低氧诱导因子1与心血管系统疾病的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分2型糖尿病患者血清HIF-1α与冠脉钙化之间的关系研究背景
     动脉粥样硬化是迄今为止导致冠心病、脑卒中、外周动脉血管疾病最常见的病因,有着较高的发病率和死亡率。动脉粥样硬化斑块损害的进展与巨噬细胞脂质超载、局部炎症和血管增加有关,而动脉钙化是动脉粥样硬化突出的特征,能被放射成像技术如EBCT快速、无创性的定量。既往研究研究结果证明大量的冠脉钙化能预测心梗和猝死风险的增加。在糖尿病患者,动脉钙化既可作为粥样斑的成分(内膜钙化),也可以在没有粥样硬化斑块的情况下产生(中膜钙化或蒙氏硬化)。中膜钙化和糖尿病的严重程度和/或持续时间有关,一般影响不易发生动脉粥样硬化的动脉。虽然有一些报道提示中膜钙化和心血管并发症风险的增加有关,但这并不是一致的发现。特别是,冠状动脉中膜钙化很少见,意味着一旦在冠脉中发现钙化,几乎可以肯定和内膜斑块有关。目前已被证明,内膜粥样斑块病变的钙化不仅是慢性血管炎症的被动后果,而是一个主动的过程,能导致钙化和炎症的正反馈,促使动脉粥样硬化疾病进一步进展。现代研究显示血管和骨骼钙化具有相似性,提示在心血管疾病的发展中成骨和钙化因素具有调控作用。
     冠心病的发生发展是一个动态变化、缓慢进行的病理生理过程。有研究表明,约50%-60%的心肌梗死发生于冠状动脉没有明确梗阻性狭窄无典型症状的患者22。对于这些无心血管症状患者,如何早期发现冠状动脉粥样硬化病变情况,包括斑块负荷及狭窄变化,早期进行干预和控制就显得具有重要的临床意义。冠状动脉钙化(coronary artery calcification, CAC)几乎存在于所有的动脉粥样硬化病变中,是动脉粥样硬化的特征23-24。在动脉粥样硬化早期的管壁中就可以发现钙化斑块的沉积。冠脉钙化积分可以反映粥样斑块的负荷情况,有助于早期发现不稳定斑块,从而对患者进行早期干预,进而防止恶性心血管事件的发生。
     在人类动脉粥样硬化的巨噬细胞聚集区域检测到了低氧环境的存在,证实了低氧存在于动脉粥样硬化斑块中。低氧可能通过促进脂质聚集、增加炎症和血管新生而促进斑块损害进展。在动脉粥样硬化早期,致动脉粥样硬化的脂质蛋白被巨噬细胞从动脉内膜清除,通过积累而形成泡沫细胞。低氧增加巨噬细胞脂滴形成,促进炎症介质的增加。脂滴在介导炎症反应时具有一定的作用。有些文献认为,斑块深层的低氧可通过激活某些血管生成蛋白诱导血管新生。
     低氧诱导因子作为低氧的关键调节物,通过激活和促进泡沫细胞形成、诱导内皮细胞功能障碍、细胞凋亡和增加炎症、血管形成等机制,在动脉粥样硬化的进展中具有着重要的作用。氧平衡的破坏可促成动脉粥样硬化的形成。当动脉粥样硬化进展时,由于动脉壁厚度的增加,氧气弥散进入动脉内膜是显著的减少。当细胞供氧减少时,转录因子低氧诱导因子1(Hypoxia-inducible factor1,HIF-1)在细胞适应低氧环境时起着核心的作用。另外,HIF-1可促成动脉粥样硬化各组成成分的功能障碍,增加局部炎症和血管形成。HIF-1对冠脉钙化有无影响,目前还没有临床研究来证实。
     目标:
     低氧诱导因子(HIF-1)是维持氧平衡的关键因素,由HIF-1α和HIF-1β两个亚基组成,目前发现组织中的HIF-1与软骨和血管钙化相关。本研究的目标是明确在2型糖尿病患者中,外周循环中的HIF-1α水平和冠脉钙化(CAC)之间有无相关性。
     方法:
     根据ADA和WHO指南,405名既往无心血管疾病证据的2型糖尿病患者被连续纳入研究,具有任何排除标准者将不被纳入。选择标准是2型糖尿病发病持续时间大于一年且发病年龄>35岁。患者具有下列情形将不被纳入研究,包括:心衰或心肌病史,冠心病,静息心电图异常(如Q波,LBBB),脑血管或外周动脉疾病,肾功能不全,乙型、丙型肝炎或已知的其他肝脏疾病,肝脏转氨酶超过正常上限3倍,溶血性疾病,大量饮酒史者,肿瘤、甲状腺疾病,急性传染/炎症情形,使用肝脏毒性药物。同时完成体格检查,记录包括身高、体重指数(body mass index, BMI)、血压和12导联心电图。
     根据指南的要求记录患者危险因素情况,危险因素包括:年龄(男性>45岁,女性>55岁);现在吸烟,定义为在过去的1个月中吸烟;一级亲属早发心血管病家族史(父母、兄弟姐妹或子女,男性<55岁,女性<65岁);高血压,定义为收缩压/舒张压140/90mmHg或正在服用降压药物治疗;血脂异常,定义为血清总胆固醇>2OOmg/dl或甘油三脂>1.7mmol/L或HDL-C<1.04mmol/L(男)或<1.30mmol/L(女),或正在服用降脂药物治疗。所有患者UKPDS(United Kingdom Prospective Diabetes Study)风险积分于基线时被记录。
     研究人群包括262名男性和143名女性,平均年龄51.3±6.4岁。使用ELISA方法测量血清HIF-1α、IL-6(interleukin-6)水平。CAC积分由320CT进行扫描测定。根据血清HIF-1a水平将患者进行四分位数法分组。
     结果:
     血清HIF-lα平均水平为184.4±66.7pg/ml。在具有较高CAC积分的患者中,HIF-1a水平也显著的增加(P<0.001)。HIF-1α水平与CRP、IL-6、UKPDS风险积分、HbAlc、FBG和CAC积分呈显著的正相关性,但与糖尿病持续时间、年龄、LDL不相关。多元逻辑回归分析显示,HIF-1α水平能独立的预测冠脉钙化的存在。ROC曲线分析显示,HIF-1α水平能预测冠脉钙化的严重程度,但特异性低于传统的危险因素UKPDS风险积分和HbA1c。
     结论:
     作为低氧的标志物,血清HIF-1α水平可能是冠脉钙化存在的独立危险因素。本研究显示升高的血清HIF-1α水平可能涉及2型糖尿病患者的血管钙化。
     第二部分心衰患者循环中HIF-1α的表达及其与心功能之间的关系研究研究背景
