刺参(Apostichopus japonicus Selenka)养殖池塘生态系统微生物结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刺参(Apostichopus japonicus Selenka)养殖业是我国特色海水养殖产业之一,主要分布在辽宁和山东沿海。刺参养殖业发展迅速,2010年全国刺参养殖面积已达到16万公顷,产量达13万吨,产值接近200亿元。然而,相对于其迅速发展的规模,与刺参养殖技术相关的基础研究还比较滞后。目前,在刺参的养殖生产实践中,微生物修复技术已越来越受到人们的重视。微生物修复作用的强弱与养殖环境中微生物群落的生态结构与功能特征密切相关,反之,微生物群落的生态结构与功能特征能够反映环境的健康状况。因此,了解刺参养殖池塘环境微生物群落的结构和功能特征具有十分重要的意义。
     本研究采用PCR-DGGE指纹图谱技术和BIOLOG-ECO微平板培养法,研究了刺参养殖池塘水体、底泥和附着基沉积物中的微生物群落结构和功能以及它们与环境因子间的相互关系;另外,对几株前期分离筛选自刺参池塘环境中的潜在益生菌进行了饲喂刺参实验以探讨它们对刺参生长和免疫提高方面的功能作用。本研究旨在为刺参池塘环境微生态调控模式的建立提供基础资料。主要研究结果如下:
     1刺参池塘环境微生物群落结构的季节变化
     利用PCR-DGGE技术和冗余分析(RDA)方法研究了刺参(Apostichopusjaponicus)养殖池塘环境(水体、底泥、附着基)细菌微生物群落结构的季节变化及其与环境因子间的关系。结果表明:(1)刺参养殖水体中的优势菌群归属于α-Proteobacteria、 γ-Proteobacteria、Bacteroidetes、Cyanobacteria及一部分未知不可培养菌群(uncultured bacteria)。变形菌纲细菌(Proteobacteria)为各季节水体中的绝对优势菌群,其相对丰度在49.3-72.1%之间,其中以α-Proteobacteria含量最高;Cyanobacteria仅出现在秋季水体中,其丰度颇低。显著性方差分析结果发现, γ-Proteobacteria菌群丰度具有显著的季节变化。比较而言,水体细菌群落结构以秋季最复杂,冬季最简单。(2)底泥中的优势菌群归属于α-Proteobacteria、 γ-Proteobacteria、 δ-Proteobacteria、Bacteroidetes、Chloroflex、Actinobacteria和Sphingobacteria。变形菌纲细菌为各季节底泥中的绝对优势菌群,其相对丰度在49.6-55.1%之间,其中又以γ-Proteobacteria含量占绝对优势;Chloroflex菌群仅出现在春、秋季节样品中,且春季丰度较高;Actinobacteria菌群在春季样品中未检测到。显著性方差分析发现,Actinobacteria菌群丰度在夏季显著高于冬季。比较而言,底泥细菌群落结构以秋季最复杂。(3)附着基中的优势菌群归属于α-Proteobacteria、 γ-Proteobacteria、 δ-Proteobacteria、ε-Proteobacteria、Flavobacteria、Bacteroidetes、Cyanobacteria、Actinobacteria及uncultured bacteria。变形菌纲为各季节附着基中的绝对优势菌群,其相对丰度在54.6-60.2%之间,其中以α-Proteobacteria、-Proteobacteria含量最高;Flavobacteria相对丰度亦颇高,其中在春、夏季节含量仅次于α-Proteobacteria;Cyanobacteria在春季样品中未检测到,Actinobacteria在夏季样品中未检测到。显著性分析结果表明, γ-Proteobacteria、 ε-Proteobacteria和Flavobacteria3类菌群含量具有显著季节变化。附着基细菌群落结构在秋、冬季较春、夏季复杂。(4)RDA分析发现,T、TN、NO_3~-N、PO_4~-P和NO_2~-N是影响水体细菌群落结构季节变化的主要环境因子,PO_4~-P、NH4~-N、NO_3~-N和TP是影响底泥细菌群落结构季节变化的主要环境因子,TP、TN、TOC、SOM和NO_3~-N是影响附着基细菌群落结构季节变化的主要环境因子。本研究结论认为,刺参池塘水体、底泥和附着基细菌群落结构具有明显的不同的季节变化,相对而言,底泥菌群结构较水体和附着基稳定;水体、底泥和附着基菌群结构组成存在明显差异,其中以附着基菌群结构最复杂,生物多样性最丰富,水体中最简单;刺参池塘水体、底泥和附着基细菌群落结构季节变化与环境因子具有很好的相关性。
     2刺参池塘环境微生物群落功能多样性的季节变化
     利用BIOLOG技术和冗余分析(RDA)方法对刺参(Apostichopus japonicus)养殖池塘环境(水体、底泥、附着基)微生物群落功能多样性的季节变化及其与环境因子间的关系进行了研究。结果表明:(1)刺参池塘水体、底泥和附着基微生物对碳源总量和单类碳源的利用均具有显著的季节变化,总体表现为春、夏、秋季节高于冬季,其中水体微生物利用比例较高的碳源类型为聚合物,底泥微生物利用比例较高的碳源类型为聚合物、糖类、羧酸和氨基酸,附着基微生物利用比例较高的碳源类型为聚合物、糖类、氨基酸和胺。(2)主成分分析表明,刺参池塘水体、底泥和附着基微生物碳代谢方式均具有显著的季节变化。水体中,与主成分显著相关的碳源有15种,其中与主成分1显著相关的碳源主要有10种,分别属于聚合物、糖类、羧酸、氨基酸和胺;底泥中,与主成分显著相关的碳源有18种,其中与主成分1显著相关的主要有13种,分别属于糖类、羧酸和氨基酸;附着基中,与主成分显著相关的碳源有22种,其中与主成分1显著相关的主要有20种,分别属于聚合物、糖类、羧酸和氨基酸。(3)刺参池塘水体、底泥和附着基微生物多样性指数Shannon、McIntosh、Simpson和S-E均匀度均存在显著的季节变化,但不同指数之间的变化有较大差异。(4)RDA分析表明,TP、NO_3~-N、TN和PO_4~-P是影响刺参池塘水体微生物群落功能多样性季节变化的主要因素;TP、NO_3~-N和PO_4~-P是影响底泥微生物功能多样性季节变化的主要因素;SOM、NO_3~-N和TN是影响附着基微生物功能多样性季节变化的主要因素。结论认为,刺参池塘水体、底泥和附着基微生物功能多样性具有显著的不同的季节变化,这些变化与环境因子具有很好的相关性。
     3刺参池塘不同类型附着基微生物群落结构研究
