrial viewpoint. Biotechnol Adv,1999,17:561-594
    172.Kuriyama N, Kuriyama H, Julin C M. Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy. Hum Gene Ther,2000,11:2219-2230
    173.Kwitz J, Knippel M, Schuhr T, et al. Alteration in the extent of collagen I hydroxylation isolated from femoral heads of women with a femoral neck fracture caused by osteoporosis. Calcif Tissue Int,1997,60:501-505
    174.Lakowics J R. Principles of fluorescence spectroscopy. New York, Plenum Press, 1983.281
    175.Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685
    176.Leikina E, Mertts M V, Kuznetsova N. Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA,2002,99:1314-1318
    177.Li X, Zhang R J, Fred E. Regnier. Potential of silica monolithic columns in peptide separations. Journal of Chromatography,2004,1030:187-194
    178.Li F, Jia D Y, Yao K. Amino acid composition and functional properties of collagen polypeptide from Yak(Bos grunniens) bone. LWT-Food Science and Technology, 2009,42:945-949
    179.Linse S, Forsen S. In:A.R. Means, Editor, Calcium Regulation of Cellular Function Raven Press, New York.1995.89-152
    180.Long J R, Shaw W J, Stayton P S, Drobny G P. Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR, Biochemistry,2001, 40:15451-15455
    181.Luedeking R, Piret E. A kinetic study of the lactic acid fermentation:batch process at controlled pH. Biochem Microbiol,1959,1:393-412
    182.Ma X H, Xu G C. Isolation of a bacterial strain (Bs08) producing alkaline protease and properties of the enzyme production. Weishengwuxue Zazhi,1990,10:20-24
    183.Mabrouk S S, Hashem A M, El-Shayeb N M A, Ismail A M S, et al. Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415. Bioresource Technology,1999,69:155-159
    184.Maclennan J D, Mandl I, Howes E L. Bacterial digestion of collagen. J Clin Invest. 1953,32:1317-1322
    185.Makinen K K, Makinen P L. Purification and properties of an extracellular collagenolytic protease produced by the human oral bacterium Bacillus cereus (strain soc 67). J Biol Chem,1987,262:12488-12495
    186.Malathi S, Chakraborty R. Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermetation conditions for use as a depilation agent. Appl. Environ. Microbiol,1991,57:712-716
    187.Marilia M H, Virginia C. Amaro Martins, Ana Maria de Guzzi Plepis. Interaction of anionic collagen with chitosan:Effect on thermal and morphological characteristics. Carbohydrate Polymers,2009,77:239-243
    188.Martina M D, Jasmin K, Christian R, Gunter A. Comparing standard and microwave assisted staining protocols for SDS-PAGE of glycoproteins followed by subsequent PMF with MALDI MS. Journal of Proteomics,2009,4:628-639
    189.Marquez M C, Vazquez M A. Modeling of enzymatic protein hydrolysis. Process biochemistry.1999,35:111-117
    190.Marie C, Martin C, Eric D, Richard G, Pierre C. Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications. Journal of Hazardous Materials.2008,3:522-532
    191.Matsushita O K, Yoshihara S, Katayama J M, Okabe A. Purificaton and characterization of Clostridium perfringerns 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J. Bacteriol,1994,176:149-156
    192.Mei C, Jiang X. A novel surfactant and oxidation-stable alkaline protease from Vibrio metschnikovii DL33-51. Process Biochem.2005,40:2167-2172
    193.Mendis E, Rajapakse N, Kim S K. Antioxidant properties of a radical-scavenging peptide purified from enymatically prepared fish skin gelatin hydrolysate. Joural of agricultural and food chemistry. J Agric Food Chem,2005,53:581-587
    194.Michel L, Rozan P. Nutritional value of veal bone hydrolysate. J Food Sci,1997, 62:183-189
    195.Michel L. Functional properties of veal bone hydrolysates. Food Sci,1996, 61:127-130
    196.Michel L, Rozan P. Protein recovery from Veal Bones by Enzymatic Hydrolysis. Food Sci,1995,60:949-958
    197.Miquel E, Gomez J A, Alegria A. Identification of phosphopeptides released after simulated digestion of milk-based infant formulas. Afric Food Chem,2005a, 53:3426-3433
    198.Miquel E, Gomez J A, Alegria A. Speciation analysis of calcium, iron and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high performance liquid chromatography mass spectrometry/flame atomic absorption spectroscopy. Anal Bioanal Chem,2005b, 381:1082-1088
    199.Mittermayr S, Olajos M, Chovan T, Bonn G K, Guttman A. Mobility modeling of peptides in capillary electrophoresis. TrAC Trends in Analytical Chemistry,2008, 5:407-417
    200.Moskowitz R W. Role of collagen hydrolysate in bone and joint disease. Seminars in arthritis and rheumatism. Semin Arthritis Rheum,2000,30:87-99
    201.Morimura S, Nagata H, Uemura Y, Fahmi A, Shigematsu I, Kida K. Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochemistry,2002,37:1403-1412
    202.Nasser A M, Barakat K A, Khalil Faheem A, Sheikh A M, Omran Babita Gaihre, Soeb M Khil, Hak Yong Kim. Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods:Extraction of biologically desirable Hap. Materials Science and Engineering:C,2008,8:1381-1387
    203.Nasser A M B, Myung S K, Omran A M, Faheem A S, Kim H Y. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J Materials Processing Technol.2009,7:3408-3415
    204.Nagai Takeshi, Suzuki N. Isolation of collagen from waste material-skin, bone and fins. Food Chemistry,2000,68:277-281
    205.Nara M, Tanokura M. Infrared spectroscopic study of the metal-coordination structures of calcium-binding proteins. Biochemical and Biophysical Research Communications,2008,369:225-239
    206.Nomura Y, Sakai H, Ishii Y, et al. Preparation and some properties of type I collagen from fish scales. Biosci. Biotech. Biochem,1996,60:2092-2094
    207.Nonaka I, Katsuda S, Ohori T. In vitro and in vivo antiplatelet effects of hydrolysates of collagen and collagen related peptides. Biosci biotechnol bioehem.1997, 61:725-772
    208.North M J. Comparative biochemistry of the proteinases of eukaryotic microorganisms. Microbiol Rev,1982,46:308-340
    209.Okamoto M, Yonejima Y, Tsujimoto Y. A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. Strain MO-1. Appl Microbiol Biotechnol,2001,57:103-108
    210.Onodenalore A C, Shahidi F. Protein dispersions and hydrolysates from shark(Isurus oxyrinchus). J.Aquat.Food Prod Technol,1996,5:43-59
    211.Pateick L, Franchini A, Ronald E R. A model for circular dichroism monitored dimerization and calcium binding in an EF-hand synthenic peptide.1999, 199:199-211
    212.Patricia H, Scott-Burden T, Woods D R. Characterization of extracellular alkaline proteases and collagenase induction in Vibrio alginolyticus. J. General Microbiology, 1983,129:1141-1147
    213.Patrick L A, Ronald F, Reid E. A Model for circular dichroism monitored dimerization and calcium binding in an EF-Hand synthetic peptide. J. Theor. Biol, 1999,199:199-211
    214.Patel R K, Dodia M S, Joshi R H, Singh S P. Production of extracellular halo-alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp. isolated from Seawater in Western India.. World Journal of Microbiology and Biotechnology,2006, 22:375-382
    215.Pauliina J, Anu M T, Kirsi R, et al. Biological effects of casein-derived tripeptide powders are not affected by fermentation process. International Dairy Journal,2010, 20:366-370
    216.Peigodich R V, Vesely M R. Characterization of the complex between bovine osteocalcin and type I collagen. Archives of Biochemistry and Biophysics,1997, 345:339-341
    217.Peter P, Marcus Ohman, Yuli H, et al. Methacrylate monolithic capillary columns for gradient peptide separations. Journal of Chromatography A,2008,1208:109-115
    218.Peterkofsky B. Bacterial collagenase. Methods Enzymol,1982,82:453-471
    219.Petritis K, Brussaux S, Guenu S. Ion-pairreversed-phase liquid chromatography-electrospray masss pectrometry for the analysis of underivatized small peptides. Chromatogr A,2002,957:173-185
    220.Potter K, Kidder H L, Levin W I, et al. Imaging of collagen and proteoglycan in cartilage sections using fourier transform infrared spectral imaging. Arthritis & Rheumatism,2001,44:846-855
    221.Poulin J F, Jean A, Laurent B. Improved peptide fractionation by electrodialysis with ultrafiltration membrane:Influence of ultrafiltration membrane stacking and electrical field strength. Journal of Membrane Science,2007,299:83-90
    222.Poulin J F, Jean A, Laurent B. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane. Journal of Biotechnology, 2006,123:314-328
    223.Quaglia. Influence of enzymic hydrolysis on structure and emulsifying properties of sardines protein hydrolysate. J.of Food Sci,1990,55:1571
    224.Raja N Z, Raja A R, Lee P G, Mahiran B, Abu B S. An organic solvent-tolerant protease from Pseudomonas aeruginosa strain K nutritional factors affecting protease production. Enzyme Microbial Technol,2005,36:749-757
    225.Ranganathan S, Vasantha L K, Vinodini R. Trial of ferrous glycine sulphate in the fortification of common salt with iron. Food Chemistry,1996,57:311-315
    226.Rao M B, Tanksale A M, Ghatge M S, Deshpande V V. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev,1998, 62:597-635
    227.Recio I. Bioactive peptides from food proteins:a new isolation method Agro. Food. Ind.Hi-Tech,2000,11:9-11
    228.Reid I R, Browner W, Riggs B L. Effect of calcium supplementation on bone losing in women. New En gl J Med,1993,328:460-464
    229.Rerat A. Amino acid absorption and production of pancreatic hormonedin non-anaesthetized pigs after duodenal infusions of a milk enzyme hydrolysate or of free amino acid. Brit J. Nutri,1988,60:121-136
    230.Richard V P, Mark R V. Characterization of the complex between bovine osteocalcin and type Ⅰcollagen. Archives of Biochemistry and Biophysics,1997,345:339-341
    231.Riichiro O, Tomoaki D. Physiological functions of enzymatic hydrolysates of collagen or keratin contained in livestock and fish waste. Food Science and Technology Research,2003,9:91-93
    232.Robert P, Heaney M D, Dowell M S. Absorbability and Cost Effectiveness in Calcium Supplementation. J Am Coll Nutr,2001,20:239-246
    233.Robert P, Stephen C, Daniel H. Relative bioavailability of calcium from calcium Formate, calcium citrate and calcium carbonate. J Pharmacol Exp Ther,2005, 313:1217-122
    234.Rodziewicz-motowido S, Sladewska A, Mulkiewicz E. Isolation and characterization of a thermally stable collagen preparation from the outer skin of the silver carp (Hypophthalmichthys molitrix). Aquaculture,2008,285:130-134
    235.Roebuck K, Brundin A, John M. Response surface optimization of temperature and pH for the growth of Pachysolen tannophilus. Enzyme Microb. Technol.1995. 17:75-78
    236.Rosche W A, Foste P L. Determining mutation rates in bacterial populations. Methods,2000,20:4-17.
    237.Roy P, Colas B, Durand P. Purification, kinetical and molecular characterizations of a serine collagenolytic protease from greenshore crab (Carcinus maenas) digestive gland. Comp. Biochem. Physiol,1996,115:87-95.
    238.Frick R, Junker B. Indirect methods for characterization of carbon dioxide levels in fermentation broth. Journal of Bioscience and Bioengineering,1999,8:344-351
    239.Sasagawa Y, Kamio Y, Matsubara Y, Matsubara Y, Suzuki K, Kojima H, Izaki K. Purification and properties of collagenase from Cytophaga sp. L43-1 strain. Biosci. Biotechnol. Biochem,1993,57:1894-1898
    240.Scott S S, Yaniel C, Abdul M. Ultra-high-stability, pH-resistant sol-gel titania poly(tetrahydrofuran) coating for capillary microextraction on-line coupled to high-performance liquid chromatography. Journal of Chromatography A,2009, 20:4329-4338
    241.Schagger H, Von J. Tricine-spdium dodecyl sulfate polyacrylamid gel electroporesis for the separation of proteins in the range from 1 to 100 KDa. Analytical Biochemistry,1987,166:368-379
    242.Schilling M W, Mink L E, Gochenour P S. Utilization of pork collagen for functionality improvement of boneless cured ham manufactured from pale, soft and exudative pork. Meat Science,2003,651:547-553
    243.Shen J N, Li D D, Jiang F Y, Qiu J H, Gao C J. Purification and concentration of collagen by charged ultrafiltration membrane of hydrophilic polyacrylonitrile blend.Separation and Purification Technology,2009,2:257-262
    244.Shoshi M, Shunsuke I. Existence of two molecular speciesof collagen in the muscle layer of the ascidian(Halocynthia roretzi). Food Chemistr,2002,79:9-13
    245.Soottawat B. Protein Hydrolysates from Pacific Whiting Solid Wastes. J agric Food Chem,1997,46:4323-4330
    246.Sousa F, Ju S, Erbel A, et al. A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme Microb Technol,2007,40:1772-1781
    247.Staatz W D, Fok K F, Zutter M M, et al. Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. J Biol Chem,1991, 266:7363-7367
    248.Surowka K, Fik M. Studies on the Recovery of Proteinaceous Substances from Chicken Heads.J.Food.Sci.Technol,1992,27:9-12
    249.Swarna V. Kanth, R. Venba, B. Madhan, N.K. Chandrababu, et al. Studies on the influence of bacterial collagenase in leather dyeing. Dyes and Pigments,2008, 76:338-347
    250.T Sonobe, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel,2008,87:414-421
    251.Takuo F. Calcium paradox:Consequences of calcium deficiency manifested by a wide variety of diseases. Journal of Bone and Mineral Metabolism,2000,18:234-236
    252.Tauer S, Elss M, Frischmann P, Tellez M P, Influence of themally processed carbohydrate/amino acid mixture on the fermentation by Saccharomyces cerevisiae, J. Agric. Food Chem.2004,52:2042-2046
    253.Thomas A B, Elvin H. Purification of nonspecific protease-free collagenase from Clostridium histolyticum. Analytical Biochemistry,1985,145:286-291
    254.Towatana N H, Painupong A, Suntinanalert P. Purification and characterization of an extracellular protease from alkaliphilic and thermophilic Bacillus sp. PS719. J Biosci Bioeng,1999,87:581-587
    255.Tzaphlidou M. The role of collagen and elastin in aged skin:an image processing approach. Micron,2004,35:173-177
    256.Vicent D, Ilany J, Kondo T. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest,2003,111:1373-1380
    257.Viktor F, Elemer V, Ignace H, Zsuzsa M, et al. Cyclic peptide models of the Ca2+-binding loop of a-lactalbumin. Bioorganic and Medicinal Chemistry,2005, 13:5310-5320
    258.Vomund A N, Phillips C L. Structural changes in human type I collagen fibrils investigated by force spectroscopy. Exp Cell Res,2004,299:335-342
    259.Wang J, Zhu J H, Lin W, et al. Screening for the strain highly producing antagonistic substance from Bacillus subtilis B47 by UV mutagenesis. Agricultural Science & Technology,2008,9:68-72
    260.Watanabe K; Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol, 2004,63:520-526
    261.Wang M H, Kalinin A, Morasso M I. The temporal and spatial expression of the novel Ca++-binding proteins, Scarf and Scarf2, during development and epidermal differentiation. Gene Expression Patterns,2005,5:801-808
    262.Wang S L, Lin T Y, Yen Y H, et al.. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr. Res.2006, 341:2507-2515
    263.Wang S L, Yang C H, Liang T W, et al. Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Biochemistry,2008, 32:125-132
    264.Wang S L, Chen T R, Liang T W, et al. Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochemical Engineering Journal,2009,48:111-117
    265.Wang X, Song Y Z, Li J X, Liu H. A new family of antimicrobial peptides from skin secretions of Rana pleuraden. Peptides,2007,10:2069-2074
    266.Wang Q, Yamabe K, Narita J, Morishita M, et al. Suppression of growth of putrefactive and food poisoning bacteria by lactic acid fermentation of kitchen waste. Process Biochemistry,2001,37:351-357
    267.William J L, Steven D, Braum. Enzymatic production of protein hydrolysates for food use. Food Technol,1994,1:68-71
    268.Williams A G, Noble J, Banks J M. Catabolism of amino acids by lactic acid bacteria isolated from Cheddar cheese. International Dairy Journal,2001,11:203-215
    269.Yang J K, Shih I L, Tzeng Y M, Wang S L. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb Technol,2000,26:406-413
    270.Yasser R, Abdel-Fattah. Hesham M, et al. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem,2005,40:1707-1714
    271.Yoshida T. Peptide separation by Hydrophilic-interaction chromatography:a review. Journal of Biochemical and Biophysical Methods,2004,60:265-280
    272.Yuan Y V, Kitts D D. Conformation of calcium absorption and femoral utilization in spontaneously hypertensive rats fed casein phosphopeptide supplemented diets. Nutr Res,1991,11:1257-1272
    273.Yue W B, Shi L, Bai Z M, Ren Y S, Zhao Y Y. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of ram seminal plasma proteins and their correlation with semen characteristics. Animal Reproduction Science,2009, 3-4:386-391
    274.Zhang Y, Liu W, Li G, Shi B. Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp(Ctenopharyngodon idella). Food Chem.2007, 103:906-912
    275.Zhang C, Fan D, Shang L. Optimization of Fermentation Process for Human-like Collagen Production of Recombinant Escherichia coli Using Response Surface Methodology. Chinese Journal of Chemical Engineering,2010,18:137-142
    276.Zhang S T, Toda K. Kinetic study of electrodialysis of acetic acid and phosphate in fermentation broth. Journal of Fermentation and Bioengineering,1994,77:288-292
    277.Zwietering M H, Jongenburger I, Rombouts, F M, Vantriet, K. Modeling of the bacterial growth curve. Microbiol,1990,56:1875-1881