单官能化柱芳烃的合成、自组装及其选择性分子识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大环化学是超分子化学中重要的组成部分,对于新的大环主体的合成及其主客体性质研究一直是大环化学中核心的研究课题。继冠醚、环糊精、杯芳烃和葫芦脲四代传统的大环主体之后,柱芳烃作为新一代大环主体分子于2008年问世。柱芳烃是由对苯二酚醚重复单元与亚甲基对位连接而成的一类新型大环主体分子。由于具有高对称性、刚性和富电子结构,柱芳烃表现出优越的主客体性能,并已经在分子传感器、单分子人工跨膜通道、温敏材料等领域有广泛的应用。与传统的大环化合物类似,对柱芳烃的空腔边缘进行单官能化修饰,可以获得多样的新型主体衍生物,并且它们已显示出优越的分子识别和自组装性能。本论文主要以单官能化柱芳烃的合成、自组装及其选择性分子识别方面开展以下的研究工作:
     (1)由于构筑柱芳烃骨架的环合反应对于对苯二酚醚单体上的取代基的限制,难以通过简单的共聚环合反应来实现具有特定功能的单取代混柱芳烃的合成。因而本论文采用了环后修饰方法来实现单官能化柱芳烃的合成,并对环后修饰方法的路线进行了优化,即1,4-对甲氧基苯和多聚甲醛为原料,三氟化硼乙醚为催化剂,反应时间为二分五十秒,快速高效地得到全甲氧基柱[5]芳烃。然后利用BBr3脱甲基试剂选择性地脱除一个甲基,以60%的产率得到重要的中间体单羟基柱[5]芳烃,最后可以经Williamson反应、水解或酯化反应等将特定官能团引入到柱芳烃空腔边缘。这一工作丰富了单官能化柱芳烃的合成方法,同时对于环后修饰法的广泛应用奠定了基础。
     (2)鉴于选择性分子识别在主客体化学中的重要性,我们设计合成了一系列含酯基侧链的单官能化柱[5]芳烃1和2,并研究了它们的自组装行为和主客体性能。通过利用刚性基团乙酸酯基连接直链烷烃客体分子和柱[5]芳烃,使得直链烷烃稳定的被包裹在柱[5]芳烃的空腔中,得到了一系列具有稳定的自包合构象的混柱[5]芳烃1。我们通过1HNMR、NOESY和单晶衍射实验证实了它们在溶液和固体状态下均具有稳定的自包合构象。利用客体和自包合支链在空腔中的竞争性络合作用,实现了选择性分子识别以及考察了自包合化合物的稳定性。另外,具有丁酸酯基侧链的混柱[5]芳烃2在溶液中形成非自包合化合物,且显示出低的客体选择性。
     (3)鉴于分子间非共价相互作用在分子识别中起到重要的作用,我们设计合成了一个单磷酸化混柱[5]芳烃8。与未经修饰的全甲氧基柱[5]芳烃4相比,由于磷酸基团的引入显著地提高了混柱[5]芳烃8与烷烃醇类分子的络合能力,且在氯仿中可以形成1:1的主客体配合物。
     (4)由于柱[6]芳烃有着比较大的空腔,预期能与较大的客体分子进行络合。我们设计合成出了一个含吡啶盐侧链的单官能化柱[6]芳烃13,并成功探索出了一条合成单官能化柱[6]芳烃的合成路线。另外,利用一维核磁氢谱初步研究了其在溶液中的自组装行为,结果表明它在氘代氯仿中形成的超分子结构是一个浓度相关的自组装聚集体。
     (5)为了丰富柱芳烃家族成员,本论文设计以三氯化铁为催化剂,氯仿为溶剂,1,4-二甲氧基苯为原料,进行环合反应得到全甲氧基柱[7]芳烃14,然后经BBr3脱甲基,首次合成得到了全羟基柱[7]芳烃15,并初步考察了其主客体性能。由于柱[7]芳烃有着更大的空腔,它足以让未经修饰的金刚烷客体分子通过,但不能稳定络合在空腔中,同时与联吡啶盐的络合能力也不是非常强。柱[7]芳烃有待对更大的客体分子起到识别作用。
Macrocyclic chemistry is an important part in supramolecular chemistry. The studies onsynthesis of new macrocyclic host and their host-guest chemistry have been at the core of thisfield. As a new generation of macrocyclic hosts after crown ether, cyclodextrin, calixareneand cucurbit as four generations of traditional macrocyclic hosts, pillar[5]arene was firstreported in2008. Pillar[n]arenes are a novel kind of host molecules, which are connectedhydroquinone by methylene bridges at the para-position. Owing to their uniquecharacteristecs, such as highly symmetric, rigid and rich electronic structure, pillararenesshow excellent host-guest properties and have been applied in the field of molecular sensors,single-molecular artificial transmembrane Channels, thermoresponsive materials, et al.Similar with traditional macrocyclic hosts, monofunctional modification of pillar[n]arene canobtain a variety of new host derivatives,which show excellent molecular recognition andself-assembly properties. Research works of this dissertation mainly include synthesis,self-assembly and selective molecular recognition of monofunctionalized pillararenes. Themain contents are as follows:
     (1) Since the cyclization reaction for constructing pillararene skeleton is suitable only forsome simple hydroquinone monomers, it is difficult to synthesize some mono-substitutedcopillar[n]arenes with specific functional properties via the simple copolymer cyclizationreaction. Therefore, in this dissertation, we employed and optimized the ring postmodification method to synthesize monofunctionalized pillar[5]arenes. Dimethoxypillar[5]arene was synthesized via using1,4-methoxybenzene and formaldehyde as rawmaterial in the