     低氧诱导因子是在低氧的肝癌细胞株细胞核提取物中发现的能特异性地结合于红细胞生成素基因增强子的寡核苷酸序列,其在氧感受和低氧信号转导机制中普遍起作用。HIF-l α作为一种核转录因子,是维持体内氧稳态平衡调节的主要因子,在哺乳动物的正常生长发育过程和生理以及病理反应过程中都具有重要的作用。在人体内,目前发现HIF-1α可调控人体的100多个基因。Manalo等报道,动脉上皮细胞内的HIF-1α基因可调节超过2%的人类基因。这些基因产物在细胞增殖、葡萄糖和能量代谢、血管形成和重塑等方面具有重要作用。对HIF-1α活性的调节,未来可能成为治疗多种疾病的靶点。近年来,通过对HIF-1α调控机制的研究,我们对HIF-1α的认识达到了一个全新的水平。HIF-1α除了参与它所介导的基因适应低氧外,还有参与常氧条件下其它细胞生理和病生理过程。如正常组织或肿瘤生长、细胞生存、死亡,以及适应应激反应2等,在这种情况下HIF-1a的调节不依赖氧分压,而是依赖各种刺激物,比如生长因子和细胞因子等。HIF-1α活性的向上调节可以增加缺氧组织的血管生成;另一方面,HIF-la下调则能够阻止血管生成,从而使缺氧或炎症组织的存活能力降低。各种与HIF-lα过表达相关的疾病,如肿瘤血管重塑和其他与血管发生相关的疾病。可应用HIF-la抑制剂进行临床治疗。所以目前将HIF-lα作为治疗各类肿瘤的靶点的研究已越来越多,如结肠癌、肺癌、乳腺瘤、卵巢癌等。利用上调HIF-la活性治疗局部缺血缺氧疾病的研究也在进行中,如急性心梗、糖尿病、脑梗死等疾病的前期试验。
     在各种心脏疾病中,心肌都有不同程度的缺血缺氧。近年来基础和临床实验表明,心肌缺血可以引起HIF-1α表达明显增加,使机体对心肌缺血缺氧产生代偿性适应,如缩小急性心肌梗死患者梗死范围,促进侧支循环形成,提高心肌缺血预适应能力,启动B型尿钠肽的心脏保护性作用、参与细胞凋亡过程、减轻心肌缺血/再灌注损伤等。HIF-1α作为转录调节因子,介导了缺氧时的重要生理反应,在心血管疾病的发生发展中发挥重要作用,越来越多的研究利用转录因子HIF-1α来调控多种血管生成因子的表达,从而对缺血心肌进行基因治疗。目前针对HIF-1α的研究多局限于动物实验和急性心肌梗塞患者中。随着我国目前正逐步步入老龄化社会,充血性心力衰竭患者在门急诊就诊患者中越来越多见。如何提高这些患者的生活质量、改善他们的预后也成为了研究的热点和重点。之前有文献报道,在大鼠心衰模型中,HIF-1α能启动大鼠心肌细胞产生BNP,对心肌产生保护作用。对于心衰患者,HIF-1α是否在其体内表达,其基因表达量的多少与心功能分级是否具有平行关系,其能否预测心衰患者的预后,目前还没有研究证实。
     心衰多是各种心血管疾病终末期表现,在工业化国家和老年化社会尤其多见。心衰患者由于肺循环和体循环的淤血以及心脏泵功能衰竭致使组织灌注不足,最终导致多个器官的缺血、缺氧。正常心脏产生ATP是通过脂肪酸氧化。心衰时心肌细胞处于缺氧状态,转为利用葡萄糖作为糖酵解代谢的底物,脂肪酸被转化为脂质。这种代谢重新编程的结果是失败的,不能产生足够的ATP维持心脏功能。心脏功能的缺失以射血分数下降、LVED增加为特征并出现心衰的临床症状和体征。目前认为,从氧化代谢向糖酵解代谢转化的关键是由HIF-1介导的细胞内适应低氧。另外,通过激活PPAR-γ转录,HIF-1也介导脂肪酸向脂质合成的转化。HIF-1通过调节血管发生和血管重塑控制着氧的传递。另外。HIF-1通过调节葡萄糖代谢和氧化还原平衡控制着氧的利用。近年来的研究表明,心肌缺氧可以引起HIF-1α表达明显增加。HIF-1α作为转录调节因子,通过对下游靶基因的调节,介导了缺氧时的重要生理反应,使机体对心肌缺氧产生代偿性适应。对动物模型分析显示,HIF-1在缺血性心脏病和压力负荷型心衰的病理生理学方面具有关键性的保护作用。
     BNP是一种内源性物质,属于尿钠肽家族。它主要在心室肌细胞合成,在维持身体体液平衡和调节血压方面具有重要的作用。在心衰患者中,循环中的BNP水平和疾病的严重程度具有直接的联系。目前越来越多的使用BNP来作为心衰诊断和预后的标志物。有研究者利用人类心室肌细胞的体外模型系统,在没有血流动力学和神经激素的刺激下,证实低氧通过HIF-1α依赖机制直接增加心室肌细胞合成和分泌BNP。然而,在心衰病人中,循环中HIF-1α表达的状况以及与BNP这种心衰的标志物是否直接相关,目前仍不明确。
     目标:
     HIF-1作为转录因子介导了低氧时重要的生理反应。心衰患者由于心肌缺氧可诱导HIF-1的大量表达。在没有血流动力学和神经激素的刺激下,低氧通过HIF-1α依赖机制直接增加心室肌细胞合成和分泌BNP。因此,本研究首次利用心衰患者作为研究对象,明确HIF-1α在心衰患者的表达及其与BNP之间的关系。
     方法:
     本研究共连续纳入心衰患者76名,其中急性左心衰患者47名(61.8%),平均年龄73.4±13.4岁。我们使用了ELISA法对患者循环中的HIF-1α水平和BNP水平进行了检测。我们按患者心功能水平进行分组,并进行统计分析。结果:
     心衰患者平均血清HIF-1a水平为2.83±0.52ng/ml。心功能Ⅲ级组血清HIF-1α水平为2.67±0.48ng/ml,心功能Ⅳ级组血清HIF-1a水平为2.95±0.52ng/ml,两组之间差异具有统计学意义(P=0.018)。在急性左心衰患者中,血清HIF-1α水平也明显高于慢性心衰患者(3.02±0.44VS2.51±0.49ng/mg,P<0.01)。血清HIF-1α水平SP02,心功能分级和急性左心衰相关,与年龄、SBP、DBP、Nt-Pro BNP和TNI等不相关。血清HIF-1α水平不能独立的预测心衰患者的心功能。
     结论:
     首次在心衰患者的外周血液循环中发现了HIF-1α这种原本只存在于胞内的蛋白的存在。在我们的研究人群中,虽然血清HIF-1α水平和患者的心功能相关,但其不能独立的预测心衰患者的心功能。
Part I The Relationship Between serum hypoxia-inducible factor la and Coronary Artery Calcification in Uncomplicated type2Diabetic patients
     Background:
     Hypoxia-inducible factor1(HIF-1), as master regulators of oxygen homeostasis, a heterodimers consists of the subunits HIF-1α and HIF-1β, was implicated in calcification of cartilage and vasculature. The goal of this study was to determine the relationship of serum HIF-1α with coronary artery calcification (CAC) in patients with type2diabetes.
     Methods:
     The subjects were405asymptomatic patients with type2diabetes mellitus, included262males and143females with a mean (±SD) age of51.3±6.4years old. Serum levels of HIF-1α and interleukin-6(IL-6) were measured by ELISA. CAC scores were assessed by a320-slice CT scanner. The subjects were divided into4quartiles depending on serum HIF-1α levels.
     Results:
     The average serum HIF-1α level was184.4±66.7pg/ml.AmongpatientswithhigherCAC scores, HIF-1α levels were also significantlyincreased (P<0.001). HIF-1α levels positively correlated withCRP, IL-6, UKPDS riskscore, HbAlc, FBG and CACS, but were not correlated with diabetesduration, age and LDL. According tomultivariate logic analyses, HIF-la levels still significantly independent predict the presence of CAC. Receiver-operating characteristic curve analysis showed that serum HIF-la level can predict the extent of CAC, but the specificity was lower than the traditional risk factors UKPDS and HbAlc.
     Conclusions:
     As a marker of hypoxia, serum HIF-la level may be an independent risk factor for presence of CAC. These findings indicate that elevated serum HIF-la may be involved in vascular calcification in patients with type2diabetes mellitus.
     Part II Relationship betweenHIF-laexpression andcardiac functionamongpatients with heart failure
     Objective:
     Hypoxia-inducible factor1(HIF-1)mediates many important physiologicalreactions athypoxia situation as a transcriptionfactor. Because of myocardialhypoxia,patients with heart failure caninduceover expressionofHIF-1in vivo. In the absence of hemodynamic or neurohormonal stimuli, hypoxia directly enhances the synthesis and secretion of B-type natriuretic peptide (BNP) in ventricular myocytes, through a HIF-la dependent mechanism. Thus, we designed the first clinical study in order to evaluate the expression of HIFla in patients with heart failure and to determine its relationship with the BNP.
     Methods:
     76subjects with congestive heart failure were consecutively enlisted, included47acute left heart failure patients. The participants mean age were73.4±13.4years old. Serum levels of HIF-1α and BNP were measured by ELISA. Patients were divided into two groups according to their cardiac function and then to carry out statistical analysis.
     Results:
     The average serum HIF-la level was2.83±0.52ng/ml. The NYHA Ⅲ patient's serum HIF-1αlevels were2.67±0.48ng/ml. The NYHA Ⅳ patient's serum HIF-lalevels were2.95±0.52ng/ml. A statistically significant differencebetween two groups(P=0.018). Inpatients withacuteleftheart failure, the serum HIF-lalevels were also significantlyhigher thanin patientswith chronic heart failure (3.02±0.44VS2.51±0.49ng/ml, P<0.01). Serum HIF-la levels positively correlated with SPO2, cardiac function and acuteleftheart failure, but were not correlated with age, SBP, DBP, BNP and TNI. According tomultivariate logic analyses, HIF-1α levels cannot independently predicts the cardiac function of heart failure patients.
     Conclusions:
     Atthe peripheral bloodcirculation ofpatients with heart failure, wefirstdiscovered the existence ofHIF-lawhichoriginally only exists in the intracellular. In ourstudy population,although theserumlevels ofHIF-la was related with cardiacfunction in patients with heart failure, but was notan independent predictorof cardiac function.
引文
[1]Gregg LS. Hypoxia-Inducible Factors in Physiology and Medicine. Cell 2012;3:148.
    [2]Qingdong Ke, Max Costa. Hypoxia-Inducible Factor-1 (HIF-1) Mol Pharmacol 2006;70:1469-1480.
    [3]Olli Arjamaa, Mikko Nikinmaa. Hypoxia regulates the natriuretic peptide system. Int J Physiol Pathophysiol Pharmacol 2011;3:3:191-201.
    [4]Semenza G L. Targeting HIF-1 for cancer therapy[J]. Nature Reviews Cancer, 2003,3(10):721-732.
    [5]Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1[J]. Cancer research,2003,63(5): 1138-1143.
    [6]Volm M, Koomagi R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer [J]. Anticancer research,1999,20(3 A): 1527-1533.
    [7]Vleugel M M, Greijer A E, Shvarts A, et al. Differential prognostic impact of hypoxia induced and diffuse HIF-1α expression in invasive breast cancer [J]. Journal of clinical pathology,2005,58(2):172-177.
    [8]Horiuchi A, Imai T, Shimizu M, et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells[J]. Anticancer research,2002,22(5):2697.
    [9]Bosch-Marce, M., Okuyama, H., Wesley, J.B., Sarkar, K., Kimura, H., Liu, Y.V., Zhang, H., Strazza, M., Rey, S., Savino, L., et al. (2007). Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ. Res.101,1310-1318.
    [10]Rey, S., Lee, K., Wang, C.J., Gupta, K., Chen, S., McMillan, A., Bhise, N., Levchenko, A., and Semenza, G.L. (2009). Synergistic effect of HIF-1a gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc. Nad. Acad. Sci. USA 106,20399-20404.
    [11]Bernaudin M, Nedelec A S, Divoux D, et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain[J]. Journal of Cerebral Blood Flow & Metabolism,2002,22(4):393-403.
    [12]Thangarajah H, Vial I N, Grogan R H, et al. HIF-lalpha dysfunction in diabetes[J]. Cell Cycle,2010,9(1):75-79.
    [13]Gessi S, Fogli E, Sacchetto V, et al. Adenosine modulates HIF-la, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells [J]. Arteriosclerosis, thrombosis, and vascular biology,2010,30(1):90-97.
    [14]Wang P, Qi H, Sun C, et al. Overexpression of Hypoxia-Inducible Factor-la Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia[J]. Cellular Physiology and Biochemistry,2013,32(4):859-870.
    [15]Kent B D, McNicholas W T, Ryan S, et al. High Sensitivity Of Human Adipocytes To Intermittent Hypoxia Promotes Activation Of Pro-Inflammatory Pathways[J]. Am J Respir Crit Care Med,2013,187:A2377.
    [16]Xiang L, Gilkes D M, Chaturvedi P, et al. Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer [J]. Journal of Molecular Medicine,2014,92(2):151-164.
    [17]Sluimer JC, Gasc JM, van Wanroij JL, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 2008;51:1258e65.
    [18]Hulten LM, Levin M. The role of hypoxia in atherosclerosis. Curr Opin Lipidol 2009;20:409e14.
    [19]Bjornheden T, Levin M, Evaldsson M, et al. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vase Biol 1999;19:870e6.
    [20]Kuwahara F, Kai H, Tokuda K, et al. Hypoxia-inducible factor-1 alpha/vascular endothelial growth factor pathway for adventitial vasa vasorum formation in hypertensive rat aorta. Hypertension 2002;39:46e50.
    [21]Rose G.ABC of vascular disease. British Medical Journal,1991.303:1537-9.
    [22]Daniel B. Mark, Daniel S. Berman, Matthew J. Budoff et al.ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 Expert Consensus the Document onCoronary Computed Tomographic Angiography:A Report of American College ofCardiology Foundation Task Force on Expert Consensus Documents. J Am CollCardiol,2010.55(23);2663-2699.
    [23]Richard JF, Richard WP, Arnold LB. Significance of calcification of the coronary arteries The American Journal of Cardiology.1970.26(3):241-247.
    [24]Yadon A, Kenneth JG, Marguerite R.et al. Coronary Calcification, Coronary Disease Risk Factors, C-Reactive Protein, and Atherosclerotic Cardiovascular Disease EventsThe St. Francis Heart Study. J Am Coll Cardiol. 2005;46(1):158-165.
    [25]Ariely R, Evans K, Mills T. Heart Failure in China:A Review of the Literature [J]. Drugs,2013,73(7):689-701.
    [26]Gregori C, Josefa R, Alessandro S et al. Hypoxia induces B-type natriuretic peptide release in cell lines derived from human cardiomyocytes. Am J Physiol Heart Circ Physiol 2009;297:550-555.
    [1]Abedin M, Tintut Y, Demer LL. Vascular calcification mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004; 24(7):1161-1170.
    [2]Kovacic JC, Fuster V. Vascular calcification, diabetes, and cardiovascular disease connecting the dots. J Am Coll Cardiol Img 2012;5(4):367-369.
    [3]Shroff RC, Shanahan CM. The vascular biology of calcification. Semin Dial 2007; 20:103-109.
    [4]Giachelli CM. The emerging role of phosphate in vascular calcification. Kidney Int 2009;75:890-897.
    [5]Magne D, Julien M, Vinatier C, Merhi-Soussi F, Weiss P, Guicheux J. Cartilage formation in growth plate and arteries:from physiology to pathology. Bioessays 2005;27:708-716.
    [6]Johnson RC, Leopold JA, Loscalzo J. Vascular calcification:pathobiological mechanisms and clinical implications. Circ Res.2006;99:1044-1059.
    [7]Idelevich A, Rais Y, Monsonego-Ornan E. Bone Gla protein increases HIF-la-dependent glucose metabolism and inducescartilage and vascular calcification.Arterioscler Thromb Vasc Biol 2011;31:e55-e71.
    [8]Kapustin AN, Shanahan CM. Osteocalcin:A novel vascular metabolic and osteoinductive factor?Arterioscler Thromb Vasc Biol 2011;31:2169-2171.
    [9]Hou ZH, Lu B, Gao Y, Jiang SL, Wang Y, Li W, Budoff MJ. Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients. J Am Coll Cardiol Img 2012;5:990-9..
    [10]O'Donnell CJ, Kavousi M, Smith AV, et al. Genome-Wide association study for coronary artery calcification with follow-up in myocardial infarction clinical perspective. Circulation 2011; 124(25):2855-2864.
    [11]Graham G, Blaha MJ, Budoff MJ, et al. Impact of coronary artery calcification on all-cause mortality in individuals with and without hypertension. Atherosclerosis 2012;225(2):432-437.
    [12]Budoff M J, Hokanson J E, Nasir K, et al. Progression of coronary artery calcium predicts all-cause mortality. J Am Coll Cardiol Img 2010;3(12):1229-1236.
    [13]Agarwal S, Morgan T, Herrington DM, et al. Coronary calcium score and prediction of all-cause mortality in diabetes the diabetes heart study. Diabetes care 2011;34(5):1219-1224.
    [14]Wong ND, Sciammarella MG, Polk D, et al. The metabolic syndrome, diabetes, and subclinical atherosclerosis assessed by coronary calcium. J Am Coll Cardiol 2003;41:1547-53.
    [15]Olson JC, Edmundowicz D, Becker DJ, Kuller LH, Orchard TJ. Coronary calcium in adults with Type 1 diabetes. Diabetes 2000;49:1571-8.
    [16]Mileke CH, Shields JP, Broemeling LD. Coronary artery calcium, coronary artery disease, and diabetes. Diabetes Res Clin Practice 2001;53:55-61.
    [17]Proudfoot D, Shanahan CM. Biology of calcification in vascular cells:intima versus media. Herz 2001;26(4):245-251.
    [18]Giachelli CM. Vascular calcification mechanisms. Journal of the American Society of Nephrology 2004; 15(12):2959-2964.
    [19]Stevens RJ, Kothari V, Adler AI, Stratton IM, Holman RR.United Kingdom Prospective Diabetes Study (UKPDS) Group.The UKPDS risk engine:a model for the risk of coronary heart disease in type 2 diabetes (UKPDS 56). Clin Sci 2001;101:671-9.
    [20]Hong C, Bae KT, Pilgram TK. Coronary artery calcium:accuracy and reproducibility of measurements with multi-detector row CT-assessment of effects of different thresholds and quantification methods. Radiology 2003;227:795-801.
    [21]Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ.Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826-33.
    [22]Holger K. Eltzschig, Peter Carmeliet. Hypoxia and inflammation. N Engl J Med 2011;364:656-65.
    [23]Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012;3:148.
    [24]Ke QD, Costa M. Hypoxia-inducible factor-1(HIF-1). Mol Pharmacol 2006;70:1469-1480.
    [25]Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001;44:1973-1988.
    [26]Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function.Diabetes2004;53:3226-3232.
    [27]Bento CF. Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia 2011;54:1946-1956.
    [28]Jiang CT, Qu AJ, Matsubara T, Chanturiya T, Jou W, Gavrilova O, Shah YM, Gonzalez FJ. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 2011;60:2484-2495.
    [29]Shin MK, Drager LF, Yao QL, Bevans-Fonti S, Yoo DY, Jun JC, Aja S, Bhanot S, Polotsky VY. Metabolic consequences of high-fat diet are attenuated by suppression of HIF-1α. PLoS One 2012;7(10):e46562.
    [30]Yamada N, Horikawa Y, Oda N, Iizuka K, Shihara N, KishiS, Takeda J. Genetic variation in the hypoxia-inducible factor-la gene is associated with type 2 diabetes in Japanese. J Clin Endocrinol Metab2005;90:5841-5847.
    [31]Nagy G, Kovacs-Nagy R, Kereszturi E, Somogyi A, Szekely A, Nemeth N, Hosszufalusi N, Panczel P, Ronai Z, Sasvari-Szekely M. Association of hypoxia inducible factor-1 alpha gene polymorphism with both type 1 and type 2 diabetes in a Caucasian(Hungarian) sample. BMC Medical Genetics2009; 10:79.
    [32]Doherty TM, Fitzpatrick LA, Inoue D, et al. Molecular, endocrine and genetic mechanisms of arterial calcification. Endocr Rev 2004;25:629-72.
    [33]Bitto, Caridi GD, Polito F, Calo M, Irrera N, Altavilla D, Spinelli F, Squadrito F. Evidence for markers of hypoxia and apoptosis in explanted human carotid atherosclerotic plaques. J Vasc Surg 2010;52:1015-21.
    [34]Hartmann G, Tsch PM, Fischer R, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 2000; 12:246-52.
    [35]Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor la and insulin-like growth factor 2. Cancer research 1999;59(16);3915-3918.
    [36]Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. IL-1β-mediated up-regulation of HIF-la via an NFκB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. The FASEB journal 2003; 17(14);2115-2117.
    [37]Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL, Reichner JS. HIF-1 expression in healing wounds:HIF-la induction in primary inflammatory cells by TNF-a. American Journal of Physiology-Cell Physiology 2001;281(6): c1971-c1977.
    [38]Wolf G, Schroeder R, Stahl R AK. Angiotensin II induces hypoxia-inducible factor-la in PC 12 cells through a posttranscriptional mechanism:role of AT2 receptors. American journal of nephrology 2004;24(4):415-421.
    [39]Dery MAC, Michaud MD, Richard DE. Hypoxia-inducible factor 1:regulation by hypoxic and non-hypoxic activators. The international journal of biochemistry & cell biology 2005;37(3):535-540.
    [40]Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 2009;68:370-377.
    [41]Fleischmann E, Kurz A, Niedermayr M, Schebesta K, Kimberger O, et al. Tissue oxygenation in obese and non-obese patients during laparoscopy. Obes Surg 2005;15:813-819.
    [42]Yin J, Zhanguo G, He Q, Zhou D, Guo Z, Ye J. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab 2009;296:E333-E342.
    [43]Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, et al. Hypoxia-inducible factor 1 alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 2009;29:4467-4483.
    [44]Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM, et al. Dietary obesity-associated Hifl alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+system. Genes Dev 2012;26:259-270.
    [1]Lehman JJ, Kelly DP. Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev.2002,7:175-85.
    [2]Taegtmeyer H, Golfman L, Sharma S, van Arsdall M. Linking gene expression to function:metabolic flexibility in the normal and diseased heart. Ann NY Acad Sci.2004,1015:202-13.
    [3]Levy D, Garrison RJ, Savage DD, DannelWB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med,1990,322:1561-66.
    [4]Frohlich ED, Apstein C, Chobanian AV, Devereaux RB, Dustan HP, et al. The heart in hypertension. N Engl J Med.1992,327:998-1008.
    [5]Semenza G L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. The Journal of clinical investigation,2013,123(9):3664.
    [6]Krishnan J, Suter M, Windak R, Krebs T, Felley A, et al.2009. Activation of a HIF-1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab.9:512-24.
    [7]Semenza G L. Hypoxia-inducible factor 1 and cardiovascular disease. Annual review of physiology,2014.76:39-56.
    [8]Semenza G L. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press,2011,76:347-353.
    [9]Sarkar K, Cai Z, Gupta R, Parajuli N, Fox-Talbot K, Darshan MS, Gonzalez FJ, Semenza GL. Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. Proceedings of the National Academy of Sciences,2012, 109(26):10504-10509.
    [10]Cai Z, Luo W, Zhan H, Semenza GL. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proceedings of the National Academy of Sciences,2013,110(43):17462-17467.
    [11]Semenza G L. Hypoxia-inducible factors in physiology and medicine. Cell,2012, 148(3):399-408.
    [12]Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu L, Asahara T, Hamada H, Tomita D, Molkentin JD, Zou Y, Komuro I. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature,2001:446(7134),444-448.
    [13]Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006,27:47-72.
    [14]Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K. Localization andmechanism of secretion of B-type natriuretic peptide in comparison with thoseof A-type natriuretic peptide in normal subjects and patients with heart failure.Circulation. 1994,90:195-203.
    [15]McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab.2005,16:469-477.
    [16]Porapakkham P, Porapakkham P, Zimmet H, et al. B-Type Natriuretic Peptide-Guided Heart Failure TherapyA Meta-analysisBNP-Guided Heart Failure Therapy. Archives of Internal Medicine.2010,170(6):507-514.
    [17]Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation.2002,105(20): 2392-2397.
    [18]Casals G, Ros J, Sionis A, Davidson MM, Jimenez MM. Hypoxia induces B-type natriuretic peptide release in cell lines derived from human cardiomyocytes. Am J Physiol Heart Circ Physiol.2009,297:H550-H555.
    [19]Semenza G L. Oxygen sensing, homeostasis, and disease. New England Journal of Medicine.2011,365(6):537-547.
    [20]Semenza G L. HIF-1 and mechanisms of hypoxia sensing. Current opinion in cell biology.2001,13(2):167-171.
    [21]Huang L E, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences,1998,95(14): 7987-7992.
    [22]Chavez JC, Agani F, Pichiule P, et al. Expression of hypoxia-inducible factor-1 alpha in the brain of rats during chronic hypoxia. J Appl Physiol,2000, 89(5):1937-1942.
    [23]Li G, Lu WH, Ai R, Yang JH, Chen F, Tang ZZ. The relationship between serum hypoxia-inducible factor lalpha and coronary artery calcification in asymptomatic type 2 diabetic patients. Cardiovascular diabetology,2014,13(1):52.
    [24]Beyer C, Stearns N A, Giessl A, et al. The extracellular release of DNA and HMGB1 from Jurkat T cells during in vitro necrotic cell death. Innate immunity, 2012,18(5):727-737.
    [25]Robador P A, San Jose G, Rodriguez C, et al. HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia. Cardiovascular research,2011,92(2):247-255.
    [26]Weidemann A, Klanke B, Wanger M, Volk T, Willam C, Michael S. Wiesener MS, Eckardt KU, Warnecke C. Hypoxia, via stabilization of the hypoxia-inducible factor HIF-1α, is a directand sufficient stimulus for brain-type natriuretic peptide induction. Biochem J.2008,409,233-242.
    [27]Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS. Loss of HIF-1α in endothelial cells disrupts a hypoxia-drivenVEGF autocrine loop necessary for tumorigenesis. Cancer cell,2004,6(5):485-495.
    [28]Werno C, Menrad H, Weigert A, et al. Knockout of HIF-1α in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis,2010,31(10):1863-1872.
    [29]Tekin D, Dursun A D, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacologica Sinica,2010,31(9):1085-1094.
    [30]Silter M, Kogler H, Zieseniss A, Wilting J, Schafer K, Toischer K, Katschinski DM. Impaired Ca2+-handling in HIF-1α+/- mice as a consequence of pressure overload. Pflugers Archiv-European Journal of Physiology,2010,459(4), 569-577.
    [1]Sluimer JC, Gasc JM, van Wanroij JL, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 2008;51:1258e65.
    [2]Hulten LM, Levin M. The role of hypoxia in atherosclerosis. Curr Opin Lipidol 2009;20:409el4.
    [3]Bjornheden T, Levin M, Evaldsson M, et al. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 1999;19:870e6.
    [4]Kuwahara F, Kai H, Tokuda K, et al. Hypoxia-inducible factor-1 alpha/vascular endothelial growth factor pathway for adventitial vasa vasorum formation in hypertensive rat aorta. Hypertension 2002;39:46e50.
    [5]Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721e32.
    [6]Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic helixeloopehelixePAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci U S A 1995;92:5510e14.
    [7]Li H, Ko HP, Whitlock JP. Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of Arnt and HIF1 alpha. J Biol Chem 1996;271:21262e7.
    [8]Salceda S, Caro J. Hypoxia-inducible factor 1 alpha (HIF-1 alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997;272:22642e7.
    [9]Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70:1469e80.
    [10]Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin 2010;31:1085e94.
    [11]Semenza GL, Nejfelt MK, Chi SM, et al. Hypoxia-inducible nuclear factors bind to an enhancer element located 39 to the human erythropoietin gene. Proc Natl Acad Sci U S A 1991;88:5680e4.
    [12]Ten VS, Pinsky DJ. Endothelial response to hypoxia:physiologic adaptation and pathologic dysfunction. Curr Opin Crit Care 2002;8:242e50.
    [13]Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005;25:29e38.
    [14]Chandel NS, Schumacker PT. Cellular oxygen sensing by mitochondria:old questions, new insight. J Appl Physiol 2000;88:1880e9.
    [15]Pearlstein DP, Ali MH, Mungai PT, et al. Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arterioscler Thromb Vasc Biol 2002;22:566e73.
    [16]Grishko V, Solomon M, Breit JF, et al. Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene. FASEB J 2001;15:1267e9.
    [17]Pennings M, Meurs I, Ye D, et al. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett 2006;580:5588e96.
    [18]Burke B, Tang N, Corke KP, et al. Expression of HIF-1 alpha by human macrophages:implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 2002;196:204e12.
    [19]Griffiths L, Binley K, Iqball S, et al. The macrophage e a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 2000;7:255e62.
    [20]Fang HY, Hughes R, Murdoch C, et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia.Blood 2009; 114:844e59.
    [21]Oda T, Hirota K, Nishi K, et al. Activation of hypoxia-inducible factor 1 during macrophage differentiation. Am J Physiol Cell Physiol 2006;291:C104e13.
    [22]Ben-Shoshan J, Afek A, Maysel-Auslender S, et al. HIF-1 alpha overexpression and experimental murine atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29:665e70.
    [23]Houtkamp MA, de Boer OJ, van der Loos CM, et al. Adventitial infiltrates associated with advanced atherosclerotic plaques:structural organization suggests generation of local humoral immune responses. J Pathol 2001;193:263e9.
    [24]Soehnlein O, Weber C. Myeloid cells in atherosclerosis:initiators and decision shapers. Semin Immunopathol 2009;31:35e47.
    [25]Walmsley SR, Cadwallader KA, Chilvers ER. The role of HIF-1 alpha in myeloid cell inflammation. Trends Immunol 2005;26:434e9.
    [26]Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1 alpha is essential for myeloid cellmediated inflammation. Cell 2003;112:645e57.
    [27]Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994;84:2068e101.
    [28]Kong T, Eltzschig HK, Karhausen J, et al. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci U S A 2004;101:10440e5.
    [29]Millonig G, Niederegger H, Rabl W, et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vase Biol 2001;21:503e8.
    [30]Shaposhnik Z, Wang X, Weinstein M, et al. Granulocyte macrophage colonystimulating factor regulates dendritic cell content of atherosclerotic lesions. Arterioscler Thromb Vase Biol 2007;27:621e7.
    [31]Jantsch J, Chakravortty D, Turza N, et al. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 2008;180:4697e705.
    [32]Agis H, Willheim M, Sperr WR, et al. Monocytes do not make mast cells when cultured in the presence of SCF. Characterization of the circulating mast cell progenitor as a c-kit+, CD34+, Ly-, CD 14-, CD 17-, colony-forming cell. J Immunol 1993; 151:4221e7.
    [33]Fodinger M, Fritsch G, Winkler K, et al. Origin of human mast cells: development from transplanted hematopoietic stem cells after allogeneic bone marrow transplantation. Blood 1994;84:2954e9.
    [34]Kirshenbaum AS, Goff JP, Semere T, et al. Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood 1999;94:2333e42.
    [35]Jeong HJ, Chung HS, Lee BR, et al. Expression of proinflammatory cytokines via HIF-1 alpha and NF-kappaB activation on desferrioxamine-stimulated HMC-1 cells. Biochem Biophys Res Commun 2003;306:805el 1.
    [36]Lee KS, Kim SR, Park SJ, et al. Mast cells can mediate vascular permeability through regulation of the PI3K-HIF-1 alpha-VEGF axis. Am J Respir Crit Care Med 2008;178:787e97.
    [37]Osada-Oka M, Ikeda T, Imaoka S, et al. VEGF-enhanced proliferation under hypoxia by an autocrine mechanism in human vascular smooth muscle cells. J Atheroscler Thromb 2008;15:26e33.
    [38]Zhang R, Wu Y, Zhao M, et al. Role of HIF-1 alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009;297:L631e640.
    [39]Diebold I, Djordjevic T, Hess J, et al. Rac-1 promotes pulmonary artery smooth muscle cell proliferation by upregulation of plasminogen activator inhibitor-1: role of NFkappaB-dependent hypoxia-inducible factor-1 alpha transcription. Thromb Haemost 2008;100:1021e8.
    [40]Schultz K, Murthy V, Tatro JB, et al. Prolyl hydroxylase 2 deficiency limits proliferation of vascular smooth muscle cells by hypoxia-inducible factor-1{alpha}-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol 2009;296:L921e7.
    [41]Verschuren L, Kooistra T, Bernhagen J, et al. MIF deficiency reduces chronic inflammation in white adipose tissue and impairs the development of insulin resistance, glucose intolerance, and associated atherosclerotic disease. Circ Res 2009;105:99e107.
    [42]Schober A, Bernhagen J, Weber C. Chemokine-like functions of MIF in atherosclerosis. J Mol Med (Berl) 2008;86:761e70.
    [43]Schmeisser A, Marquetant R, Illmer T, et al. The expression of macrophage migration inhibitory factor 1 alpha (MIF 1 alpha) in human atherosclerotic plaques isinduced by different proatherogenic stimuli and associated with plaque instability. Atherosclerosis 2005;178:83e94.
    [44]Noels H, Bernhagen J, Weber C. Macrophage migration inhibitory factor:a noncanonical chemokine important in atherosclerosis. Trends Cardiovasc Med 2009;19:76e86.
    [45]Fu H, Luo F, Yang L, et al. Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1 alpha dependent pathway. BMC Cell Biol 2010;11:66.
    [46]Geng YJ, Libby P. Progression of atheroma:a struggle between death and procreation. Arterioscler Thromb Vasc Biol 2002;22:1370e80.
    [47]Tedgui A, Mallat Z. Apoptosis as a determinant of atherothrombosis. Thromb Haemost 2001;86:420e6.
    [48]Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 2004;57:1009e14.
    [49]Giatromanolaki A, Koukourakis MI, Gatter KC, et al. BNIP3 expression in endometrial cancer relates to active hypoxia inducible factor 1 alpha pathway and prognosis. J Clin Pathol 2008;61:217e20.
    [50]Chai CY, Chen WT, Hung WC, et al. Hypoxia-inducible factor-lalpha expression correlates with focal macrophage infiltration, angiogenesis and unfavourable prognosis in urothelial carcinoma. J Clin Pathol 2008;61:658e64.
    [51]Celletti FL, Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001;7:425e9.
    [52]Ihling C, Szombathy T, Bohrmann B, et al. Coexpression of endothelin-converting enzyme-1 and endothelin-1 in different stages of human atherosclerosis. Circulation 2001;104:864e9.
    [53]Pasterkamp G, Schoneveld AH, Hijnen DJ, et al. Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1,2 and 9 in the human coronary artery. Atherosclerosis 2000;150:245e53.
    [54]Jiang G, Li T, Qiu Y, et al. RNA interference for HIF-1 alpha inhibits foam cells formation in vitro. Eur J Pharmacol 2007;562:183e90.
    [55]Paul SA, Simons JW, Mabjeesh NJ. HIF at the crossroads between ischemia and carcinogenesis. J Cell Physiol 2004;200:20e30.
    [56]Tang N, Wang L, Esko J, et al. Loss of HIF-1 alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004;6:485e95.
    [57]Khurana R, Moons L, Shafi S, et al. Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 2005;111:2828e36.
    [58]Oikawa M, Abe M, Kurosawa H, et al. Hypoxia induces transcription factor ETS-1 via the activity of hypoxia-inducible factor-1. Biochem Biophys Res Commun 2001;289:39e43.
    [59]Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 2002;64:993e8.
    [60]Oda N, Abe M, Sato Y. ETS-1 converts endothelial cells to the angiogenic phenotype by inducing the expression of matrix metalloproteinases and integrin beta3. J Cell Physiol 1999;178:121e32.
    [61]Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493e503.
    [62]Kavurma MM, Bobryshev Y, Khachigian LM. Ets-1 positively regulates Fas ligand transcription via cooperative interactions with Spl. J Biol Chem 2002;277:36244e52.
    [63]Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481e8.
    [64]Festa A, D'Agostino R Jr, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome:the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102:42e7.
    [65]Rodriguez G, Mago N, Rosa F. [Role of inflammation in atherogenesis]. Invest Clin 2009;50:109e29.
    [66]Sumbayev VV, Yasinska I, Oniku AE, et al. Involvement of hypoxia-inducible factor-1 in the inflammatory responses of human LAD2 mast cells and basophils. PLoS One 2012;7:e34259.
    [67]White JR, Harris RA, Lee SR, et al. Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics2004;83:1e8.
    [68]Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 2010;345:105e20.
    [69]Vink A, Schoneveld AH, Lamers D, et al. HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis 2007;195:e69e75.
    [70]Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1 alpha. Nature 2008;453:807e11.
    [71]Taylor CT. