烤烟主流烟气中主要甜味物质的鉴别及其形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卷烟的感官感受主要包括嗅觉和味觉两方面,二者互相影响,共同决定了卷烟产品的整体可接受性。多年来研究人员对卷烟的香味进行了大量研究,但对卷烟的味觉研究较少。随着卷烟产品竞争越来越激烈,卷烟的味觉调控受到了烟草公司和烟草研究人员的重视,烤烟与其他类型的烟草(白肋烟和香料烟)相比具有典型的略酸的甜香风格,我国市场上的卷烟产品以烤烟为主,因此对烤烟的味觉进行详细研究有助于烟草研究人员更好的理解和调控卷烟产品的风味,对于提高卷烟企业的竞争力具有重要意义。本文对烤烟烟气中主要的甜味物质进行了筛选和确认,分析了它们在烟草中的主要前体物,并探讨了其形成路径。主要的研究内容和结果如下:
     根据甜味物质的呈味理论,初步推测卷烟主流烟气中的甜味物质主要为半挥发性醛类、酮类和酚类等中性含氧成分。首先对主流烟气成分进行了定量分析,使用全二维气相色谱(GC×GC)结合飞行时间质谱(TOFMS)对烤烟单料烟主流烟气中性和碱性成分进行了定性和定量分析。使用直接溶剂萃取法(DSE)制备样品,优化后方法的检测限、重复性和回收率都比较令人满意。DSE方法与同时蒸馏萃取法(SDE)相比,其定量结果更加稳定可靠。此外还对主流烟气中单糖、酚类、酸性成分和常规成分进行了定量分析,总共测定了48个样品164个物质的含量。
     将得到的主流烟气成分根据官能团和来源分成19类,加上主流烟气pH和水分确定了21个变量,利用偏最小二乘回归(PLSR)模型分析了这些变量与烟气甜味和苦味的相关性,结果表明:呋喃类、吡喃类、水分、环酮类、链酮类和酚类物质与烟气甜味显著正相关;生物碱类、吡咯类、脂肪烃类和吡啶类等物质与苦味显著正相关,呋喃类和吡喃类物质与苦味显著负相关。在此基础上,利用PLSR模型分析了酮类、呋喃类和吡喃类46个成分与卷烟甜味的相关性,有13个物质与烟气甜味显著正相关,5个成分与甜味显著负相关。通过返添加实验和甜味阈值实验对模型结果进行验证,并对这些物质对烟气甜味的贡献大小进行评估,发现烤烟主流烟气中对甜味贡献较大的物质主要有:2-糠醛、2,3-二氢-3,5-二羟基-6-甲基-4H-吡喃-4-酮(DDMP)、甲基环戊烯醇酮、果糖、菠萝酮、5-甲基-2-糠醛、对苯二酚、葡萄糖、苯酚、3-甲基-2-环戊烯-1-酮、乙基环戊烯醇酮和麦芽酚。返添加实验还证实向卷烟中添加甜味和酸味物质可以抑制烟气苦味,且这种抑制存在一定的协同作用。
     为了分析烟气主要甜味物质的来源和形成过程,对烤烟烟草成分与烟气成分和烟气味觉间的相关性进行了分析。对烟草挥发性中性和碱性成分的定量分析表明烟草中呋喃类、吡喃类、环酮类和简单酚类物质的物质个数和含量都远远低于主流烟气,说明主流烟气中的这些成分主要来自烟草成分在卷烟燃烧时的热裂解。使用PLSR模型对烟草成分与烟气主要甜味和苦味物质的相关性分析表明:烟气呋喃类和吡喃类物质以及5-甲基-2-糠醛和DDMP与烟草总糖、还原糖和糖氮比显著正相关,说明糖裂解和美拉德反应可能是这些物质的主要来源。烟气生物碱与烟草总氮和烟碱显著正相关,烟气生物碱主要来自烟草中生物碱(烟碱)的转移。使用PLSR模型对烟草成分与烟气甜味和苦味间的相关性进行了分析,并进行了返添加验证,结果表明:与甜味正相关的主要是烟草糖类物质,负相关的主要是钾和钾氯比,钾氯比代表了烟草燃烧性能,说明烟草燃烧性能可能对烟气甜味有重要影响。对苦味有显著影响的变量主要有:烟碱、总氮、糖碱比、糖氮比、氮碱比,其中烟碱和总氮与苦味正相关,其他三个指标与苦味负相关。说明影响烟气苦味的主要是烟草生物碱(烟碱),烟气酸碱平衡可能也对烟气苦味有重要影响。烟草部位对烟气甜味没有显著影响,对苦味有显著影响,苦味强度为:上部烟叶>中部烟叶>下部烟叶;不同产地烟叶的烟气苦味没有显著差异,甜味有显著差异,云南烟叶烟气的甜味显著高于其他产区。
     模型分析的结果表明烟气主要甜味物质主要来自烟草燃烧时的美拉德反应。对还原糖(葡萄糖/果糖)与脯氨酸固相美拉德反应模型中主要烟气甜味物质的形成路径和影响因素进行了研究。TG和DSC分析表明果糖比葡萄糖更容易发生热裂解,脯氨酸Amadori重排产物(Fru-Pro)和脯氨酸-还原糖混合物都在150℃左右发生了固相美拉德反应。脯氨酸-葡萄糖/果糖混合物在不同温度下的的美拉德反应产物中检测到了122个挥发性成分,生成量最大的是DDMP,其中有86个成分在主流烟气中也被检测到,尤其是酮类、呋喃类和吡喃类物质。总体来说,温度越高,美拉德反应产物的种类和生成量越大,但是DDMP在较低温度下(150℃)生成量较大。脯氨酸-葡萄糖比脯氨酸-果糖混合物生成了较多的DDMP、麦芽酚和2-乙酰呋喃等产物,同时其生成的甲基环戊烯醇酮少于脯氨酸-果糖混合物。脯氨酸与葡萄糖反应时比其他氨基酸表现出了高的反应活性,生成了较多的菠萝酮和DDMP等物质,主要原因是脯氨酸具有特殊的分子结构,是醛醇缩合反应以及美拉德反应的良好催化剂。氧气浓度对菠萝酮和DDMP的生成量没有显著影响。反应物比例对菠萝酮和DDMP的生成量影响很大,当还原糖氨基酸摩尔比高于1:1时,会促进菠萝酮、DDMP和5-羟基麦芽酚等产物的生成,且当摩尔比为2:1时生成量最大;当还原糖氨基酸摩尔比低于1:1时,会抑制这些产物的生成。DDMP生成量先随着时间增加,达到最大值后缓慢下降,峰值随着温度的升高而增加随后达到了平衡值。动力学研究表明,DDMP在初始阶段的形成符合一级动力学,反应活化能为68.8kJ/mol。
The sensory of cigarette mainly consists of two aspects: olfactory sensation and taste sense.They affect each other and decide in combination the sensory acceptability of cigarettes. A lotof investigation has been done on cigarette aroma over the years but little on cigarette taste.With increased market competition, cigarette taste has garnered attention from tobaccoresearchers and companies. Flue-cured tobacco have sweet with little acidic taste and aromacompared with other tobacco such as burley and oriental tobacco. The main cigarette productsin China market are flue-cured cigarettes. Therefore, it is of great importance for cigaretteresearchers and companies to investigate cigarette taste in detail. In this work, we screenedand confirmed the main sweet compounds in cigarette smoke, analyzed their precursor intobacco and discussed their formation pathways and mechanism. The main contents andresults are as follows:
     According to the sweet theory, the main sweet compounds were preliminarily estimated asneutral oxygen compounds which mainly include semi-volatile aldehydes, ketones andphenols. We firstly quantitatively analyzed the mainstream constituents. Comprehensivetwo-dimensional gas chromatograph (GC×GC) coupled to time-of-flight mass spectrometry(TOFMS) was used to analyze the neutral and alkaline compounds. Directed solventextraction (DSE) method was chosen to prepare the sample and the limit of detection,repeatability and recovery were all satisfactory after the method was optimized. Comparedwith simultaneous distillation and extraction (SDE), the quantitative results from DSE weremore reliable. Furthermore, the monosaccharides, simple phenols, organic acids and tobaccoroutine compounds were also quantitatively analyzed and156compounds for48sampleswere finally analyzed.
     The obtained compounds were classified into19groups according to their origin andfunctional groups,21variables were obtained including these19groups and smoke pH andwater. A partial least squares regression (PLSR) model was established to analyze thecorrelation between these smoke variables with smoke sweet and bitter taste. A positivecorrelation was observed between furans, pyrans, water, cyclic ketone and phenols withsmoke sweet taste. Smoke bitter taste was found to positively correlative with smokealkaloids, pyrroles, aliphatic hydrocarbons and pyridines, and negatively correlative withfurans and pyrans. The relationship between46ketones, furans and pyrans compounds andsmoke sweet taste was then investigated with PLSR model,13compounds were found topositively correlative with sweet taste and5compounds negatively correlative with sweettaste. The standard-spiked experiments and threshhold test were performed to confirm theresults from PLSR model and to evaluate the contribution of various compounds to smokesweet. We found that the main sweet compounds in cigarette smoke were:2-furfural,2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), methyl cyclopentenolone,fructose, furaneol,5-methyl-2-furfural, hydroquinone, glucose, phenol,3-methyl-2-cyclopenten-1-one, ethyl cyclopentenolone and maltol. The standard-spikedexperiment also showed that smoke bitterness could be supressed by adding sweet and acidcompounds to cigarette, and the supression was synergetic to some extent.
     The relationship between tobacco components with smoke compounds and taste wasinvestigated in order to evaluate the origin and formation procedure of cigarette compounds.The neutral and alkaline volatile compounds in tobacco were quantitative determined andtheir contents were much smaller than those in smoke, this indicated that the furans, pyransand simple phenols in cigarette smoke were mainly formed from the pyrolysis of tobaccoconstituents. The relationship between tobacco compounds and smoke sweet and bittercomponents was investigated with PLSR model, the results showed that furans, pyrans,5-methyl-2-furfural and DDMP in cigarette smoke were positively correlative with tobaccototal sugar and reducing sugar, this suggested that these compounds are produced from sugarpyrolysis or Maillard reaction. Smoke alkaloids were positively correlative with tobacco totalnitrogen and nicotine, smoke alkaloids were mainly derived from vaporization of tobaccoalkaloids (nicotine). A PLSR model was used to investigate the relationship between tobaccocomponents and smoke sweet and bitter taste, and the standard-spiked experiment was alsoperformed to verify the results form this model. Smoke sweet taste was positively correlativewith tobacco sugar and negatively correlative with potassium and ratio of potassium tochlorine which reflect the combustion quality of tobacco. This suggested that combustionquality of tobacco might significantly influence smoke sweet taste. Smoke bitter was foundpositively correlative with tobacco nicotine and total nitrogen and negatively correlative withratio of sugar to nicotine ratio, sugar to total nitrogen and total nitrogen to nicotine. Thisindicated that the main factor that affects smoke bitter taste was tobacco alkaloids (nicotine),the smoke acidic alkaline balance might also played important impact on smoke bitterness.Stalk position played no significant influence on smoke sweet and played significant effectson smoke bitterness. No significant difference was observed between smoke bitterness oftobacco from different production areas. Significant difference was observed between smokesweet of tobacco from different production areas. The sweet taste of tobacco smoke fromYunnan province was significantly higher than those from other production areas.
     Most of the main sweet compounds in cigarette smoke were Maillard reaction products, theformation pathway and influence factors were investigated in a solid-phase Maillard reactionmodel between reducing sugar (glucose/fructose) and proline. TG and DSC investigationindicated that fructose was more sensitive to thermal degradation than glucose, the prolineAmadori rearrangement product and proline-reducing sugar mixture all underwentsolid-phase reaction at around150℃.122Compounds were identified in the reactionproducts from proline-furctose/glucose mixture conducted under different temperature, and86of the122compounds was also detected in cigarette smoke, especially ketones, furans andpyrans. In General, the higher the temperature, the higher the product number and content.However, DDMP was efficiently produced in lower temperature. Compared withproline-fructose mixture, proline-glucose mixture produced more DDMP, maltol and2-acetylfuran, and less methyl cyclopentenolone. Proline showed higher reactivity than other aminoacids when reacted with glucose and produced major furaneol and DDMP, this mainlyattributed to the special molecular structure of proline. Proline is good catalyst for aldolreaction as well as Maillard reaction. Oxygen concentration played no obvious effects onfuraneol and DDMP formation. Reaction ratio played significant influence on furaneol and DDMP formation. Their formation was greatly enhanced when reducing sugar was excessiveand reached the highest level with a molar ratio of reducing sugar to proline at2:1. Theirformation was supressed when proline was excessive. DDMP yield increased with time at firstand then slowly decreased after the peak was achieved. The peak value increased withtemperature and then seemed to achieved a plateau. The kinetics research showed that DDMPformation in the initial stage followed the first order kinetics with an activation energy of68.8kJ/mol.
引文
[1] Davis D L, Nielsen M T主编.烟草:生产,化学和技术[M].国家烟草专卖局科技教育司译.北京:化学工业出版社,2003.250-400.
    [2]许建营.烟草工艺与调香技术[M].北京:中国纺织出版社,2007.1-45.
    [3]夏延斌,迟玉杰,朱旗.食品风味化学[M].北京:化学工业出版社,2008.1-88.
    [4]冯涛,田怀香,陈福玉.食品风味化学[M].北京:中国质检出版社,中国标准出版社,2013.1-40.
    [5] Tournier C, Sulmont-Rossé C, Sémon E, et al. A study on texture–taste–aroma interactions:Physico-chemical and cognitive mechanisms [J]. International Dairy Journal,2009,19(8):450-458.
    [6] Noble A C. Taste-aroma interactions [J]. Trends in Food Science&Technology,1996,7(12):439-444.
    [7] Leffingwell J C, Young H J, Bernasek E. Tobacco flavoring for smoking products [M]. Winston-Salem:RJ Reynolds Tobacco Company,1972.1-52.
    [8]史宏志,刘国顺.烟草香味学[M].中国农业出版社,1998.1-40.
    [9]景延秋,宫长荣,张月华等.烟草香味物质分析研究进展[J].中国烟草科学,2005,(2):44-48.
    [10] Roberts D L. Natural tobacco flavor [J]. Recent Adv Tob Sci,1988,14,49-81.
    [11] Mookherjee B, Wilson R A. Tobacco constituents-Their importance in flavor and fragrance chemistry[J]. Perfumer&flavorist,1990,15(1):27-49.
    [12] Leffingwell J, Leffingwell D. Chemical and sensory aspects of tobacco flavor [J]. Rec Adv Tob Sci,1988,14,169-218.
    [13] Talhout R, Opperhuizen A, Van Amsterdam J G C. Sugars as tobacco ingredient: Effects onmainstream smoke composition [J]. Food and Chemical Toxicology,2006,44(11):1789-1798.
    [14] O'donnell J F E, Williams J R. Tobacco and related products[P].美国专利,5845647.1998-12-8.
    [15]徐轲.卷烟感官指标消费者评价方法[J].中国烟草科学,2010,31(1):53-55.
    [16]申玉军,邓国栋,陈良元等.一种烟草感官评价分析方法的建立及应用[J].烟草科技,2011,(5):15-18.
    [17]王玉玺,徐福缘,肖作兵.基于PLS-BP神经网络的卷烟味觉特征预测[J].科学与管理,2010,12(5):24-26.
    [18]钟汝鹏,王玉玺,徐福缘,肖作兵.基于UVE-SPA的卷烟味觉烟气成分分析[J].科技与管理,2011,13(2):40-43.
    [19]黄梅丽,王俊卿.食品色香味化学[M].第二版.北京:中国轻工业出版社,2008.140-232.
    [20] Max M, Shanker Y G, Huang L, et al. Tas1r3, encoding a new candidate taste receptor, is allelic to thesweet responsiveness locus Sac [J]. Nat Genet,2001,28(1):58-63.
    [21] Temussi P A. Sweet, bitter and umami receptors: a complex relationship [J]. Trends in BiochemicalSciences,2009,34(6):296-302.
    [22] Scott K. The sweet and the bitter of mammalian taste [J]. Current Opinion in Neurobiology,2004,14(4):423-427.
    [23] Shallenberger R S, Acree T E. Molecular theory of sweet taste [J]. Nature,1967,216(5114):480-482.
    [24] Kier L B. A molecular theory of sweet taste [J]. Journal of Pharmaceutical Sciences,1972,61(9):1394-1397.
    [25]Nofre C, Tinti J-M. Sweetness reception in man: the multipoint attachment theory [J]. Food Chemistry,1996,56(3):263-274.
    [26] Dubois G E. Unraveling the biochemistry of sweet and umami tastes [J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2004,101(39):13972-13973.
    [27] Adler E, Hoon M A, Mueller K L, et al. A novel family of mammalian taste receptors [J]. Cell,2000,100(6):693-702.
    [28]曾广植,魏诗泰.味觉的分子识别[M].科学出版社,1984.1-126.
    [29]郝晓霞.苦味物质研究概况[J].黄冈师范学院学报,2008,28(90-93.
    [30]曾广植.苦味物的结构规律与诱导适应的受体模型[J].生物化学与生物物理进展,1981,6:14-21.
    [31]曾广植,魏诗泰.酸味,咸味和鲜味的化学[J].中国调味品,1982,2:85-87.
    [32]白蓝.味觉与呈味物质[J].生物学通报,1991,4:10-12.
    [33]曾广植.味觉与呈味物结构特征[J].科学,1987,39(3):224-228.
    [34]张洪渊.味觉的化学[J].生物学通报,1990,(5):18-20.
    [35] Shallenberger R. Taste chemistry principles [M]. Springer US.1993:47-109.
    [36] Lindemann B. Receptors and transduction in taste [J]. Nature,2001,413(6852):219-225.
    [37] Keast R S J, Breslin P A S. An overview of binary taste–taste interactions [J]. Food Quality andPreference,2003,14(2):111-124.
    [38] Green B G, Lim J, Osterhoff F, et al. Taste mixture interactions: Suppression, additivity, and thepredominance of sweetness [J]. Physiology&Behavior,2010,101(5):731-737.
    [39] Rodgman A, Perfetti T A. The chemical components of tobacco and tobacco smoke [M]. CRC press,2013.
    [40] Dube M F, Green C R. Methods of collection of smoke for analytical purposes [J]. Recent Advances inTobacco Science,1982,8:42-102.
    [41] Hecht S, Schmeltz I, Hoffmann D. Nitrogenous compounds in cigarette smoke and their possibleprecursors [J]. Rec Adv Tob Sci,1977,3:59-93.
    [42]闫克玉.卷烟烟气化学[M].郑州:郑州大学出版社,2002.1-43.
    [43] Schmeltz I, Schlotzhauer W, Higman E. Characteristic products from pyrolysis of nitrogenous organicsubstances [J]. Beitra ge zur Tabakforschung,1972,6:134-138.
    [44] Fors S. Sensory properties of volatile Maillard reaction products and related compounds [C]. ACSSymposium series-American Chemical Society (USA).1983-4-29.
    [45] Baker R R, Massey E D, Smith G. An overview of the effects of tobacco ingredients on smokechemistry and toxicity [J]. Food and Chemical Toxicology,2004,42:53-83.
    [46] Green C. Neutral oxygenated compounds in cigarette smoke and their possible precursors [J]. RecentAdvances in Tobacco Science,1977,3:94-120.
    [47] Roemer E, Schorp M K, Piadé J-J, et al. Scientific assessment of the use of sugars as cigarette tobaccoingredients: A review of published and other publicly available studies [J]. Critical Reviews in Toxicology,2012,42(3):244-278.
    [48] Sanders E B, Goldsmith A I, Seeman J I. A model that distinguishes the pyrolysis of d-glucose,d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smokeformation [J]. Journal of analytical and applied pyrolysis,2003,66(1–2):29-50.
    [49] Baker R R. Sugars, carbonyls and smoke [J]. Food and Chemical Toxicology,2007,45(9):1783-1786.
    [50] Leffingwell J. Nitrogen components of leaf and their relationship to smoking quality and aroma [J].Recent Advances in Tobacco Science,1976,2:1-31.
    [51] Noguchi M, Satoh Y, Nishida K, et al. Studies on storage and ageing of leaf tobacco [J]. Agriculturaland Biological Chemistry,1971,35(1):65-70.
    [52] Matsukura M, Ishiguro S. Improvement to aroma and taste by adding roasted tobacco volatiles tocigarettes [J]. Agricultural and Biological Chemistry,1986,50(12):3101-3106.
    [53] Ait Ameur L, Rega B, Giampaoli P, et al. The fate of furfurals and other volatile markers during thebaking process of a model cookie [J]. Food Chemistry,2008,111(3):758-763.
    [54] Kim M-O, Baltes W. On the Role of2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one in theMaillard Reaction [J]. Journal of agricultural and food chemistry,1996,44(1):282-289.
    [55]李汉超,王淑娴.烟草,烟气化学及分析[M].河南科学技术出版社,1991.1-227.
    [56] Tso T-C, Chaplin J F. Simple correlation and multiple regression among leaf characteristics, smokecomponents, and biological responses of bright tobaccos [M]. Washington DC: Dept. of Agriculture,Agricultural Research Service,1977.
    [57] Tso T, Chaplin J, Adams J, et al. Simple correlation and multiple regression among leaf and smokecharacteristics of burley tobaccos [J]. Beitr ge zur Tabakforschung international,1982,3(11):141-150.
    [58] White F H, Pandeya R S, Dirks V A. Correlation studies among and between agronomic, chemical,physical and smoke characteristics in flue-cured tobacco (Nicotiana Tabacum L.)[J]. Canadian Journal ofPlant Science,1979,59(1):111-120.
    [59]王允白,王宝华,郭承芳等.影响烤烟评吸质量的主要化学成分研究[J].中国农业科学,1998,1(31):89-91.
    [60]杜咏梅,郭承芳,张怀宝等.水溶性糖、烟碱、总氮含量与烤烟吃味品质的关系研究[J].中国烟草科学,2000,1:7-10.
    [61]王惠文,吴载斌.偏最小二乘回归的线性与非线性方法[M].国防工业出版社,2006.1-127.
    [62]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.67-234.
    [63] Ribeiro J S, Ferreira M M, Salva T J. Chemometric models for the quantitative descriptive sensoryanalysis of Arabica coffee beverages using near infrared spectroscopy [J]. Talanta,2011,83(5):1352-1358.
    [64] Tenenhaus M, Pagès J, Ambroisine L, et al. PLS methodology to study relationships between hedonicjudgements and product characteristics [J]. Food Quality and Preference,2005,16(4):315-325.
    [65] Aznar M, López R, Cacho J, et al. Prediction of aged red wine aroma properties from aroma chemicalcomposition. partial least squares regression models [J]. Journal of agricultural and food chemistry,2003,51(9):2700-2707.
    [66] Campo E, Ferreira V, Escudero A, et al. Prediction of the wine sensory properties related to grapevariety from dynamic-headspace gas chromatography olfactometry data [J]. Journal of agricultural andfood chemistry,2005,53(14):5682-5690.
    [67]李振庆黄,倪一,丁海峰,汤洁蔚,窦晓鸣.改进偏最小二乘法在近红外牛奶成分测量中的应用[J].光学技术,2009,35(1):70-73.
    [68]杜发兴徐.偏最小二乘回归模型在城市需水预测中的应用[J].水文水资源,2008,34(6):20-23.
    [69]王瑞新,韩富根,卢红,闫克玉.烟草化学[M].北京:中国农业出版社,2003.16-158.
    [70] Baker R R, Bishop L J. The pyrolysis of tobacco ingredients [J]. Journal of analytical and appliedpyrolysis,2004,71(1):223-311.
    [71] Baker R R, Bishop L J. The pyrolysis of non-volatile tobacco ingredients using a system that simulatescigarette combustion conditions [J]. Journal of analytical and applied pyrolysis,2005,74(1–2):145-170.
    [72] Wnorowski A, Yaylayan V A. Influence of pyrolytic and aqueous-phase reactions on the mechanism offormation of maillard products [J]. Journal of agricultural and food chemistry,2000,48(8):3549-3554.
    [73] Huyghues-Despointes A, Yaylayan V A, Keyhani A. Pyrolysis/GC/MS analysis of1-[(2'-carboxyl)pyrrolidinyl]-1-deoxy-D-fructose (Proline Amadori Compound)[J]. Journal of agriculturaland food chemistry,1994,42(11):2519-2524.
    [74] Yaylayan V A, Keyhani A. Origin of2,3-pentanedione and2,3-butanedione in d-glucose/l-alanineMaillard model systems [J]. Journal of agricultural and food chemistry,1999,47(8):3280-3284.
    [75]Purlis E. Browning development in bakery products–A review [J]. Journal of Food Engineering,2010,99(3):239-249.
    [76] Claus A, Carle R, Schieber A. Acrylamide in cereal products: A review [J]. Journal of Cereal Science,2008,47(2):118-133.
    [77] Nishibori S, Bernhard R A. Model system for cookies: Volatile components formed from the reactionof sugar and beta-alanine [J]. Journal of agricultural and food chemistry,1993,41(12):2374-2377.
    [78] Nishibori S, Kawakishi S. Effects of dough materials on flavor formation in baked cookies [J]. Journalof Food Science,1990,55(2):409-412.
    [79] Nishibori S, Kawakishi S. Formation of2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one fromfructose and beta-alanine under conditions used for baking [J]. Journal of agricultural and food chemistry,1994,42(5):1080-1084.
    [80] Ameur L A, Mathieu O, Lalanne V, et al. Comparison of the effects of sucrose and hexose on furfuralformation and browning in cookies baked at different temperatures [J]. Food Chemistry,2007,101(4):1407-1416.
    [81] Capuano E, Fogliano V. Acrylamide and5-hydroxymethylfurfural (HMF): A review on metabolism,toxicity, occurrence in food and mitigation strategies [J]. LWT-Food Science and Technology,2011,44(4):793-810.
    [82]Mills F D, Hodge J E. Amadori compounds: vacuum thermolysis of1-deoxy-1-l-prolino-d-fructose [J].Carbohydrate Research,1976,51(1):9-21.
    [83] Keyhani A, Yaylayan V A. Pyrolysis/GC/MS analysis of N-(1-Deoxy-d-fructos-1-yl)-l-phenylalanine:identification of novel pyridine and naphthalene derivatives [J]. Journal of agricultural and food chemistry,1996,44(1):223-229.
    [84] Coleman I W M, Chung H L. Pyrolysis GC–MS analysis of Amadori compounds derived fromselected amino acids and glucose [J]. Journal of analytical and applied pyrolysis,2002,62(2):215-223.
    [85] Coleman W M, Chung H L. Pyrolysis GC-MS analysis of Amadori compounds derived from selectedamino acids with glucose and rhamnose [J]. Journal of analytical and applied pyrolysis,2002,63(2):349-366.
    [86]何佳文,张敦铁,殷发强.1-L-脯氨酸-1-脱氧-D-果糖的热解研究[J].华中科技大学学报(自然科学版),2006,34(7):122-124.
    [87]毛多斌,鞠华波,牟定荣等.1-L-亮氨酸-1-脱氧-D-果糖和1-L-异亮氨酸-1-脱氧-D-果糖的热裂解分析[J].中国烟草学报,2010,16(6):1-9.
    [88]洪华俏,郭紫明,易克等.卷烟主流烟气的中性和碱性香气成分分析[J].湖南农业科学,2008,3:140-142.
    [89]庞永强,王菲,陈再根等.不同捕集方式下卷烟主流烟气成分的GC-MS分析[J].质谱学报,2009,30(2):124-128.
    [90] Forehand J B, Dooly G L, Moldoveanu S C. Analysis of polycyclic aromatic hydrocarbons, phenolsand aromatic amines in particulate phase cigarette smoke using simultaneous distillation and extraction as asole sample clean-up step [J]. Journal of Chromatography A,2000,898(1):111-124.
    [91] Pieraccini G, Furlanetto S, Orlandini S, et al. Identification and determination of mainstream andsidestream smoke components in different brands and types of cigarettes by means of solid-phasemicroextraction-gas chromatography-mass spectrometry [J]. Journal of chromatography A,2008,1180(1-2):138-150.
    [92] Bao M, Joza P, Rickert W S, et al. An improved headspace solid-phase microextraction method for theanalysis of free-base nicotine in particulate phase of mainstream cigarette smoke [J]. Anal Chim Acta,2010,663(1):49-54.
    [93] Watson C H, Ashley D L. Quantitative analysis of acetates in cigarette tobacco using solid-phasemicroextraction and gas chromatography-mass spectrometry [J]. Journal of Chromatographic Science,2000,38(4):137-144.
    [94] Adahchour M, Beens J, Brinkman U A. Recent developments in the application of comprehensivetwo-dimensional gas chromatography [J]. Journal of chromatography A,2008,1186(1-2):67-108.
    [95] Dallüge J, Vreuls R J J, Beens J, et al. Optimization and characterization of comprehensivetwo-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC×GC-TOF MS)[J]. Journal of separation science,2002,25:201-214.
    [96] Dallüge J, Van Stee L L P, Xu X, et al. Unravelling the composition of very complex samples bycomprehensive gas chromatography coupled to time-of-flight mass spectrometry: Cigarette smoke [J].Journal of Chromatography A,2002,974(1–2):169-184.
    [97] Lu X, Cai J, Kong H, et al. Analysis of cigarette smoke condensates by comprehensivetwo-dimensional gas chromatography/time-of-flight mass spectrometry I acidic fraction [J]. AnalyticalChemistry,2003,75(17):4441-4451.
    [98] Lu X, Zhao M, Kong H, et al. Characterization of cigarette smoke condensates by comprehensivetwo-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC/TOFMS) Part2: Basicfraction [J]. Journal of separation science,2004,27(1-2):101-109.
    [99] Lu X, Zhao M, Kong H, et al. Characterization of complex hydrocarbons in cigarette smokecondensate by gas chromatography–mass spectrometry and comprehensive two-dimensional gaschromatography–time-of-flight mass spectrometry [J]. Journal of Chromatography A,2004,1043(2):265-273.
    [100] Gr ger T, Welthagen W, Mitschke S, et al. Application of comprehensive two-dimensional gaschromatography mass spectrometry and different types of data analysis for the investigation of cigaretteparticulate matter [J]. Journal of separation science,2008,31(19):3366-3374.
    [101]全国烟草标准化技术委员会.卷烟主流烟气中主要酚类化合物的测定高效液相色谱法[S].北京:中国标准出版社.2008.
    [102]鲁喜梅,谢复炜,刘晖等.卷烟主流烟气总粒相物中挥发性和半挥发性有机酸的分析[J].烟草科技,2009,6:24-29.
    [103]吕健,齐祥明,徐海涛等.卷烟主流烟气中单糖成分的分析研究[J].安徽农学通报,2009,15(18):30-32.
    [104] Van Den Dool H, Dec. Kratz P. A generalization of the retention index system including lineartemperature programmed gas-liquid partition chromatography [J]. Journal of Chromatography A,1963,11(0):463-471.
    [105]王璐,耿永勤,王岚等.烟草中主要糖的高效液相色谱测定研究[J].云南大学学报(自然科学版),2004,26:199-202.
    [106]吕健,齐祥明,徐海涛等.卷烟主流烟气中单糖成分的分析研究[J].安徽农学通报,2009,18(15):30-33.
    [107]侯冰,齐祥明,徐海涛等.高效液相色谱法测定卷烟主流烟气中甘露糖和葡萄糖含量[J].安徽农业科学,2008,26(36):11179-11183.
    [108]陈章玉罗,武怡,曾晓鹰.烟气中有机酸的分析[J].色谱,2001,19(4):374-377.
    [109] Dallüge J, Beens J, Brinkman U a T. Comprehensive two-dimensional gas chromatography: apowerful and versatile analytical tool [J]. Journal of Chromatography A,2003,1000(1-2):69-108.
    [110] Laitinen T, Martín S H, Parshintsev J, et al. Determination of organic compounds from woodcombustion aerosol nanoparticles by different gas chromatographic systems and by aerosol massspectrometry [J]. Journal of Chromatography A,2010,1217(1):151-159.
    [111]王丽苹,任凤莲,谢慧玲.卷烟主流烟气中挥发性羰基化合物分析研究进展[J].广州化学,2008,33(2):72-79.
    [112]李响丽,李国智,范多青等.卷烟主流烟气中8种羰基化合物的超高效液相色谱测定[J].分析测试学报,2012,1:56-61.
    [113]韩冰刘,谢复炜,蔡君兰.卷烟主流烟气中挥发和半挥发性成分分析[J].烟草科技,2009,10:32-40.
    [114] Chaintreau A. Simultaneous distillation–extraction: from birth to maturity—review [J]. Flavour andFragrance Journal,2001,16(2):136-148.
    [115] Li Y, Pang T, Guo Z, et al. Accelerated solvent extraction for GC-based tobacco fingerprinting and itscomparison with simultaneous distillation and extraction [J]. Talanta,2010,81(1-2):650-656.
    [116] Sakaguchi Y K a S. Free sugars in cigarette smoke [J]. Tobacco science,1959,3(161-163.
    [117] Bianchi F, Careri M, Chiavaro E, et al. Gas chromatographic–mass spectrometric characterisation ofthe Italian Protected Designation of Origin “Altamura” bread volatile profile [J]. Food Chemistry,2008,110(3):787-793.
    [118] Martins S I F S, Jongen W M F, Van Boekel M A J S. A review of Maillard reaction in food andimplications to kinetic modelling [J]. Trends in Food Science&Technology,2001,11(9–10):364-373.
    [119] Wnorowski A, Yaylayan V A. Influence of pyrolytic and aqueous-phase reactions on the mechanismof formation of Maillard products [J]. Journal of agricultural and food chemistry,2000,48(3549-3554.
    [120] Davidek T, Clety N, Devaud S, et al. Simultaneous quantitative analysis of maillard reactionprecursors and products by high-performance anion exchange chromatography [J]. J Agric Food Chem,2003,51(25):7259-7265.
    [121]叶楠.卷烟烟气味觉研究以及预测模型建立[D].上海:华东理工大学,2011.
    [122]章平泉,龚珍林,杜秀敏等.主成分分析-支持向量机在卷烟主流烟气分析中的应用[J].中国烟草学报,2010,16(6):21-24.
    [123] Van Den Ouweland G a M, Peer H G. Synthesis of3,5-dihydroxy-2-methyl-5,6-dihydropyran-4-onefrom aldohexoses and secondary amine salts [J]. Recueil des Travaux Chimiques des Pays-Bas,1970,89(7):750-754.
    [124]卢斌斌,刘惠民,谢剑平.卷烟烟气pH的测定及其与烟碱存在状态的关系综述[J].烟草科技,2002,5:19-22.
    [125]李庆华,王保兴,杨叶坤等.烟叶原料对卷烟主流烟气水分的影响[J].烟草科技,2010,5):24-28.
    [126]曾广植.苦味物的结构规律与诱导适应的受体模型[J].生物化学与生物物理进展,1981,6:14-21.
    [127] Leffingwell J C, Leffingwell D. GRAS flavor chemicals-detection thresholds [J]. Perfumer Flavorist,1991,16(1):1-19.
    [128] Mcneill A D, Jarvis M J, Stapleton J A, et al. Nicotine intake in young smokers: longitudinal study ofsaliva cotinine concentrations [J]. American Journal of Public Health,1989,79(2):172-175.
    [129]谢剑平.烟草香原料[M].北京:化学工业出版社,2009.23-105.
    [130]李国栋,于建军,董顺德等.河南烤烟化学成分与烟气成分的相关性分析[J].烟草科技,2001,(8):28-30.
    [131]石凤学,王浩雅,张涛等.卷烟感官质量与烟气成分、烟支物理指标、化学成分间的相关性[J].南方农业学报,2013,44(3):486-492.
    [132]朱大恒,李彩霞,张爱忠等.烟气有害成分与烟叶化学成分的关系[J].烟草科技,1999,4:25-27.
    [133]杨忠乔,虞爱旭,侯镜德等.气相色谱-质谱联用法分析烟丝中有机酸成分[J].分析测试技术与仪器,2003,9(1):38-42.
    [134]岳骞,杨虹琦,周冀衡等. HPLC分析烤烟绿原酸和芸香苷研究初报[J].云南农业大学学报,2007,22(6):834-838.
    [135]杨虹琦,周冀衡,邵岩等.不同产地烤烟叶中绿原酸和芸香苷的含量分析[J].天然产物研究与开发,2006,18(670-673.
    [136]高树鹏刘志华,古昆等.茄酮的合成研究进展[J].云南化工,2005,32(5):49-51.
    [137]刘丁伟,赵磊,王建民等.烟气烟碱量与烟碱转移率的关系[J].湖北农业科学,2011,50(11):2323-2325.
    [138]王轶任,石俊雄,周淑平等.产地、部位和颜色对初烤烟叶石油醚提取物的影响[J].中国烟草学报,2008,14(2):15-19.
    [139] Chiavari G, Galletti G C. Pyrolysis—gas chromatography/mass spectrometry of amino acids [J].Journal of analytical and applied pyrolysis,1992,24(2):123-137.
    [140] R. A. Heckman M F D, D. Lynm, J. M. Rivers. The Role of tobacco leaf precursors in cigaretteflavor [J]. Recent Advances in Tobacco Science,1981,7:107-153.
    [141]徐安传,胡巍耀,段俊杰等.烟叶内含糖类和多酚类组分对其主流烟气水分的影响[J].食品工业,2013,34(1):46-48.
    [142] Shaw P E, Tatum J H, Berry R E.2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, adegradation product of a hexose [J]. Carbohydrate Research,1971,16(1):207-211.
    [143] Yaylayan V A, Mandeville S. Stereochemical control of maltol formation in Maillard reaction [J].Journal of agricultural and food chemistry,1994,42(3):771-775.
    [144] Kallianos A. Phenolics and acids in leaf and their relationship to smoking quality and aroma [J].Recent Advances in Tobacco Science,1976,2:61-79.
    [145]刘静,侯英,杨蕾等.烟草中多酚热裂解产物研究[J].化学研究与应用,2011,23(1):63-65.
    [146] Sakuma H, Matsushima S, Munakata S, et al. Pyrolysis of chlorogenic acid and rutin [J]. Agriculturaland Biological Chemistry,1982,46(5):1311-1317.
    [147] Schlotzhauer W S, Martin R M, Snook M E, et al. Pyrolytic studies on the contribution of tobaccoleaf constituents to the formation of smoke catechols [J]. Journal of agricultural and food chemistry,1982,30(2):372-374.
    [148]马爱国,宋德伟,孙在明等.不同部位烟叶外观特征与内在质量分析研究[J].山东农业科学,2009,5:48-51.
    [149]孙伟峰.利用酶法和外加香料法对下部烟叶的增香提质研究[D].无锡:江南大学食品学院,2013.
    [150]戴冕.我国主产烟区若干气象因素与烟叶化学成分关系的研究[J].中国烟草学报,2000,6(1):27-34.
    [151]邵惠芳,任晓红,刘余里等.云南烤烟主产烟区烟叶化学成分比较分析[J].安徽农业科学,2007,35(7):1957-1959.
    [152] Fagerson I S. Thermal degradation of carbohydrates; a review [J]. Journal of agricultural and foodchemistry,1969,17(4):747-750.
    [153] Evans R J, Wang D, Agblevor F A, et al. Mass spectrometric studies of the thermal decomposition ofcarbohydrates using13C-labeled cellulose and glucose [J]. Carbohydrate Research,1996,281(2):219-235.
    [154]郭俊成,张悠金,舒俊生等.烟用美拉德反应香料研究[J].安徽农业大学学报,2002,29(1):95-99.
    [155] Ashoor S H, Zent J B. Maillard browning of common amino acids and sugars [J]. Journal of FoodScience,1984,49(4):1206-1207.
    [156] Blank I, Devaud S, Matthey-Doret W, et al. Formation of odorants in Maillard model systems basedon L-proline as affected by pH [J]. Journal of agricultural and food chemistry,2003,51(12):3643-3650.
    [157] Britt P F, Buchanan A C, Owens Jr C V, et al. Does glucose enhance the formation of nitrogencontaining polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis ofproline?[J]. Fuel,2004,83(11–12):1417-1432.
    [158] Yang S S, Smetena I. Determination of free amino acids in tobacco by HPLC with fluorescencedetection and precolumn derivatization [J]. Chromatographia,1993,37(11-12):593-598.
    [159] Pavlath A E, Gregorski K S. Atmospheric pyrolysis of carbohydrates with thermogravimetric andmass spectrometric analyses [J]. Journal of analytical and applied pyrolysis,1985,8(0):41-48.
    [160] Wang W, Wang Y, Yang L, et al. Studies on thermal behavior of reconstituted tobacco sheet [J].Thermochimica Acta,2005,437(1–2):7-11.
    [161] Ali H, Patzold R, Bruckner H. Determination of L-and D-amino acids in smokeless tobacco productsand tobacco [J]. Food Chemistry,2006,99(4):803-812.
    [162] Yu X Y, Zhao M Y, Hu J, et al. Influence of pH on the formation and radical scavenging activity ofvolatile compounds produced by heating glucose with histidine/tyrosine [J]. European Food Research andTechnology,2012,234(2):333-343.
    [163] Yu X, Zhao M, Hu J, et al. Formation and antioxidant activity of volatile compounds produced byheating glucose with tyrosine/histidine in water-ethanol and water-glycerol media [J]. Food Chemistry,2012,133(4):1394-1401.
    [164] Yu X, Zhao M, Hu J, et al. Correspondence analysis of antioxidant activity and UV–Vis absorbanceof Maillard reaction products as related to reactants [J]. LWT-Food Science and Technology,2012,46(1):1-9.
    [165] Hwang I G, Kim H Y, Woo K S, et al. Biological activities of Maillard reaction products (MRPs) in asugar–amino acid model system [J]. Food Chemistry,2011,126(1):221-227.
    [166] Dills W L. Protein fructosylation: fructose and the Maillard reaction [J]. The American Journal ofClinical Nutrition,1993,58(5):779S-787S.
    [167] List B, Lerner R A, Barbas C F. Proline-catalyzed direct asymmetric aldol reactions [J]. Journal of theAmerican Chemical Society,2000,122(10):2395-2396.
    [168] Moens L, Evans R J, Looker M J, et al. A comparison of the Maillard reactivity of proline to otheramino acids using pyrolysis-molecular beam mass spectrometry [J]. Fuel,2004,83(11–12):1433-1443.
    [169] Sakthivel K, Notz W, Bui T, et al. Amino acid catalyzed direct asymmetric aldol reactions: abioorganic approach to catalytic asymmetric carbon carbon bond-forming reactions [J]. Journal of theAmerican Chemical Society,2001,123(22):5260-5267.
    [170] Yeo H, Shibamoto T. Effects of moisture content on the Maillard browning model system uponmicrowave irradiation [J]. Journal of agricultural and food chemistry,1991,39(10):1860-1862.
    [171] Ledl F, Schleicher E. New Aspects of the Maillard reaction in foods and in the human body [J].Angewandte Chemie International Edition in English,1990,29(6):565-594.
    [172] Angyal S. The Lobry de Bruyn-Alberda van Ekenstein transformation and related reactions [M].Glycoscience. Springer Berlin Heidelberg.2001:1-14.
    [173] Brands C M J, Van Boekel M a J S. Reactions of monosaccharides during heating of sugar caseinsystems: building of a reaction network model [J]. Journal of agricultural and food chemistry,2001,49(10):4667-4675.
    [174] Martins S I F S, Van Boekel M a J S. A kinetic model for the glucose/glycine Maillard reactionpathways [J]. Food Chemistry,2005,90(1–2):257-269.
    [175] Isabelle Cutzach P C a D D. Study of the formation mechanisms of some volatile compounds duringthe aging of sweet fortified wines.[J]. Journal of agricultural and food chemistry,1999,47(2837-2846.
    [176] Pilková L, Pokorny J, Davídek J. Browning reactions of Heyns rearrangement products [J]. Food/Nahrung,1990,34(8):759-764.
    [177] Litchfield J E, Thorpe S R, Baynes J W. Oxygen is not required for the browning and crosslinking ofprotein by pentoses: relevance to Maillard reactions in vivo [J]. The International Journal of Biochemistry&Cell Biology,1999,31(11):1297-1305.
    [178] Friedman M. Food browning and Its prevention: An overview [J]. Journal of agricultural and foodchemistry,1996,44(3):631-653.
    [179] Van Boekel M a J S, Martins S I F S. Fate of glycine in the glucose–glycine reaction: a kineticanalysis [J]. International Congress Series,2002,1245(0):289-293.
    [180] Yaylayan V A, Mandeville S. Mechanistic pathway for the formation of maltoxazine from intact1-[(2'-Carboxyl)Pyrrolidinyl]-1-deoxy-D-fructose (Amadori-Proline)[J]. Journal of agricultural and foodchemistry,1994,42(9):1841-1844.
    [181] Wnorowski A, Yaylayan V A. Prediction of process lethality through measurement ofMaillard-generated chemical markers [J]. Journal of Food Science,2002,67(6):2149-2152.