     利用PCR-DGGE技术和冗余分析(RDA)方法研究了刺参(Apostichopusjaponicus)养殖池塘不同类型附着基(瓦片、网笼、塑料管)细菌微生物群落结构特征及其与环境因子间的关系。结果表明:(1)瓦片与网笼附着基中的优势菌群群落组成相同,均归属于α-Proteobacteria、 γ-Proteobacteria、Sphingobacteria、Chloroflex、Bacteroidetes、Cyanobacteria、Flavobacteria;而塑料管附着基中的优势菌群归属于α-Proteobacteria、 γ-Proteobacteria、Sphingobacteria、Chloroflex、Bacteroidetes、Actinobacteria、Flavobacteria。(2)黄杆菌纲细菌(Flavobacteria)为各附着基样品中的绝对优势菌群,其相对丰度均在45%以上,但在不同类型附着基之间无显著差异。变形菌纲(Proteobacteria)为各附着基中的第二大优势菌群,其相对丰度在瓦片中最低(20.7%),网笼中最高(34.7%),其中瓦片和塑料管中以γ-Proteobacteria占优势,网笼中以α-Proteobacteria占优势;显著性方差分析表明,变形菌纲相对丰度在不同类型附着基中具有显著差异,其中α-Proteobacteria在网笼中丰度(16.2%)显著高于瓦片(9.5%)和塑料管(6.4%),γ-Proteobacteria在塑料管中丰度(28.3%)显著高于瓦片(11.2%)和网笼(13.2%)。拟杆菌纲(Bacteroidetes)相对丰度在瓦片、网笼和塑料管中依次降低,其在瓦片中的含量(6.0%)显著高于塑料管(0.4%);蓝藻纲(Cyanobacteria)细菌丰度(在塑料管中未检测到)在各附着基中的变化趋势与拟杆菌纲相同。Actinobacteria仅出现在塑料管附着基样品中。Sphingobacteria和Chloroflex相对丰度在不同附着基之间无显著差异。(3)RDA分析发现,TN、PO_4~-P、NO_3~-N和NH_4~-N是不同类型附着基细菌群落结构差异的主要影响环境因子。本研究结论认为,刺参池塘瓦片、网笼和塑料管附着基细菌群落结构不同,比较而言,瓦片和网笼附着基细菌群落结构特征最相似,而塑料管附着基中的菌群结构与瓦片和网笼中差异较大;刺参池塘瓦片、网笼和塑料管附着基细菌群落结构特征与环境因子具有很好的相关性。
     4刺参池塘不同类型附着基微生物群落功能多样性研究
     利用BIOLOG技术和冗余分析(RDA)方法对刺参(Apostichopus japonicus)养殖池塘不同类型附着基(瓦片、网笼、塑料管)微生物群落功能多样性及其与环境因子间的关系进行了研究。结果表明:(1)瓦片、网笼和塑料管附着基微生物对碳源总量和单类碳源的利用均具有明显差异,总体表现为塑料管>网笼>瓦片,其中塑料管和网笼附着基微生物对单类碳源的代谢强度均显著高于瓦片;塑料管附着基微生物利用比例较高的碳源类型为聚合物、糖类和氨基酸,网笼附着基微生物利用比例较高的碳源类型为聚合物、糖类和羧酸,瓦片附着基微生物利用比例较高的碳源类型为聚合物和羧酸。(2)主成分分析表明,瓦片、网笼和塑料管附着基微生物碳代谢方式均具有显著差异,这种差异主要体现在主成分1上;与主成分1显著相关的碳源有13种,分别属于聚合物(3种)、糖类(4种)、氨基酸(4种)、羧酸(1种)和胺(1种)。(3)瓦片、网笼和塑料管附着基微生物碳代谢多样性指数McIntosh和Simpson均存在显著差异,其中McIntosh指数在网笼和塑料管中显著高于瓦片,Simpson指数在塑料管中显著高于瓦片;而Shannon和S-E均匀度均无显著差异。(4)RDA分析表明,TN、PO_4~-P和NO_3~-N是不同类型附着基微生物功能多样性差异的主要影响环境因子。结论认为,刺参池塘瓦片、网笼和塑料管不同类型附着基微生物功能多样性具有显著的不同,这些差异与环境因子具有很好的相关性。
     5饲料中添加潜在益生菌对刺参生长和非特异性免疫酶活性的影响
     研究了饲喂1株马氏副球菌(Paracoccus marccui DB11)和1株芽孢杆菌(Bacillus baekryungensis YD13)对刺参(Apostichopus japonicus)生长和非特异性免疫酶活性的影响。将DB11或YD13分别以3个添加浓度水平(110~4、110~6和110~8cfu/g)添加于基础饲料中饲喂刺参(初始体质量(5.340.11)g)60d(以基础饲料饲喂组为对照),试验它们对刺参生长和刺参不同体组织中非特异性免疫酶活性的影响。生长实验结果表明:与对照相比,饲料中添加110~8cfu/g DB11、110~4或110~6cfu/g YD13均能显著提高刺参的增重率和特定生长率(P<0.05)。免疫实验结果表明:DB11在110~8cfu/g高浓度下对刺参各体组织免疫酶活有最大提高作用,而YD13在110~6cfu/g较低浓度下具有更好的酶活提高作用;刺参不同体组织的免疫酶活反应强度不同,表现为体腔液>呼吸树>肠道>体壁,因此体腔液对刺参的免疫功能起着非常重要的作用。结论认为,本研究的2株细菌具有提高刺参生长和免疫功能的潜力,因此在刺参养殖方面具有较好的应用前景。
Sea cucumber (Apostichopus japonicus Selenka) aquaculture has been one ofChina’s special seawater aquaculture industry, which mainly located along the coastof Shandong and Liaoning island. This industry developed rapidly, of which thenational aquaculture area has reached160thousand hectares, the output reached130thousand tons and the economic value been nearly20billion yuan in the year of2010.However, compared to the rapid development of this industry, basic research relatedto it is still relatively lagging behind. In this thesis, microbial community structure andfunctional diversity in sea cucumber culture pond environment, including the water,bottom mud and the shelter, were studied by using the16S rDNA PCR denaturinggradient gel electrophoresis (PCR-DGGE) and the BIOLOG method. In addition, theeffect of three bacterial strains (previously isolated from sea cucumber culture pond)supplemented in diets on growth performance and immune response of sea cucumberwas also investigated. The main results are detailed as follows:
     1Seasonal changes of microbial community structure in sea cucumber culturepond
     Seasonal changes of microbial community structure in water, bottom mud andshelter of sea cucumber (Apostichopus japonicus) cultural ponds were studied byPCR-DGGE technique, and meanwhile the relationships between them andenvironmental factors were detected by using the redundancy analysis (RDA) method.The results were concluded as follows:(1) In the water samples, phylogenetic analysisof the cloned bands showed that bacterial phylotypes were closely related toα-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Cyanobacteria and some uncultured bacteria. Proteobacteria were the dominant bacteria with high relativeamount of49.3-72.1%in different seasons, among which α-Proteobacteria were thehighest. Cyanobacteria were only detected in summer season with a very low amount.Significant variance analysis revealed that γ-Proteobacteria exhibited significantseasonal changes in amount. Comparatively, the water microbial community structurewas the most complex in autumn, while the simplest in winter.(2) In the bottom mudsamples, phylogenetic analysis of the cloned bands showed that bacterial phylotypeswere closely related to α-Proteobacteria, γ-Proteobacteria, δ-Proteobacteria,Bacteroidetes, Chloroflex, Actinobacteria and Sphingobacteria. Proteobacteria werethe dominant bacteria with high relative amount of49.6-55.1%in different seasons,among which γ-Proteobacteria were the highest. Chloroflex bacteria were onlyfound in spring and autumn seasons, of which the amount in spring was higher.Actinobacteria existed in all seasons except spring, among which the relative amountof Actinobacteria in summer was significantly higher than in winter. Comparatively,in the bottom mud, the microbial community structure in autumn was the mostcomplex.(3) In the shelter samples, phylogenetic analysis of the cloned bands showedthat bacterial phylotypes were closely related to α-Proteobacteria, γ-Proteobacteria,δ-Proteobacteria, ε-Proteobacteria, Flavobacteria, Bacteroidetes, Cyanobacteria,Actinobacteria and uncultured bacteria. Proteobacteria were the dominant bacteriawith high relative amount of54.6-60.2%in different seasons, among which α-Proteobacteria and γ-Proteobacteria were the highest. The amount ofFlavobacteria was also high, and that in spring and summer was just slightly lowerthan that of α-Proteobacteria. Cyanobacteria were not examined in spring, andActinobacteria were not detected in summer. There existed significant seasonalchanges in amount of γ-Proteobacteria, ε-Proteobacteria and Flavobacteria. In theshelter, the microbial community structure in autumn and winter was more complexthan that in spring and summer.(4) RDA analysis revealed that the criticalenvironmental factors influencing the seasonal changes of water, bottom mud andshelter microbial community structure were T, TN, NO_3~-N, PO_4~-P, NO_2~-N; PO_4~-P,NH_4~-N, NO_3~-N, TP; and TP, TN, TOC, SOM, NO_3~-N, respectively. In conclusion, seasonal changes of microbial community structure in water, bottom mud and shelterof sea cucumber culture pond were different, which were relatively more stable inbottom mud than those in water and shelter. The microbial community compositionwas very different in water, bottom mud and shelter, and that in the shelter was themost complex, while that in the water was the simplest. The seasonal changes ofmicrobial community structure in water, bottom mud and shelter of sea cucumberculture pond were all closely relevant to their environmental factors.
     2Seasonal changes of microbial community functional diversity in sea cucumberculture pond
     Seasonal variations of microbial community functional diversity in water, bottommud and shelter of sea cucumber (Apostichopus japonicus) cultural ponds wereexamined using the BIOLOG technique, and the relationships between them andenvironmental factors were also detected by using the redundancy analysis (RDA)method. The results showed that the amount of total and different types of carbonsources utilized by water, bottom mud and shelter microbes in sea cucumber culturalponds varied seasonally, which was higher in spring, summer and autumn whencompared to the winter, respectively. The main types of carbon sources utilized werepolymers by water microbes, polymers, carbohydrates, carboxylic acids and aminoacids by sediment microbes, and polymers, carbohydrates, amino acids and amides byshelter microbes, respectively. Principal Component Analysis indicated that carbonmetabolism functional diversity of water, bottom mud and shelter microbes in seacucumber cultural ponds varied significantly over the seasonal courses. For watermicrobes,15categories of carbon sources were significantly related to the principalcomponents, among which10were significantly related to the principal component1and belonged to the polymers, carbohydrates, carboxylic acids, amino acids andamines. For bottom mud microbes,18categories of carbon sources were significantlyrelated to the principal components, among which13were significantly related to theprincipal component1and belonged to carbohydrates, carboxylic acids and aminoacids. For shelter microbes,22categories of carbon sources were significantly related to the principal components, among which22were related to the principal component1and belonged to the polymers, carbohydrates, carboxylic acids and amino acids.Significant seasonal changes were detected for all microbial diversity indexesincluding Shannon, McIntosh, Simpson and S-E in water, bottom mud and shelter ofsea cucumber cultural ponds, but differences were observed in seasonal variationsbetween all microbial diversity indexes. RDA analysis revealed that the criticalenvironmental factors influencing the seasonal changes of water, bottom mud andshelter microbial community functional diversity were TP, NO_3~-N, TN, PO_4~-P; TP,NO_3~-N, PO_4~-P; and SOM, NO_3~-N, TN, respectively. In conclusion, seasonal changesof microbial community functional diversity were marked and different in water,bottom mud and shelter of sea cucumber cultural ponds, which all correlated wellwith environmental factors.
     3Studies on microbial community structure in different types of shelters of seacucumber culture pond
     Microbial community structures in different types of shelters includingearthenware, polyethylene mesh and plastic pipe in sea cucumber (Apostichopusjaponicus) cultural ponds were studied by PCR-DGGE technique, and therelationships between them and environmental factors were also investigated by usingthe redundancy analysis (RDA) method. The results were concluded as follows:(1) Inboth the earthenware and polyethylene mesh shelters, bacterial phylotypes wereclosely related to α-Proteobacteria, γ-Proteobacteria, Sphingobacteria, Chloroflex,Bacteroidetes, Cyanobacteria and Flavobacteria. While in the plastic pipe shelter,bacterial phylotypes were closely related to α-Proteobacteria, γ-Proteobacteria,Sphingobacteria, Chloroflex, Bacteroidetes, Actinobacteria and Flavobacteria.(2)Flavobacteria were the first dominant bacteria with relative amount of more than45%in each of three types of shelter, for which, however, no significant differences wereobserved between different types of shelter. Proteobacteria were the second dominantbacteria in all shelters, and the relative amount of Proteobacteria was the lowest inearthenware (20.7%) and the highest in polyethylene mesh (34.7%), respectively. In addition, γ-Proteobacteria were the dominant bacteria in both the earthenware andplastic pipe shelters, while α-Proteobacteria were dominant in polyethylene meshshelter. There were significant differences for amount of Proteobacteria in differenttypes of shelter, in which the amount of α-Proteobacteria in polyethylene mesh(16.2%) was higher than that in earthenware (9.5%) and plastic pipe (6.4%), while theamount of γ-Proteobacteria in plastic pipe (28.3%) was higher than in earthenware(11.2%) and polyethylene mesh (13.2%). The relative amount of Bacteroidetespresented a trend of decrease in shelters of earthenware, polyethylene mesh andplastic pipe, and that in earthenware (6.0%) was significantly higher than that inplastic pipe (0.4%). Cyanobacteria had a similar changing trend with Bacteroidetes,which however were not detected in samples of plastic pipe. Conversely,Actinobacteria were only observed in plastic pipe shelter samples. Sphingobacteriaand Chloroflex both showed no significant changing in amount between differenttypes of shelters.(3) RDA analysis found that the critical environmental factorsresulting in the difference of microbial community structures in shelters ofearthenware, polyethylene mesh and plastic pipe were TN, PO_4~-P, NO_3~-N and NH_4~-N.In conclusion, microbial community structure was different in different types ofshelters of earthenware, polyethylene mesh and plastic pipe in sea cucumber culturepond, and comparatively that in earthenware and polyethylene mesh was much similarto each other, but both were very different from that in plastic pipe. The microbialcommunity structures in shelters of earthenware, polyethylene mesh and plastic pipeof sea cucumber culture pond were all closely relevant to their environmental factors.
     4Studies on microbial community functional diversity in different types ofshelters of sea cucumber culture pond
     Microbial community functional diversity in different types of shelters includingearthenware, polyethylene mesh and plastic pipe in sea cucumber (Apostichopusjaponicus) cultural ponds were examined using the BIOLOG method, and therelationships between them and environmental factors were also detected by using theredundancy analysis (RDA) method. The results showed that the amount of total and different types of carbon sources utilized by earthenware, polyethylene mesh andplastic pipe shelter microbes in sea cucumber cultural ponds varied, which was thehighest in plastic pipe and the lowest in earthenware. And the amount of differenttypes of carbon sources utilized by polyethylene mesh or plastic pipe shelter microbeswas significantly higher than that utilized by earthenware shelter microbes. The maintypes of carbon sources utilized were polymers, carbohydrates and amino acids byplastic pipe shelter microbes; polymers, carbohydrates and carboxylic acids bypolyethylene mesh shelter microbes; and polymers and carboxylic acids byearthenware shelter microbes, respectively. Principal Component Analysis indicatedthat carbon metabolism functional diversity of shelter microbes in sea cucumbercultural ponds varied significantly among earthenware, polyethylene mesh and plasticpipe shelters. And this difference was presented by Principal Component1, to which13categories of carbon sources were significantly related which belonged to thepolymers (3categories), carbohydrates (4categories), amino acids (4categories),carboxylic acids (1category) and amines (1category). Significant differences weredetected for microbial diversity indexes including McIntosh and Simpson, except forShannon and S-E, among earthenware, polyethylene mesh and plastic pipe shelters ofsea cucumber cultural ponds. And McIntosh index was significantly higher inpolyethylene mesh and plastic pipe than that in earthenware. Simpson index wassignificantly higher in plastic pipe than in earthenware. RDA analysis revealed thatthe critical environmental factors resulting in the difference of shelter microbialcommunity functional diversity in earthenware, polyethylene mesh and plastic pipewere TN, PO_4~-P and NO_3~-N. In conclusion, microbial community functionaldiversities were different in different types of shelters of earthenware, polyethylenemesh and plastic pipe in sea cucumber cultural ponds, which was closely relevant tothe environmental factors.
     5Effects of probiotics supplemented in diets on growth performance andimmune response in sea cucumber
     The present study assessed the growth performance and immune response in the juvenile sea cucumber Apostichopus japonicus by two potential probiotic strains,Paracoccus marcusii DB11and Bacillus baekryungensis YD13. The fresh cells ofDB11and YD13were respectively added to sea cucumber basal feed at three doses of1×10~4,1×10~6and1×10~8CFU/g in diet, and administered orally to A. japonicus (initialmean wet weight5.34±0.11g). After a60-day feeding trial with probioticsupplemented and unsupplemented control diets, A. japonicus fed with DB11at110~8cfu/g, with YD13at110~4and110~6cfu/g, all exhibited significantly bettergrowth performance in weight gain rate and specific growth rate as compared to thecontrol (P<0.05). Five non-specific immune parameters including superoxidedismutase (SOD), catalase (CAT), lysozyme (LSZ), acid phosphatase (ACP) andalkaline phosphatase (ALP) activities were measured to evaluate the immune responsein different tissues (coelomic fluid, respiratory tree, intestine and body wall) of A.japonicus to supplemented DB11or YD13. Results showed that the enhancement ofimmune enzyme activities in different tissues of A. japonicus were the greatest whenfed with DB11at110~8cfu/g and with YD13at110~6cfu/g, respectively. Theimmune response in A. japonicus to supplement DB11and YD13was highlytissue-specific, and the immune stimulation intensity was coelomic fluid>respiratorytree>intestine>body wall, indicating that the coelomic fluid plays a key role in thenon-specific immunity of A. japonicas. To conclude, the probiotics, Paracoccusmarcusii DB11and Bacillus baekryungensis YD13, could improve the growth andimmune enzyme activities of A. japonicas so that they both have potential applicationprospect in sea cucumber aquaculture.
引文
Amann R.I., Krumholz L., Stahl D.A. Fluorescent oligonucleotide probing of whole cell fordeterminative phylogenetic, and environmental studies in microbiology. Journal ofBacteriology,1990,172:762-770.
    Amann R.I., Ludwing W., Schleifer K.H. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation. Microbial Rev.,1995,59:143-169
    Austin, B., Stuckey, L.F., Robertson, P.A.W., Effendi, I., Griffth, D.R.W. A probiotic strain ofVibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrioanguillarum and Vibrio ordalii. J. Fish Dis.,1995,18:93-96.
    Bagnyukovaa T.V., Storeyb K.B., Lushchaka V.I. Induction of oxidative stress in Rana ridibundaduring recovery from winter hibernation. J Therm Biol.,2003,28:21-28.
    Balca′zar J.L., de Blas I., Ruiz-Zarzuela I., et al. The role of probiotics in aquaculture. VeterinaryMicrobiology,2006,114:173-186.
    Barrett A.J. Lysosomal enzymes. In: Dingle J.T.(Ed.), Lysosomes: A Laboratory Handbook.North-Holland, Amsterdam,1972, pp.46-135.
    Becker P, Gillanb D, Lanterbecq D, et al. The skin ulceration disease in cultivated juveniles ofHolothuria scabra. Aquaculture,2004,242:13-30.
    Canicatti C. Lysosomal enzyme pattern in Holothuria polii coelomocytes. J. Invert. Path.,1990,56:70-74.
    Chen C.F., Ji G.L. Activities and characterization of bacteriolytic substances in serum, skin andintestine mucus of grass carp. J. Huazhong Agr. Uni.,1992,11:276-279.
    Choi K.H., Dobbs F.C. Comparison of two kinds of Biolog microplates (GN and ECO) in theirability to distinguish among aquatic microbial communities. Journal of MicrobiologicalMethods,1999,36(3):203-213.
    Classen A.T., Boyle S.I., Haskins K.E., et al. Community-level physiological profiles of bacteriaand fungi: plate type and incubation temperature influences on contrasting soils. FEMSMicrobiology Ecology,2003,44(3):319-328.
    Corpe W.A. Microfouling:The role of primary film-forrming marine baeteria. In: Aeker R.F.,Brown B.F., DePalma J. R., et al eds. In Proc.3rdlnternational congress on marine corrosionand fouling. Evanston,I: Northwestern Univ Press,1972.598-609.
    Deng H., He C.B., Zhou Z.C., et al. Isolation and pathogenicity of pathogens from skin ulcerationdisease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus.Aquaculture,2009,287:18-27.
    Douillet P.A., Langdon C.J. Use of a probiotic for the culture of larvae of the Pacific oyster(Crassostrea gigas Thunberg). Aquaculture,1994,119:25-40.
    Findlay S.E.G., Sinsabaugh R.L., Sobczak W.V., et al. Metabolic and structural response ofhyporheic microbial communities to variations in supply of dissolved organic matter. LimnolOceanogr,2003,48(4):1608-1617.
    Fischer S.G., Lerman L.S. Length independent separation of DNA restriction fragments intwo-dimentional gel electrophoresis. Cell,1979,16:191-200.
    Garland J.L. Analytical approaches to the characterization of samples of microbial communitiesusing patterns of potential C source utilization. Soil Biology and Biochemistry,1996,28(2):213-221.
    Glinski Z., Jarosz J. Immune phenomena in echinoderms. Arch Immunol. Ther. Exp.(Warsz),2000,48(3):189-193.
    Gomez E, Ferreras L, Toresani S. Soil bacterial functional diversity as influenced by organicamendment application. Bioresource Technology,2006,97:1484-1489.
    Góth L. A simple method for determination of serum catalase activity and revision of referencerange. Clin. Chim. Acta.,1991,196:143-151.
    Gu M., Ma H.M., Mai K.S., et al. Immune response of sea cucumber Apostichopus japonicuscoelomocytes to several immunostimulants in vitro. Aquaculture,2010,306:49-56.
    Ibekwe A.M., Kennedy A.C. Phospholipid fatty acid profiles and carbon utilization patterns foranalysis of microbial community structure under field and greenhouse conditions. FEMSMicrobiology Ecology,1998,26(2):151-163.
    Isabel S. Seasonal and spatial variability of free-living bacterial community composition along anestuarine gradient (Ria de Aveiro, Portugal). Estuarine, Coastal and Shelf Science,2006,1:1-10.
    Jans D., Dubois P., Jangoux M. Defensive mechanisms of holothuroids (Echinodermata):formation, role, and fate of intracoelomic brown bodies in the sea cucumber Holothuriatubulosa. Cell Tissue Res,1996,283:99-106.
    Ji T.T., Dong Y.W., Dong S.L. Growth and physiological responses in the sea cucumber,Apostichopus japonicus Selenka: Aestivation and temperature. Aquaculture,2008,283:180-187.
    Lightner D.V., Bell T.A., Redman R.M. A review of some major disease of economic significancein penaeid prawns/shrimps of the Americas and Indopacific. Disease in Asian Aquaculture,1992,57-80.
    Lobet-Brossa E., Rosselo-Mora R., Amann R.I. Microbial community composition of Wadden Seasediments as revealed by fluorescence in situ hybridization. Applied and EnvironmentalMicrobiology,1998,65:422-430.
    Lowry O.H., Rosebrough N.J., Farr A.L., et al. Protein measurement with the Folin phehol reagent.J. Biol. Chem..1951,193:265-275.
    Magurran A E. Ecological diversity and its measurement. Princeton: Princeton University Press,1988,34-59.
    Maki J.S., Yule A.B., Rittschof D., et al. The effect of bacterial films on the temporary adhesionand permanent fixation of Cyprus larvae balanus Amphitrite Darwin. Biofouling,1994,8:121-131.
    Maloy K.J., Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease.Nature,2011,474:298-306.
    Manzoni S, Jackson R B, Trofymow J A, Porporato A. The global stoichiometry of litter nitrogenmineralization. Science,2008,321(5889):684-686.
    McCord J.M., Fridovich I. Superoxide dismutase: an enzymatic function for erythrocuprein(hemocuprein). J. Biol. Chem.,1969,24:6049-6055.
    Moriarty D.J.W. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organiccarbon and organic nitrogen in sediments of the Great Barrier Reef. J. Mar. Freshwater Res.,1982,33(2):255-263.
    Olav V, Olsen Y. Chemical composition and phosphate uptake kinetics of limnetic bacterialcommunities cultures in chemostats under phosphorus limitations. Limnology andOceanography,1989,34(5):939-946.
    Saeed Z., Mehran H.R., Ghobad A.T., et al. The effect of Bacillus spp. Bacteria used as probioticson digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeusindicus. Aquaculture,2006,252:516-524.
    Sekiguchi. A single band does not always represent single bacterial strains in denaturing gradientgel electrophoresis analysis. Biotechnology Letters,2001,23:1205-1208.
    Tatsadjieu N.L., Ma woréJ., Hadjia M.B., et al. Study of the microbial diversity of Oreochromisniloticus of three lakes of Cameroon by PCR-DGGE: Application to the determination of thegeographical origin. Food Control,2010,21:673-678.
    ter Braak C.J.F. Canonical correspondence analysis: a new eigenvector technique for multivariatedirect gradient analysis. Ecology,1986,67(5):1167-1179.
    Tlaskalová-Hogenová H., Stepánková R., Hudcovic T., et al. Commensal bacteria (normalmicrofora), mucosal immunity and chronic infammatory and autoimmune diseases. Immunol.Lett.2004,93:97-108.
    Tseng D.Y., Ho P.L., Huang S.Y., et al. Enhancement of immunity and disease resistance in thewhite shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish andShellfish Immunology,2009,26:339-344.
    Wada M., Zhang D., Do H.K., et al. Co-inoculatiion of Capitella sp. I with its synergistic bacteriaenhances degradation of organic matter in organically enriched sediment below fish farms.Marine Pollution Bulletin,2008,57:86-93.
    Wang Y.B. Effect of probiotics on growth performance and digestive enzyme activity of theshrimp Penaeus vannamei. Aquaculture,2007,269:259-264.
    Wang Y.B., Xu Z.R. Effect of probiotics for common carp (Cyprinus carpio) based on growthperformance and digestive enzyme activities. Animal Feed Science and Technology,2006,127,283-292.
    Yang A.F., Zhou Z.C., He B.C., et al. Analysis of expressed sequence tags from body wall,intestine and respiratory tree of sea cucumber (Apostichopus japonicus). Aquaculture,2009,296:193-199.
    Yang H.S., Yuan X.T., Zhou Y., et al. Effects of body size and water temperature on foodconsumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with specialreference to aestivation. Aquaculture Reasearch,2005,36(11):1085-1092.
    Yasuda K., Kitao T. Bacterial flora in the digestive tract of prawns, Penaeus japonicus Bate.Aquaculture,1980,19:229-234.
    Zhang R.Q., Chen Q.X., Zheng W.Z., et al. Inhibition kinetics of green crab (Scylla serrata)alkaline phosphatase activity by dithiothreitol or2-mercaptoethanol. Int. J. Biochem. CellBiol.,2000,32:865-872.
    Zhou Q.L., Li K.M., Xie J., et al. Role and functions of beneficial microorganisms in sustainableaquaculture. Bioresource Technology,2009,100:3780-3786.
    常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望.水产科学,2006,25(4):198-201.
    陈承利,廖敏,曾路生.污染土壤微生物群落结构多样性及功能多样性测定方法.生态学报,2006,26(10):3404-3412.
    陈法霖,郑华,阳柏苏,等.中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响.生态学报,2011,31(11):3027-3035.
    陈竞春,石安静.贝类免疫生物学研究概况.水生生物学报,1996,20(1):74-78.
    崔晓龙,徐丽华,文孟良,等.未培养微生物资源.微生物学通报,2005,32(3):144-146.
    董云伟,董双林,田相利,等.不同水温对刺参幼参生长、呼吸及体组成的影响.中国水产科学,2005,12(1):33-37.
    杜恩宏,于秀青.不同附着基类型对刺参浮游幼体成活和变态附着的影响.河北渔业,2010,11:10-12.
    高运华,付玉斌.浸海材料表面细菌粘膜组成和变化及其对海洋生物的附着影响.海洋环境科学,2001,20(2):51-55.
    关晓燕,周遵春,姜冰,等. DGGE分析不同盐度仿刺参养殖环境中菌群多样性.水产科学,2011,30(5):276-280.
    扈传昱,王正芳,吕海燕.海水和海洋沉积物中总磷的测定.海洋环境科学,1999,18(3):48-52.
    季如宝,毛兴华,朱明远.贝类养殖对海湾生态系统的影响.海洋科学进展,1998,16(1):21-27.
    江晓路,杜以帅,王鹏,等.褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响.中国海洋大学学报,2009,39(6):1188-1192.
    雷衍之.养殖水环境化学实验.北京:中国农业出版社,2006:56-84.
    李彬.刺参肠道与池塘环境中菌群周年变化及生物群落特征初探[D].大连:大连海洋大学,2010.
    李成林,宋爱环,胡炜,等.山东省刺参养殖产业现状分析与可持续发展对策.渔业科技进展,2010,31(4):26-33.
    李继业.养殖刺参免疫学特征与病害研究.青岛:中国海洋大学,2007.
    李佳霖,汪光义,秦松,等.秦皇岛近海养殖对潮间带微生物群落多样性的影响.生态环境学报,2011,20(5):920-926.
    李居忠,迟宗福,肖国华,等.微生物在水产养殖环境生物修复中的作用机制.渔业经济研究,2007,(6):10-13.
    李娟,赵秉强,李秀英,姜瑞波,So H B.长期不同施肥制度下几种土壤微生物学特征变化.植物生态学报,2008,32(4):891-899.
    李思亮,刘丛强,肖化云.地表环境氮循环过程中微生物作用及同位素分馏研究综述.地质地球化学,2002,30(4):40-45.
    李学梅,余育和,解绥启,等.三种室内饲养鱼类肠道微生物群落PCR-DGGE指纹分析.水生生物学报,2011,35(3):423-429.
    李卓佳,林亮,杨莺莺,等.芽孢杆菌制剂对虾池环境微生物群落的影响.农业环境科学学报,2007,26(3):1183-1189.
    廖梅杰,荣小军,李彬,等.刺参池塘底栖真核生物DGGE指纹结构与环境理化因子的相关性分析.渔业科学进展,2011,32(6):25-30.
    林瑞余,戎红,周军建,等.苗期化感水稻对根际土壤微生物群落及其功能多样性的影响.生态学报,2007,27(9):3644-3654.
    刘峰,王芳,董双林,等.不同类型附着基对刺参生长和氮磷收支的影响.中国海洋大学学报,2013,43(1):041-046.
    刘云,孔伟丽,姜国良,等.两种免疫多糖对刺参组织主要免疫酶活性的影响.中国水产科学,2008,15(5):787-793.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999:156-160.
    罗海峰,齐鸿雁,薛凯,等. PCR-DGGE技术在农田土壤微生物多样性研究中的应用.生态学报,2003,23(8):1570-1575.
    罗鹏,胡超群,张吕平,等.凡纳滨对虾海水养殖系统内细菌群落的PCR-DGGE分析.中国水产科学,2009,16(1):32-38.
    罗鹏,胡超群,张吕平,等.凡纳滨对虾咸淡水养殖系统内细菌群落组成的PCR-DGGE分析.热带海洋学报,2006,25(2):49-53.
    马克平,刘玉明.生物群落多样性的测度方法Ⅱ:多样性的测度方法.生物多样性,1994,2(4):231-239.
    马悦欣,Carola H., Jeremy W.,等.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报,
    莫照兰,王祥红,于勇,等.虾池有机污染物降解细菌的筛选.水产学报,2000,24(4):334-338.
    牛宇峰.刺参养殖池塘异养菌数量变动及区系组成的初步研究[D].青岛:中国海洋大学,2009.
    齐振雄,张曼平,李德尚,等.对虾养殖实验围隔中的解氮作用氮输出.海洋学报,1999,21(6):130-133.
    秦传新,董双林,牛宇峰,等.不同类型附着基对刺参生长和存活的影响.中国海洋大学学报,2009,39(3):392-396.
    隋锡林,刘学光,王军.辽宁省刺参养殖现状及对若干关键问题的思考.水产科学,2010,29(11):688-690.
    孙永欣.黄芪多糖促进刺参免疫力和生长性能的研究.大连:大连理工大学,2008.
    王大珍.微生物生态学的发展及应用.科学,1990,45(2):18-20.
    王纪杰,徐秋芳,姜培坤.毛竹凋落物对阔叶林土壤微生物群落功能多样性的影响.林业科学,2008,44(9):146-151.
    王强,戴九兰,吴大千,等.微生物生态研究中基于BIOLOG方法的数据分析.生态学报,2010,30(3):0817-0823.
    王锐萍,陈玉翠.海口东湖降解磷细菌研究报告.海南师范学院学报,2001,14(1):84-88.
    王亚南.近海养殖场底泥微生物区系结构和功能的研究[D].广州:华南理工大学,2004.
    王印庚,荣小军,张春云,等.养殖海参主要疾病及防治技术.海洋科学,2005,29(3):1-7.
    许国焕,吴月嫦,付天玺,等.微生物制剂对奥尼罗非鱼生长及饲料表观消化率的影响.中国饲料,2008,21:26-28.
    闫法军.刺参养殖池塘有机物降解微生物的分离筛选及其特性研究.青岛:中国海洋大学,2010.
    阳钢.几种微生态制剂对刺参(Apostichopus japonicus)养殖水体及刺参肠道菌群结构的影响.青岛:中国海洋大学,2012.
    杨丽标,韩小勇,孙璞,等.巢湖藻类组成与环境因子典范对应分析.农业环境科学学报,2011,30(5):952-958.
    于东详,孙慧玲,陈四清,等.海参健康养殖技术.北京:海洋出版社,2010,20-27.
    袁翠霖,李卓佳,杨莺莺,等.芽孢杆菌制剂对养殖前期罗非鱼池塘微生物群落代谢功能的影响.生态学杂志,2010,29(12):2464-2470.
    展小云,吴冬秀,张琳,等.小叶锦鸡儿根际微生物群落功能多样性对环境变化的响应.生态学报,2010,30(12):3087-3097.
    张朝霞,何才涣,冯丹青,等.海洋附着细菌对冠瘤海鞘幼体附着和变态的影响.海洋学报,2005,27(5):97-102.
    张辉,王印庚,荣小军,等.刺参的趋光性以及对附着基颜色的感应行为.生态学杂志,2009,28(3):477-482.
    张俊波,梁振林,黄六一,等.不同材料、形状和空隙的人工参礁对刺参诱集效果的试验研究.中国水产科学,2011,18(4):899-907.
    张丽娜,郝春博,王丽华,等.安徽某铁矿酸性矿山废水中真核生物的群落结构特征.微生物学报,2012,52(7):875-884.
    赵兴青,杨柳燕,陈灿,等. PCR-DGGE技术用于湖泊沉积物中微生物群落结构多样性研究.生态学报,2006,26(11):3610-3616.
    郑忠明,董双林,白培峰,等.刺参不同养殖模式实验围隔内沉积物-水界面营养盐通量研究.中国海洋大学学报,2009,39(2):209-214.
    周一兵,刘亚军.虾池生态系能量收支和流动的初步分析.生态学报,2000,20(3):474-481.