presence of the catalyst BF3·O(Et)2. The cyclization reaction completelyfinished in just2min and fifty seconds. Then boron tribromide as demethylation reagent wasused to selectively remove one methyl to obtain important intermediate monohydroxypillar[5]arene in60%yield. Some groups can be introducted into the rim of pillar[5]arenecavity via Williamson reaction, hydrolysis or esterification. This work enriches the syntheticmethods of monofunctionalized pillar[5]arenes, and lays the foundation of the wideapplication for the method.
     (2) In view of the importance of selective molecular recognition in host-guest chemistry,we designed and synthesized a sieries of monofunctional copillar[5]arenes (1and2) bearingester side chains and studied their self-assembly behavior and host-guest properties. Owing tointroduction of a rigid acetate group as linkage between pillar[5]arene and alkyl chain group,alkyl moieties are deeply included in the pillar[5]arene cavity. Compound1forms the self-inclusion complexs (SICs).1H NMR, NOESY和X-ray diffraction experimentsconfirmed that compound1forms stable SICs at low and high concentrations in solution, andeven in the solid state. Furthermore, the formation of the host–guest complex depends on thecompetition complexation between guest and the alkyl ester side chain, realizing the selectivemolecular recognition and being used to investigate its stability. Additionally, acopillar[5]arene2bearing a butyrate chain can not form a self-inclusion complex and exhibitslow guest selectivity。
     (3) In view of the importance of noncovalent intermolecular interactions in molecularrecognition process,we designed and synthesized a monophosphoryl copillar[5]arene8.Compared with the unmodified1,4-dimethoxypillar[5]arene4, the introduction of thephosphoryl group remarkably promoted the binding affinity of8with alkanols andalkanediols. Furthormore,8can form a stable1:1host-guest complex with alkanols in CDCl3.
     (4) Because pillar[6]arenes have a relatively large cavity, they may complex with largeguests. We designed and synthesized a monofunctional copillar[6]arenes13bearing pyridinesalt side chain and successfully explored a synthetic route of monofunctionalcopillar[6]arenes. In addition, we studied it’s self-assembly behavior via1H NMRexperiments. The results indicate that the “supramolecular structure” of13isconcentration-dependent.
     (5) In order to enrich family members of pillararenes, we chose the FeCl3-catalyzedcondensation reaction of1,4-dimethoxybenzene with paraformaldehyde in CHCl3to givedimethoxypillar[7]arene14. Per-hydroxylated pillar[7]arene15was obtained viademethylation of dimethoxypillar[7]arene with BBr3and its host-gues properities wasinvestigated preliminarily. The pillar[7]arene cavity is large enough to let adamantanemolecule through. But adamantane can not be steadily included in pillar[7]arene cavity.Additionaly, Per-hydroxylated pillar[7]arene shows weak binding ability towords bipyridinesalt. Thus pillar[7]arene host will have special molecular recognition ability.
引文
[1] Lehn J. M. From supramolecular chemistry towards constitutional dynamic chemistryand adaptive chemistry [J]. Chem. Soc. Rev.,2007,36(2):151-160.
