S100A11在乳腺癌及癌旁组织中的表达及其与临床参数的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见的恶性肿瘤之一。在我国占全身恶性肿瘤的7%~10%,并呈逐年上升趋势,部分大城市报告乳腺癌占女性恶性肿瘤之首位。乳腺癌的发生是多因素、多步骤的生物学现象,单因素和局限在基因水平的研究难以全面揭示乳腺癌的发生机制。随着后基因组时代的来临,从细胞整体角度分析细胞内蛋白变化的蛋白质组学以其特有的思维方法和技术手段在解决生物学重大问题上开始显示出强大的威力,双向凝胶电泳和质谱技术的联合应用为乳腺癌蛋白质组学的分析提供了研究平台。通过比较疾病状态下与正常生理状态下或疾病不同发展阶段的蛋白质表达水平上的差异,以期发现和鉴定出与疾病特异相关的蛋白质,这是比较蛋白质组学研究的经典思路。本实验沿用这一思路,利用差异蛋白质组学方法详细研究了5例乳腺癌患者癌组织样品,与癌旁腺体组织进行比较,筛选出共同差异蛋白质钙结合蛋白S100A11,并利用Western blotting和免疫组化技术对其进行初步的验证,发现双向凝胶电泳、Western blotting和免疫组化结果得到相同的结论:S100A11在乳腺癌组织中的表达高于在癌旁乳腺组织中的表达。并探讨了该蛋白与乳腺癌临床参数之间的关系,发现S100A11与乳腺癌的浸润程度有关,据文献调研结果,S100A11的表达失调可能与乳腺癌的发生发展相关,为乳腺癌的发病学、防治研究提供了新的线索。
Breast cancer is one of the most common malignant tumors. According to the statistics data, there are 1,200,000 women suffering from breast cancer, which takes up 18% in all of the female malignant disease. The five years survival rate of breast cancer is 50%~60%, and approximately 50% relapse and metastasis after treatment. So far, it still lack of a specific biomarker for early diagnosis and monitoring prognosis. Therefore, it is a key point to find a biomarker for breast cancer with high sensitivity and specificity. With the coming of post-genome period, proteomics with its special thinking method and technology which analyze the alteration of intracellular protein shows its great power to solve biological problems, and it attracts more and more researchers’attention. The classic methodology of proteomics is to find a special disease related protein by comparing the difference of protein expressing level between physiological condition and disease stages. This study researched breast cancer according to the method by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), and we found that the expression of S100 calcium binding protein A11 (S100A11) up-regulated in breast cancer, which was validate by Western blotting and IHC (immunohistochemistry). In the result of IHC, S100A11 expressed mainly in breast cancer cell and adjacent normal breast epithelial cell and which was the result of expressing difference among them. We also found that S100A11 was associated with malignant cell infiltration. It provides a novel clue for studying pathogenesis and prevention of breast cancer.
     Objective: To find out the related protein of breast cancer and verify this different protein S100A11, and discuss the relationship between this protein and other clinical parameters.
     Methods: Choose 5 cases of malignant tissue in breast carcinoma and pairing adjacent normal tissue, and abstract total protein of malignant tissue and pairing normal tissue. ImageMaster 2D and Adobe Photoshop were used to analyze image, and MALDI-TOF-MS and MALDI-TOF-TOF-MS were used as protein identification. Searching Mascost database to find out different expressing protein and verify results generated from 2-DE and MS by Western blotting and IHC, and detect the protein expressing level in breast cancer and adjacent tissue by IHC .
     Result:
     1. S100A11 expressing level in breast malignant tissue is much higher than in adjacent tissue by Western blotting.
     2. Immunohistochemistry shows that: positive signal of protein S100A11 is brown granules, which located in plasma of carcinoma cell and adjacent cell without expressing in interstitium. In 55 cases of breast malignant tissue, the positive rate of S100A11 expressing is 73.73%; and in 26 cases of adjacent tissue, the positive rate of S100A11 expressing is 42.31%.There were significant difference of S100A11 expressing level between malignant tissue and normal tissue (χ2=7.005,P<0.05).
     3. Immunohistochemistry shows that: In 55 cases of breast malignant tissue, the expressing of S100A11 shows no relationship with patients’age, size of tumour, TNM clinical stage, ER, PR, HER-2, metastatic lymph node (P>0.05). The positive rate of S100A11 in early infiltrating carcinoma is 33.33 %; while in invasive carcinoma without specific type, it takes up 77.55 %, which showed no significant difference.
     Conclusion
     1. We got the same result by 2-DE, Western blotting and IHC, that is: S100A11 expressing level in breast malignant tissue is much higher than adjacent tissue by Western blotting, 2-DE and MS verify the conclusion.
     2. S100A11 express mainly in the plasma of breast cancer cell and adjacent normal breast epithelial cell, therefore the different content of S100A11 among the tissue result from difference expressing level of mammary gland cell .
     3. The expressing level of S100A11 in breast carcinoma cell is associated with the degree of infiltration. According to documents study, the disturbance of S100A11 expressing is probably related to occurrence of breast cancer and its development.
引文
[1] Coldman A, Phillips N, Warren L, et al. Breast cancer mortality after screening mammography in British Columbia women[J]. Int J Cancer, 2007,120(5):1076-1080.
    [2] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome[J]. Science, 2001,291(5507):1304-1351.
    [3] Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it[J]. Biotech Genet Eng Rev, 1996,13:19-50.
    [4] Anderson N L, Anderson N G. Proteome and proteomics: new technologies, new concepts, and new words [J]. Electrophoresis, 1998,19(11):1853-1861.
    [5] Lau A T, He Q Y, Chiu J F. Proteomic technology and its biomedical applications[J]. ACTA Biochemicaet Biophysica Sinica. 2003,35(11):965-975.
    [6]蒋爱华,张梅,刘祖国.蛋白质组学:概念、技术及其在眼科的应用[J].国外医学眼科学分册, 2003,27(4):193-197.
    [7]陈姗,刘志红.蛋白质组学研究方法[J].基础医学, 2005,14(1):52-58.
    [8] Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts[J]. Electrophoresis, 1997,18(11):2071-2077.
    [9] Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains[J]. Proteomics, 2002,2(1):3-10.
    [10] Seibert V, Ebert M P, Buschmann T A. Advances in clinical cancer proteomics: SELDI-TOF-mass spectrometry and biomarker discovery[J]. Briefings in Functional Genomics & Proteomics, 2005,4(1):16-26.
    [11] Hu Y, Zhang S, Yu J, et al. SELDI-TOF-MS: the proteomics and bioinformatics approaches in the diagnosis of breast cancer[J]. Breast, 2005,14(4):250-255.
    [12] Enqweqen J Y, Gast M C, Schellens J H, et al. Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry[J]. Trends in PharmacologicalSciences, 2006,27(5):251-259.
    [13] Liu C, Zhang X. Multidimensional capillary array liquid chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for high- throughput proteomic analysis[J]. J Chromatoqr A, 2007,1139(2):191-198.
    [14] Dupont M, Pages J M, Lafitte D, et al. Identification of an OprD homologue in Acinetobacter baumannii[J]. J Proteome Res, 2005,4(6):2386-2390.
    [15] Seddighzadeh M, Linder S, Shoshan M C, et al. Inhibition of extracellular signal-regulated kinase1/2 activity of the breast cancer cell line MDA-MB-231 leads to major alterations in the pattern of protein expression[J]. Electrophoresis, 2000,21(13): 2737-2743.
    [16] Huber M, Bahr I, Kratzschmar J R, et al. Comparison of proteomic and genomic analyses of the human breast cancer cellline T47D and the antiestrogen-resistant derivative T47D-r[J]. Mol Cell Proteomics, 2004,3(1):43-55.
    [17]刘银坤.蛋白质组学及其在肿瘤标志物筛选和鉴定中的应用策略[J].中华检验医学杂志, 2006,29(4):293-297.
    [18] Varnum S M, Covington C C, Woodbury R L, et al. Proteomic characterization of nipple aspirate fluid: identification of potential biomarkers of breast cancer[J]. Breast Cancer Res Treat, 2003,80(1):87-97.
    [19] Sauter E R, Zhu W, Fan X J, et al. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer[J]. Br J Cancer, 2002,86(9):1440-1443.
    [20] Paweletz C P, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer[J]. Dis Markers, 2001,17(4):301-307.
    [21] Escobar M A, Hoelz D J, Sandoval J A, et al. Profiling of nuclear extract proteins from human neuroblastoma cell lines: the search for finger prints[J]. J Pediatr Surg, 2005, 40(2):349-358.
    [22] Adam P J, Boyd R, Tyson K L, et al. Comprehensive proteomic analysis of breastcancer cell membranes reveals unique proteins with potential roles in clinical cancer[J]. J Biol Chem, 2003,278(8):6482-6489.
    [23] Luftner D, Possinger K. Nuclear matrix proteins as biomarkers for breast cancer[J]. Exp Rev Mol Diagn, 2002,2(1):23-31.
    [24]郑莉莉,石林祥.蛋白质组学在乳腺癌中的应用[J].上海医学, 2007,30(7): 557-559.
    [25] Spencer V A, Samuel S K, Davie J R. Altered profiles in nuclear matrix proteins associated with DNA in situ during progression of breast cancer cells[J]. Cancer Res 2001,61(4):1362-1366.
    [26] Seddighzadeh M, Linder S, Shoshan M C, et al. Inhibition of extracellular signal- regulated kinase1/2activity of the breast cancer cell line MDA-MB-231 leads to major alterations in the pattern of protein expression[J]. Electrophoresis, 2000,21(13): 2737-2743.
    [27]张柏林,刘海洁,张保宁.蛋白质组学技术在乳腺癌研究中的应用[J].医学研究杂志, 2006,35(7):76-78.
    [28] Vercoutter-Edouart A S, Lemoine I, Le-Bourhis X, et al Proteomic analysis reveals that 14-3-3sigma is down-regulated in human breast cancer cells[J]. Cancer Res, 2001, 61(1):76-80.
    [29] Pawlik T M, Fritsche H, Coombes K R, et al. Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry[J]. Breast Cancer Res Treat, 2005, 89(2):149-157.
    [30] Watkins B, Szaro R, Ball S, et al. Detection of early-stage cancer by serum protein analysis[J]. American Laboratory, 2001,7001:32-36.
    [31] Li J, Zhang Z, Rosenzweig J,et al. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer[J]. Clin Chem, 2002,48(8): 1296-1304.
    [32] Celis J E, Gromov P, Cabezon T, et al. Proteomic characterization of the interstitialfluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery[J]. Mol Cell Proteomics, 2004,3(4):327-344.
    [33] Celis J E, Moreira J M, Cabezon T, et al. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial- adipocyte stromal cell interactions[J]. Mol Cell Proteomics, 2005,4(4):492-522.
    [34] Alaiya A A, Franzen B, Auer G, et al. Cancer proteomics: from identification of novel markers to creation of artifical learning models for tumor classification[J]. Electrophoresis, 2000,21(6):1210-1217.
    [35] Somiari R I, Sullivan A, Russell S, et al. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast[J]. Proteomics, 2003,3(10):1863-1873.
    [36] LeNaour F, Misek D E, Krause M C, et al. Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer[J]. Clin Cancer Res, 2001,7(11): 3328-3335.
    [37] Czerwenka K F, Manavi M, Hosmann J, et al. Comparative analysis of two- dimensional protein patterns in malignant and normal human breast tissue[J]. Cancer Detect Prev, 2001,25(3):268-279.
    [38] Friedrich M J. Genomics and proteomics may help clinicians individualize cancer treatment[J]. JAMA, 2002,287(22):2931-2932.
    [39] Adam P J, Berry J, Loader J A, et al. Cancers and conveys enhanced growth and resistance to etoposide in vitro[J]. Mol Cancer Res, 2003,1(11):826-835.
    [40] Chen S T, Pan T L, Tsai Y C, et al. Proteomics reveals protein profile changes in doxorubicin-treated MCF-7 human breast cancer cells[J]. Cancer Lett, 2002,181(1): 95-107.
    [41] Hathout Y, Riordan K, Gehrmann M, et al. Differential protein expression in the cytosol fraction of an MCF-7 breast cancer cell line selected for resistance toward melphalan[J]. J Proteome Res, 2002,1(5):435-442.
    [42] Wang D, Jensen R H, Williams K E, et al . Differential protein expression in MCF7 breast cancer cells transfected with ErbB2, neomycin resistance and luciferase plus yellow fluorescent protein[J]. Proteomics, 2004,4(7):2175-2183.
    [43] Lim Y P, Wonq C Y, Ooi L L, et al. Selective tyrosine hyperphosphorylation of cytoskeletal and stress proteins in primary human breast cancers: implieations for adjuvant use of kinase-inhibitory drugs[J]. Clin Cancer Res, 2004,10(12 Pt l):3980-3987.
    [44] Zhang D H, Tai L K, Wong L L, et al. Proteomics of breast cancer: enhanced expression of cytokeratin 19 in human epidermal growth factor receptor type 2 positive breast tumors[J]. Proteomics, 2005,5(7):1797-1805.
    [45] Harvey S, Zhang Y , Landre F, et al. Insights into a plasma membrane signature[J]. Physiol Genomics, 2001,5(3):129-136.
    [46] Salama I, Malone P S, Mihaimeed F, et al. A review of the s100 proteins in cancer[J]. The Journal of Cancer Surgery, 2008,34(4):357-364.
    [47] Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles[J]. Int. J. Biochem. Cell Biol, 2001,33(7):637-668.
    [48] Watson P H, Leygue E R, Murphy L C. Psoriasin (S100A7)[J]. Int J Biochem Cell Biol, 1998,30(5):567-571.
    [49] Moore B W. A soluble protein characteristic of the nervous system[J]. Biochem Biophys Res Commun, 1965,19(6):739-744.
    [50] Zimmer D B, Cornwall E H, Landar A, et al. The S100 protein family: history, function, and expression[J]. Brain Res Bull, 1995,37(4): 417-429.
    [51] Heizmann C W, Fritz G, Schafer B W. S100 proteins: structure, functions and pathology[J]. Front Biosci, 2002,7:d1356-1368.
    [52] Donato R. Intracellular and extracellular roles of S100 proteins[J]. Microsc Res Technol, 2003,60(6):540-551.
    [53] Donato R. S-100 proteins[J]. Cell Calcium, 1986,7(3):123-145.
    [54] Engelkamp D, Schafer B W, Mattei M G., et al. Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium binding proteins S100D and S100E[J]. Proc Natl Acad Sci USA, 1993,90(14):6547-6551.
    [55] Marenholz I, Heizmann C W, Fritz G. S-100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature)[J]. Biochem Biophys Res Commun, 2004,322(4):1111-1122.
    [56] Kretsinger R H. Structure and evolution of calcium-modulated proteins[J]. CRC Crit Rev Biochem, 1980,8(2):119-174.
    [57] Kawasaki H, Kretsinger R H. Calcium-binding proteins 1: EF-hands[J]. Protein Profile, 1994,1(4):343-517.
    [58] Maler L, Sastry M, Chazin W J. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin[J]. J Mol Biol, 2002,317(2): 279-290.
    [59] Sastry M, Ketchem R R, Crescenzi O, et al. The three-dimensional structure of Ca (2+) -bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins[J]. Structure, 1998,6(2):223-231.
    [60] Zimmer D B, Wright Sadosky P, Weber D J. Molecular mechanisms of S100- target protein interactions[J]. Microsc Res Technol, 2003,60(6):552-559.
    [61] Heizmann C W, Cox J A. New perspectives on S100 proteins: a multi-functional Ca (2+)-, Zn (2+)- and Cu (2+)-binding protein family[J]. Bio Metals, 1998,11(4):383-397.
    [62] Hessian A, Fishe L. The heterodimeric complex of MRP-8(S100A8) and MRP-14 (S100A9) antibody recognition, epitope definition and the implications for structure[J]. Eur J Biochem 2001,268(2):350-363.
    [63] Ringer K, Schafer B W, Durussel I, et al. S100A13 biochemical characterization and subcellular localization indifferent cellines[J]. Biol Chem 2000,275(12):8686-8694.
    [64] Marenholz I, Heizmann C W. S100A16, a ubiquitously expressed EF-hand proteinwhich is up-regulated in tumor[J]. Biochem Biophys Res Commun, 2004,313(2): 237-244.
    [65] Pelinka L E, Szalay L, Jafarmadar M, et al. Circulating S100B is increased after bilateral femur fracture without brain injury in the rat[J]. Br J Anaesthesia, 2003,91(4): 595-597.
    [66] Bhattacharya S, BunickC G, ChazinW J. Target selectivity in EF-hand calcium binding proteins[J]. Biochim Biophys Acta, 2004,1742(1-3):69-79.
    [67] Deloulme J C, Gentil B J, Baudier J. Monitoring of S100 homodimerization and heterodimeric interactions by the yeast two-hybrid system[J]. Microsc ResTech, 2003, 60(6):560-568.
    [68] Heizmann C W. The multifunctional S100 protein family[ J]. Methods Mol Biol, 2002, 172:69-80.
    [69] Hiratsuka S, Watanabe A, Aburatani H, et al. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis[J]. Nat Cell Biol, 2006,8(12):1369-1375.
    [70] Yen T, Harrison C A, Devery J M, et al. Induction of the S100 chemotactic protein, CP-10, in murine microvascular endothelial cells by proinflammatory stimuli[J]. Blood, 1997,90(12):4812-4821.
    [71] Cornish C J, Devery J M, Poronnik P, et al. S100 protein CP-10 stimulates myeloid cell chemotaxis without activation[J]. J Cell Physiol, 1996,166(2):427-437.
    [72] Devery J M, King N J, Geczy C L. Acute inflammatory activity of the S100 protein CP-10: activation of neutrophils in vivo and in vitro[J]. J Immunol, 1994,152(4): 1888-1897.
    [73] Lau W, Devery J M, Geczy C L. A chemotactic S100 peptide enhances scavenger receptor and Mac-1 expression and cholesteryl ester accumulation in murine peritoneal macrophages in vivo[J]. J Clin Invest, 1995,95(5):1957-1965.
    [74] Wang G, Zhang S, Fernig D G, et al. Heterodimeric interaction and interfaces ofS100A1 and S100P[J]. Biochem J, 2004,382(Pt 1):375-383.
    [75] Mueller A, Schafer B W, Ferrari S, et al. The calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity[J]. J Biol Chem, 2005,280(32): 29186-29193.
    [76] Grigorian M, Andresen S, Tulchinsky E, et al. Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction[J]. J Biol Chem, 2001,276(25):22699-22708.
    [77] Ohta H, Sasaki T, Naka M, et al. Molecular cloning and expression of the cDNA coding for a new member of the S100 protein family from porcine cardiac muscle[J]. FEBS Lett, 1991,295(1-3):93-96.
    [78] Watanabe M, Ando Y, Todoroki H, et al. Molecular cloning and sequencing of a cDNA clone encoding a new calcium binding protein, named calgizzarin, from rabbit lung[J]. Biochem Biophys Res Commun, 1991, 181(2): 644–649.
    [79] Naka M, Qing Z X, Sasaki T, et al. Purification and characterization of a novel calcium-binding protein, S100C, from porcine heart[J]. Biochim Biophys Acta, 1994, 1223(3):348-353.
    [80] Todoroki H, Kobayashi R, Watanabe M, et al. Purification, characterization, and partial sequence analysis of a newly identified EF-hand type 13-kDa Ca2 +-binding protein from smooth muscle and non-muscle tissues[J]. J Biol Chem, 1991,266(28):18668-18673.
    [81] Tanaka M, Adzuma K, Iwami M, et al. Human calgizzarin; one colorectal cancer- related gene selected by a large-scale random cDNA sequencing and northern blot analysis[J]. Cancer Lett, 1995,89(2):195-200.
    [82] Schonekess B O, Walsh M P. Molecular cloning and expression of avian smooth muscle S100A11 (calgizzarin, S100C) [J]. Biochem Cell Biol, 1997,75(6):771-775.
    [83] Inada H, Naka M, Tanaka T, et al. Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization[J]. Biochem Biophys Res Commun, 1999,263(1):135-138.
    [84] Sakaguchi M, Miyazaki M, Inoue Y, et al. Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts[J]. J Cell Biol, 2000,149(6): 1193-1206.
    [85] Broome A M, Ryan D, Eckert R L. S100 protein subcellular localization during epidermal differentiation and psoriasis[J]. J Histochem Cytochem, 2003,51(5): 675-685.
    [86] Wang G Y, Wang X S, Wang S H, et al. Colorectal cancer progression correlates with upregulation of S100A11 expression in tumor tissues[J]. Int J Colorectal Dis, 2008, 23(7):675-682.
    [87] Ohuchida K, Mizumoto K, Ohhashi S, et al. S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis[J]. Clinical Cancer Res, 2006, 12(18):5417-5422.
    [88] Arcuric C, Giambanco I, Bianchi R, et al. Subcellular localization of S100A11 (S100C, calgizzarin) in developing and adult avian skeletal muscles[J]. Bochim Biophys Acta, 2002,1600(1):84-94.
    [89] Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type[J]. Biochim Biophys Acta, 1999,1450(3):191-231.
    [90] Cross S S, Hamdy F C, Deloulme J C, et al. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all over expressed in common cancers[J]. Histopathology, 2005,46(3):256-269.
    [91] Kanamori T, Takakura K, Mandai M, et al. Increased expression of calcium- binding protein S100 in human uterine smooth muscle tumours[J]. Mol Hum Reprod, 2004, 10(10):735-742.
    [92] Rehman I, Azzouzi A R, Cross S S, et al. Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions[J]. Hum Pathol, 2004,35(11): 1385-1391.
    [93] Zhao X Q, Naka M, Muneyuki M, et al. Ca(2+)-dependent inhibition of actin activatedmyosin ATPase activity by S100C (S100All), a novel member of the S100 protein family[J]. Biochem Biophys Res Commun, 2000,267(1):77-79.
    [94] Miyazaki M, Sakaguchi M, Akiyama I, et al. Involvement of interferon regulatory factor 1 and S100C/All in growth inhibition by transforming growth factor beta1 in human hepatocellular carcinoma cells[J]. Cancer Res, 2004,64(12):4155-4161.
    [95] Sakaguchi M, Miyazaki M, Sonegawa H, et al. PKCalpha mediates TGF-beta induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11[J]. J Cell Biol, 2004,164(7):979-984.
    [96] Davey GE, Murmann P, Hoechli M, et al. Calcium-dependent translocation of S100A11 requires tubulin filaments[J]. Biochim Biophys Acta, 2000,1498(2-3):220-232.
    [97] Kondo A, Sakaguchi M, Makino E, et al. Localization of S100C immunoreactivity in various human tissues[J]. Acta Med Okayama 2002,56(1):31-34.
    [98]狄扬,陈耀辉,龙江,等.胰腺癌组织中差异表达蛋白的筛选与鉴定[J].科理论与实践, 2007,12(5):429-433.
    [99]赵向锋,张慧珍,金蕾,等.半定量RT-PCR检测肺癌组织S100C的表达及其原核表达载体的构建和鉴定[J].卫生研究, 2008,37(1):79-81.
    [100] Memon A A, Sorensen B S, Meldgaard P, et al. Down-regulation of S100C is associated with bladder cancer progression and poor survival[J]. Clin Cancer Res, 2005, 11(2Pt1): 606-611.
    [101] Sakaguchi M, Tsuji T, Inoue, et al. Loss of nuclear localization of the S100C protein in immortalized human fibroblasts[J]. Radiat Res, 2001,155(1Pt2):208-214.
    [102] Wulfkuhle J D, Sgroi D C, Krutzsch H, et al. Proteomics of Human Breast Ductal Carcinoma in Situ[J]. Cancer Res, 2002,62(22):6740-6749.
    [103]牟瀚舟,余传定,许沈华,等.胃癌患者外周血与癌组织基因差异表达比较[J].肿瘤学杂志, 2005,11(3):185-187.
    [104]张慧珍,巴月,杨继要,等.肺癌相关蛋白的筛选与鉴定[J].第四军医大学学报, 2007,28(1):6-8.
    [105]李艮平,魏莲枝,周建荣.高低分化喉癌组织的二维电泳图谱的建立及质谱分析[J].重庆医学, 2008,37(2):149-151.
    [106]刘开江,任翠玲,刘青.维吾尔族宫颈癌基因组差异表达基因的层次聚类分析[J].现代妇产科进展, 2008,17(7):513-516.
    [107] Mori M, Shimada H, Gunji Y, et al. S100A11 gene identified by in-house cDNA microarray as an accurate predictor of lymph node metastases of gastric cancer[J]. Oncol Rep, 2004,11(6):1287-1293.
    [108]吴素慧,解军,李颖, et al. cDNA芯片筛查Ib期子宫颈鳞癌转移相关基因[J].中华妇产科杂志, 2005,40(4):273-275.
    [109] Song H Y, Liu Y K, Feng J T, et al. Proteomic analysis on metastasis-associated proteins of human hepatocellular tissues[J]. J Cancer Res Clin Oncol, 2006,132(2):92-98
    [110] Ha G H, Lee S U, Kang D G, et al. Proteome analysis of human stomach tissue: separation of soluble proteins by two-dimensional polyacrylamide gel electrophoresis and identification by mass spectrometry[J]. Electrophoresis, 2002,23(24):2513-2524.
    [111] Kim J, Kim S H, Lee S U, et al. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ ionization- mass spectrometry for identification of disease-related proteins[J]. Electrophoresis, 2002, 23(24):4142-4156.
    [112] Rappsilber J, Mann M. What does it mean to identify a protein in Proteomics?[J]. Trends Biochem Sci, 2002,27(2):74-78.
    [113] Oh JMC, Brichory F, Puravs E, et al. A database of protein expression in lung cancer[J]. Proteomics, 2001,l(10): 1303-1319.
    [114] Walsh B J, Molloy M P, Williams K L. The Australian Proteome Analysis Facility (APAF): Assembling large scale proteomics through integration and automation[J]. Electrophoresis, 1998,19(11):1883-1890.
    [115] Patterson S D, Aebersold R H. Proteomies: the first decade and beyond[J]. Nat Gent, 2003,33 suppl:311-323.
    [116] Tyers M, Mann M. From genomics to Proteomics[J]. Nature, 2003,422(6928):193-197.
    [117] Abbott A. Proteomics: the society of proteins[J]. Nature, 2002,417(6892):894-896.
    [118] Smallridge R. Proteomics-How to see the big picture[J]. Nat Rev Mol Cell Bio, 2003, 4(12):909-913.
    [119] Zhou G, Li H M, DeCamP D, et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell eancer-specific protein markers[J]. Mol Cell Proteomics, 2002,1(2):117-124.
    [120] Kraemer K H. From proteomics to disease[J]. Nat Genet, 2004,36(7):677-678.
    [121] Whetton A D, Evans C A, Tonge R, et al. Comparative proteomics of primitive hematopoietic cell populations reveals differences in expression of proteins regulating motility[J]. Blood, 2004,103(10):3751-3759.
    [122] Fountoulakis M, Juranville JF, Bemdt P, et al. Two-dimensional database of mouse liver proteins An update[J]. Electrophoresis, 2001,22(9):1747-1763.
    [123] Piubelli C, Galvani M, Hamdan M, et al. Proteome analysis of rat polymorphonuclear leukocytes: A Two-dimensional electrophoresis/mass spectrometry approach[J]. Electrophoresis, 2002,23(2):298-310.
    [124] Le Naour F, Brichory F, Misek DE, et al. A distinct repertoire of autoantibodies in hepatocellular carcinoma identified by proteomic analysis[J]. Mol Cell Proteomics, 2002,1(3):197-203.
    [125] Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature, 2003, 422 (6928):198-207.
    [126] Wysocki V H, Resing K A, Zhang Q F, et al. Mass spectrometry of peptides and proteins[J]. Methods, 2005,35(3):211-222.
    [127] Xiao T, Ying W, Li L, et al. An approach to studying lung cancer-related proteins in human blood[J]. Mol Cell Proteomics, 2005,4(10):1480-1486.
    [128] Ferguson P L, Smith R D. Proteome analysis by mass spectrometry[J]. Annu Rev Bioph Biom, 2003,32,399-424.
    [129] Mann M, Hendriekson R C, Pandey A. Analysis of proteins and proteomes by mass spectrometry[J]. Annu Rev Biochem, 2001,70:437-473.
    [130]李万锋,张彬,周欣,等. ER-Ⅱ期乳腺浸润性导管癌的差异表达蛋白质分析[J].吉林大学学报(医学版), 2009,35(2):360-364.
    [131] Melle C, Ernst G, Schimmel B, et al. Different expression of calgizzarin (S100A11) in normal colonic epithelium, adenoma and colorectal carcinoma[J]. Int J Oncol, 2006, 28(1):195-200.