    [2]王凯,杨英威,张晓安.柱芳烃的合成及主客体化学研究进展[J].高等学校化学学报,2012,33(1):1-13.
    [3]王南平,余晓冬,陈洪渊.环糊精超分子化学研究的新进展[J].化学研究与应用,2001,13(1):27-32.
    [4] Pedersen C. J. Cyclic polyethers and their complexes with metal salts [J]. J. Am. Chem.Soc.,1967,89(10):2495-2496.
    [5] Cram D. J., Cram, J. M. Host-Guest Chemistry: Complexes between organic compoundssimulate the substrate selectivity of enzymes [J]. Science,1974,183(4127):803-809.
    [6] Cram D. J. The Design of Molecular Hosts, Guests, and Their Complexes (NobelLecture)[J]. Angew. Chem. Int. Ed. Engl.,1988,27(8):1009-1020.
    [7]陈丽娟,杨明星,林深.主-客体化学研究进展[J].合成化学,2002,10(3):205-210.
    [8]张希.超分子自组装[J].科学观察,2012,7(6):29-32.
    [9]苏晓渝,谢如刚.超分子自组装中的非共价键协同作用[J].化学研究与应用,2007,19(12):1304-1310.
    [10]刘海林,马晓燕,袁莉,等.分子自组装研究进展[J].材料科学与工程学报,2004,22(2):308-311.
    [11]朱海峰,孙涛涛,金碧辉.超分子化学-分子自组装[J].中国基础科学,2005,7(4):10-12.
    [12] French D., In Advances in Carbohydrate Chemistry [M], Vol.12, Melville L. W.;Tipson, R. S., Eds. San Diego: Elsevier,1957:189-260.
    [13] B hmer V. Calixarenes, Macrocycles with (Almost) Unlimited Possibilities [J]. Angew.Chem. Int. Ed.,1995,34(7):713-745.
    [14] Freeman W. A., Mock, W. L., Shih, N. Y. Cucurbituril [J]. J. Am. Chem. Soc.,1981,103(24):7367-7368.
    [15] Nimse S. B., Kim, T. Biological applications of functionalized calixarenes [J]. Chem.Soc. Rev.,2013,42(1):366-386.
    [16] Diamond D., Nolan, K. Peer Reviewed: Calixarenes: Designer Ligands for ChemicalSensors [J]. Anal. Chem.,2001,73(1):22A-29A.
    [17] Ogoshi T., Kanai, S., Fujinami, S., et al. para-bridged symmetrical pillar[5]arenes: TheirLewis acid catalyzed synthesis and host-guest property [J]. J. Am. Chem. Soc.,2008,130(15):5022-5023.
    [18] Cao D. R., Kou, Y. H., Liang, J. Q., et al. A Facile and Efficient Preparation ofPillararenes and a Pillarquinone [J]. Angew. Chem. Int. Ed.,2009,48(51):9721-9723.
    [19] Cragg P. J., Sharma, K. Pillar[5]arenes: fascinating cyclophanes with a bright future [J].Chem. Soc. Rev.,2012,41(2):597-607.
    [20] Ogoshi T. Synthesis of novel pillar-shaped cavitands Pillar[5]arenes and theirapplication for supramolecular materials [J]. J. Inclusion Phenom.Macrocyclic Chem.,2012,72(3-4):247-262.
    [21] Wang K., Yang, Y.-W., Zhang, X.-A. Research Progress on the Synthesis ofPillar[n]arenes and Their Host-guest Chemistry [J]. Chem. J. Chinese U.,2012,33(1):1-13.
    [22] Xue M., Yang, Y., Chi, X., et al. Pillararenes, A New Class of Macrocycles forSupramolecular Chemistry [J]. Acc. Chem. Res.,2012,45(8):1294-1308.
    [23] Zhang H. C., Liu, Z. N., Xin, F. F., et al. Synthesis and Application of Pillar[n]arene [J].Chin. J. Org. Chem.,2012,32(2):219-229.
    [24] Ogoshi T., Yamagishi, T. New Synthetic Host Pillararenes: Their Synthesis andApplication to Supramolecular Materials [J]. Bull. Chem. Soc. Jpn.,2013,86(3):312-332.
    [25] Ogoshi T., Yamagishi, T.-a. Pillararenes: Versatile Synthetic Receptors forSupramolecular Chemistry [J]. Eur. J. Org. Chem.,2013,2013(15):2961–2975.
    [26] Zhang H., Zhao, Y. Pillararene-Based Assemblies: Design Principle, Preparation andApplications [J]. Chem. Eur. J.,2013,19(50):16862-16879.
    [27] Cao D., Meier, H. Pillar[n]arenes—a Novel, Highly Promising Class of MacrocyclicHost Molecules [J]. Asian J. Org. Chem.,2014,3(3):244-262.
    [28] Gribble G. W., Nutaitis, C. F.[1.1.1.1.1]paracyclophane and [1.1.1.1.1.1]paracyclophane [J]. Tetrahedron Lett.,1985,26(49):6023-6026.
    [29] Ogoshi T., Kitajima, K., Aoki, T., et al. Synthesis and Conformational Characteristics ofAlkyl-Substituted Pillar[5]arenes [J]. J. Org. Chem.,2010,75(10):3268-3273.
    [30] X. Shu, Fan, J., Li, J., et al. Complexation of Neutral1,4-Dihalobutanes with SimplePillar [5] arenes That is Dominated by Dispersion Forces [J]. Org. Biomol. Chem.,2012,10(17):3393-3397.
    [31] Ma Y., Chi, X., Yan, X., et al. per-Hydroxylated Pillar[6]arene: Synthesis, X-ray CrystalStructure, and Host–Guest Complexation [J]. Org. Lett.,2012,14(6):1532-1535.
    [32] Yu G., Han, C., Zhang, Z., et al. Pillar[6]arene-Based Photo-Responsive Host–GuestComplexation [J]. J. Am. Chem. Soc.,2012,134(20):8711-8717.
    [33] Han C., Ma, F., Zhang, Z., et al. DIBPillar[n]arenes (n=5,6): syntheses, X-ray crystalstructures, and complexation with n-octyltriethyl ammonium hexafluorophosphate [J].Org. Lett.,2010,12(19):4360-3.
    [34] Hu X.-B., Chen, Z., Chen, L., et al. Pillar[n]arenes (n=8-10) with two cavities:synthesis, structures and complexing properties [J]. Chem. Commun.,2012,48(89):10999-11001.
    [35] Ogoshi T., Kitajima, K., Aoki, T., et al. Effect of an Intramolecular Hydrogen Bond Beltand Complexation with the Guest on the Rotation Behavior of Phenolic Units inPillar[5]arenes [J]. J. Phys. Chem. Lett.,2010,1(5):817-821.
    [36] Blaszkiewicz C., Bricout, H., Banaszak, E., et al. Cyclodextrin Dimer asSupramolecular Reaction Platform for Aqueous Organometallic Catalysis [J]. Chem.Commun.,2013,49(62):6989-6991.
    [37] Ogoshi T., Masaki, K., Shiga, R., et al. Planar-Chiral Macrocyclic Host Pillar[5]arene:No Rotation of Units and Isolation of Enantiomers by Introducing Bulky Substituents[J]. Org. Lett.,2011,13(5):1264-1266.
    [38] Ogoshi T., Shiga, R., Yamagishi, T., et al. Planar-Chiral Pillar[5]arene: Chiral SwitchesInduced by Multiexternal Stimulus of Temperature, Solvents, and Addition of AchiralGuest Molecule [J]. J. Org. Chem.,2011,76(2):618-622.
    [39] Ogoshi T., Aoki, T., Kitajima, K., et al. Facile, Rapid, and High-Yield Synthesis ofPillar[5]arene from Commercially Available Reagents and Its X-ray Crystal Structure[J]. J. Org. Chem.,2011,76(1):328-331.
    [40] Boinski T., Szumna, A. A facile, moisture-insensitive method for synthesis ofpillar[5]arenes—the solvent templation by halogen bonds [J]. Tetrahedron,2012,68(46):9419-9422.
    [41] Wang K., Tan, L.-L., Chen, D.-X., et al. One-pot synthesis of pillar [n] arenes catalyzedby a minimum amount of TfOH and a solution-phase mechanistic study [J]. Org.Biomol. Chem.,2012,10(47):9405-9409.
    [42] Ma Y., Zhang, Z., Ji, X., et al. Preparation of Pillar[n]arenes by Cyclooligomerization of2,5-Dialkoxybenzyl Alcohols or2,5-Dialkoxybenzyl Bromides [J]. Eur. J. Org. Chem.,2011,27:5331-5335.
    [43]韩成友.柱芳烃的合成、衍生化及其性质研究[D].中国:浙江大学,2013.
    [44] Ogoshi T., Kitajima, K., Yamagishi, T. A., et al. Synthesis and ConformationalCharacteristics of Nonsymmetric Pillar[5]arene [J]. Org. Lett.,2010,12(3):636-638.
    [45] Kou Y. H., Tao, H. Q., Cao, D. R., et al. Synthesis and Conformational Properties ofNonsymmetric Pillar[5]arenes and Their Acetonitrile Inclusion Compounds [J]. Eur. J.Org. Chem.,2010,2010(33):6464-6470.
    [46] Huang F. H., Zhang, Z. B., Luo, Y., et al. Four constitutional isomers ofBMpillar[5]arene: synthesis, crystal structures and complexation with n-octyltrimethylammonium hexafluorophosphate [J]. Chem. Commun.,2011,47(8):2417-2419.
    [47] Tao H. Q., Cao, D. R., Liu, L. Z., et al. Synthesis and host-guest properties of pillar [6]arenes [J]. Sci. China Chem.,2011,55(2):223-228.
    [48] Chen Z. Z., Cao, D. R. Synthesis of Bis(4-bromo-2,5-dialkoxyphenyl)methane and ItsAnalogues[J]. Chin. J. Org. Chem.,2010,30(11):1742-1744.
    [49] Huang F. H., Zhang, Z. B., Luo, Y., et al. Formation of Linear Supramolecular PolymersThat Is Driven by C-H---π Interactions in Solution and in the Solid State [J]. Angew.Chem. Int. Ed.,2011,50(6):1397-1401.
    [50] Zhang Z., Yu, G., Han, C., et al. Formation of a Cyclic Dimer Containing Two MirrorImage Monomers in the Solid State Controlled by van der Waals Forces [J]. Org. Lett.,2011,13(18):4818-4821.
    [51] Liu L., Cao, D., Jin, Y., et al. Efficient synthesis of copillar[5]arenes and theirhost-guest properties with dibromoalkanes [J]. Org. Biomol. Chem.,2011,9(20):7007-7010.
    [52] Ogoshi T., Demachi, K., Kitajima, K., et al. Monofunctionalized pillar[5]arenes:synthesis and supramolecular structure [J]. Chem. Commun.,2011,47(25):7164-7166.
    [53] Ogoshi T., Kayama, H., Yamafuji, D., et al. Supramolecular Polymers with AlternatingPillar[5]arene and Pillar[6]arene Units from Highly Selective Multiple Host-GuestComplexation System and Monofunctionalized Pillar[6]arene [J]. Chem. Sci.,2012,3(11):3221-3226.
    [54] Xia W., Hu, X.-Y., Chen, Y., et al. A novel redox-responsive pillar[6]arene-basedinclusion complex with the ferrocenium guest [J]. Chem. Commun.,2013,49(44):5085-5087.
    [55] Stoddart J. F., Strutt, N. L., Forgan, R. S., et al. Monofunctionalized Pillar[5]arene as aHost for Alkanediamines [J]. J. Am. Chem. Soc.,2011,133(15):5668-5671.
    [56] Zhang H., Strutt, N. L., Stoll, R. S., et al. Dynamic clicked surfaces based onfunctionalised pillar [5] arene [J]. Chem. Commun.,2011,47(41):11420-11422.
    [57] Strutt N. L., Zhang, H., Giesener, M. A., et al. A self-complexing and self-assemblingpillar[5]arene [J]. Chem. Commun.,2012,48(11):1647-1649.
    [58] Liu L., Wang, L., Liu, C., et al. Dimerization Control in the Self-Assembly Behavior ofCopillar[5]arenes Bearing ω-Hydroxyalkoxy Groups [J]. J. Org. Chem.,2012,77(20):9413-17.
    [59] Guan Y., Ni, M., Hu, X. Y., et al. Pillar [5] arene-based polymeric architecturesconstructed by orthogonal supramolecular interactions [J]. Chem. Commun.,2012,48(68):8529-8531.
    [60] Ni M., Guan, Y., Wu, L., et al. Improved recognition of alkylammonium salts by ionpair recognition based on a novel heteroditopic pillar [5] arene receptor [J]. TetrahedronLett.,2012,53(47):6409–6413.
    [61] Xu J.-F., Chen, Y.-Z., Wu, L.-Z., et al. Dynamic Covalent Bond Based on ReversiblePhoto [4+4] Cycloaddition of Anthracene for Construction of Double-DynamicPolymers [J]. Org. Lett.,2013,15(24):6148-6151.
    [62] Ogoshi T., Umeda, K., Yamagishi, T., et al. Through-space pi-delocalized Pillar[5]arene[J]. Chem. Commun.,2009,(32):4874-4876.
    [63] Ogoshi T., Shiga, R., Hashizume, M., et al."Clickable" pillar[5]arenes [J]. Chem.Commun.,2011,47(24):6927-6929.
    [64] Deng H., Shu, X., Hu, X., et al. Synthesis of a Fully Functionalized Pillar[5]arene by“Click Chemistry” and Its Effective Binding Towards Neutral Alkanediamines [J].Tetrahedron Lett.,2012,53(34):4609-4612.
    [65] Ogoshi T., Hashizume, M., Yamagishi, T. A., et al. Synthesis, conformational andhost-guest properties of water-soluble pillar[5]arene[J]. Chem. Commun.,2010,46(21):3708-3710.
    [66] Yu G., Xue, M., Zhang, Z., et al. A Water-Soluble Pillar[6]arene: Synthesis, Host–GuestChemistry and Its Application in Dispersion of Multi-Walled Carbon Nanotubes inWater [J]. J. Am. Chem. Soc.,2012,134(32):13248-13251.
    [67] Ogoshi T., Kida, K., Yamagishi, T.-a. Photoreversible Switching of the Lower CriticalSolution Temperature in a Photoresponsive Host Guest System of Pillar[6]arene withTriethylene Oxide Substituents and an Azobenzene Derivative [J]. J. Am. Chem. Soc.,2012,134(49):20146-20150.
    [68] Ogoshi T., Shiga, R., Yamagishi, T.-a. Reversibly Tunable Lower Critical SolutionTemperature Utilizing Host–Guest Complexation of Pillar[5]arene with TriethyleneOxide Substituents [J]. J. Am. Chem. Soc.,2012,134(10):4577-4580.
    [69] Yu Y. H., Hu, X. B., Chen, L., et al. Pillar[5]arene decaamine: synthesis, encapsulationof very long linear diacids and formation of ion pair-stopped [2]rotaxanes [J]. Chem.Commun.,2011,47(16):4694-4696.
    [70] Ma Y., Ji, X., Xiang, F., et al. A cationic water-soluble pillar[5]arene: synthesis andhost-guest complexation with sodium1-octanesulfonate [J]. Chem. Commun.,2011,47(45):12340-12342.
    [71] Chen W., Zhang, Y., Li, J., et al. Synthesis of a cationic water-soluble pillar [6] areneand its effective complexation towards naphthalenesulfonate guests [J]. Chem.Commun.,2013,49(72):7956-7958.
    [72] Ogoshi T., Ueshima, N., Yamagishi, T., et al. Ionic liquid pillar[5]arene: its ionicconductivity and solvent-free complexation with a guest [J]. Chem. Commun.,2012,48(29):3536-3538.
    [73] Nierengarten J. F. Building liquid crystals from the5-fold symmetrical pillar[5]arenecore [J]. Chem. Commun.,2012,48(65):8072-8074.
    [74] Holler M., Allenbach, N., Sonet, J., et al. The high yielding synthesis of pillar[5]arenesunder Friedel-Crafts conditions explained by dynamic covalent bond formation [J].Chem. Commun.,2012,48(20):2576-2578.
    [75] Ogoshi T., Tanaka, S., Yamagishi, T., et al. Ionic Liquid Molecules (ILs) as NovelGuests for Pillar[5]arene:1:2Host-Guest Complexes between Pillar[5]arene and ILs inOrganic Media [J]. Chem. Lett.,2011,40(1):96-98.
    [76] Han C., Yu, G., Zheng, B., et al. Complexation between Pillar[5]arenes and a SecondaryAmmonium Salt [J]. Org. Lett.,2012,14(7):1712-1715.
    [77] Li C. J., Xu, Q. Q., Li, J., et al. Complex interactions of pillar[5]arene with paraquatsand bis(pyridinium) derivatives [J]. Org. Biomol. Chem.,2010,8(7):1568-1576.
    [78] Li C., Shu, X., Li, J., et al. Complexation of1,4-Bis (pyridinium) butanes byNegatively charged Carboxylatopillar [5] arene [J]. J. Org. Chem.,2011,76(20):8458-8465.
    [79] Li C. J., Zhao, L., Li, J. A., et al. Self-assembly of [2]pseudorotaxanes based onpillar[5]arene and bis(imidazolium) cations [J]. Chem. Commun.,2010,46(47):9016-9018.
    [80] Li C., Chen, S., Li, J., et al. Novel neutral guest recognition and interpenetratedcomplex formation from pillar[5]arenes [J]. Chem. Commun.,2011,47(40):11294-11296.
    [81] Shu X., Chen, S., Li, J., et al. Highly effective binding of neutral dinitriles by simplepillar [5] arenes [J]. Chem. Commun.,2012,48(24):2967-2969.
    [82] Yu G., Zhang, Z., Han, C., et al. A non-symmetric pillar[5]arene-based selective anionreceptor for fluoride [J]. Chem. Commun.,2012,48(24):2958-2960.
    [83] Li C., Shu, X., Li, J., et al. Selective and Effective Binding of Pillar[5,6]arenes towardSecondary Ammonium Salts with a Weakly Coordinating Counteranion [J]. Org. Lett.,2012,14(16):4126-4129.
    [84] Fan J., Deng, H., Li, J., et al. Charge-transfer Inclusion Complex Formation ofTropylium Cation with Pillar [6] arenes [J]. Chem. Commun.,2013,49(56):6343-6345.
    [85] Yu G., Zhou, X., Zhang, Z., et al. Pillar[6]arene/Paraquat Molecular Recognition inWater: High Binding Strength, pH-Responsiveness and Application in ControllableSelf-Assembly, Controlled Release and Treatment of Paraquat Poisoning [J]. J. Am.Chem. Soc.,2012,134(47):19489-19497.
    [86] Chi X., Xue, M., Ma, Y., et al. A pillar[6]arene with mono(ethylene oxide) substituents:synthesis and complexation with diquat [J]. Chem. Commun.,2013,49(74):8175-8177.
    [87] Xue M., Ma, Y., Yang, J., et al. A Cationic Water-Soluble Pillar[6]arene: Synthesis,Host-Guest Properties, and Self-Assembly with Amphiphilic Guests in Water [J]. RSCAdv.,2013,3:23953-23956.
    [88] Xia B., Zheng, B., Han, C., et al. A novel pH-responsive supramolecular polymerconstructed by pillar[5]arene-based host-guest interactions [J]. Polym. Chem.,2013,4:2019-2024.
    [89] Yu G., Ma, Y., Han, C., et al. A Sugar-Functionalized Amphiphilic Pillar[5]arene:Synthesis, Self-Assembly in Water, and Application in Bacterial Cell Agglutination [J].J. Am. Chem. Soc.,2013,135(28):10310-10313.
    [90] Yao Y., Xue, M., Chen, J., et al. An Amphiphilic Pillar[5]arene: Synthesis, ControllableSelf-Assembly in Water, and Application in Calcein Release and TNT Adsorption[J]. J.Am. Chem. Soc.,2012,134:15712-15715.
    [91] Ogoshi T., Hasegawa, Y., Aoki, T., et al. Reduction of Emeraldine Base Form ofPolyaniline by Pillar[5]arene Based on Formation of Poly (pseudorotaxane) Structure[J]. Macromolecules,2011,44:7639-7644.
    [92] Nakamoto Y., Ogoshi, T., Nishida, Y., et al. Polypseudorotaxane Constructed fromPillar[5]arene and Viologen Polymer [J]. Macromolecules,2010,43(7):3145-3147.
    [93] Ogoshi T., Nishida, Y., Yamagishi, T. A., et al. High Yield Synthesis of PolyrotaxaneConstructed from Pillar[5]arene and Viologen Polymer and Stabilization of Its RadicalCation [J]. Macromolecules,2010,43(17):7068-7072.
    [94] Duan Q., Xia, W., Hu, X., et al. Novel [2]pseudorotaxanes constructed by self-assemblyof bis-urea-functionalized pillar[5]arene and linear alkyl dicarboxylates [J]. Chem.Commun.,2012,48:8532-8534.
    [95] Hu X.-Y., Zhang, P., Wu, X., et al. Pillar[5]arene-based supramolecularpolypseudorotaxanes constructed from quadruple hydrogen bonding [J]. Polym. Chem.,2012,3(11):3060-3063.
    [96] Hu X.-Y., Wu, X., Wang, S., et al. Pillar[5]arene-based supramolecularpolypseudorotaxane polymer network constructed by orthogonal self-assembly [J].Polym. Chem.,2013,4(16):4292-4297.
    [97] Matovic N. J., Hayes, P. Y., Penman, K., et al. Polyunsaturated Alkyl Amides fromEchinacea: Synthesis of Diynes, Enynes, and Dienes [J]. J. Org. Chem.,2011,76(11):4467-4481.
    [98] Hamasaki K., Usui, S., Ikeda, H., et al. Dansyl-modified cyclodextrins as fluorescentchemosensors for molecular recognition [J]. Supramol. Chem.,1997,8(2):125-135.
    [99] Ueno A., Kuwabara, T., Nakamura, A., et al. A modified cyclodextrin as a guestresponsive colour-change indicator [J]. Nature,1992,356(6365):136-137.
    [100] Liu Y., Yang, Y. W., Cao, R., et al. Thermodynamic origin of molecular selectivebinding of bile salts by aminated β-cyclodextrins [J]. J. Phys. Chem. B,2003,107(50):14130-14139.
    [101] Chen Y., Li, F., Liu, B.-W., et al. Thermodynamic Origin of Selective Binding ofβ-Cyclodextrin Derivatives with Chiral Chromophoric Substituents toward Steroids [J].J. Phys. Chem. B,2010,114(49):16147-16155.
    [102] Ma X., Qu, D., Ji, F., et al. A light-driven [1]rotaxane via self-complementary andSuzuki-coupling capping [J]. Chem Commun,2007,(14):1409-1411.
    [103] Terao J., Tsuda, S., Tanaka, Y., et al. Synthesis of Organic-Soluble ConjugatedPolyrotaxanes by Polymerization of Linked Rotaxanes [J]. J. Am. Chem. Soc.,2009,131(44):16004-16005.
    [104] Terao J. Permethylated cyclodextrin-based insulated molecular wires [J]. Polym.Chem.,2011,2(11):2444-2452.
    [105] Stoddart J. Host–guest chemistry [J]. Annual Reports Section" B"(Organic Chemistry),1988,85:353-386.
    [106] Cotner E. S., Smith, P. J. Phosphotyrosine binding by ammonium-andguanidinium-modified cyclodextrins [J]. J. Org. Chem.,1998,63(5):1737-1739.
    [107] Gao L., Dong, S., Zheng, B., et al. Synthesis of a Pillar[5]arene-Based HeteroditopicHost and Its Complexation with n-Octyltriethylammonium Salts [J]. Eur. J. Org.Chem.,2013,2013(7):1209-1213.
    [108]寇玉辉.柱芳烃的合成及其结构研究[D].中国:华南理工大学2010.
    [109] Desset S. L., Reader, S. W., Cole-Hamilton, D. J. Aqueous-biphasic hydroformylationof alkenes promoted by "weak" surfactants [J]. Green Chem,2009,11(5):630-637.
    [110] Feng D.-J., Li, X.-Q., Wang, X.-Z., et al. Highly stable pseudo[2]rotaxanes co-drivenby crown ether–ammonium and donor–acceptor interactions [J]. Tetrahedron,2004,60(29):6137-6144.
    [111] Lin Y. A., Chalker, J. M., Davis, B. G. Olefin Cross-Metathesis on Proteins:Investigation of Allylic Chalcogen Effects and Guiding Principles in MetathesisPartner Selection [J]. J. Am. Chem. Soc.,2010,132(47):16805-16811.
    [112] Anderson S., Neidlein, U., Gramlich, V., et al. A New Family of ChiralBinaphthyl-Derived Cyclophane Receptors: Complexation of Pyranosides [J]. Angew.Chem. Int. Ed. Engl.,1995,34(15):1596-1600.
    [113] Pepitone M., Jernigan, G., Melinger, J., et al. Synthesis and characterization ofdonor-acceptor chromophores for unidirectional electron transfer [J]. Org. Lett.,2007,9(5):801-804.
    [114] Ogoshi T., Yamafuji, D., Aoki, T., et al. Photoreversible Transformation betweenSeveral Seconds and Hours Time-Scales: Threading of Pillar[5]arene onto theAzobenzene-End of a Viologen Derivative [J]. J. Org. Chem.,2011,76(22):9497-9503.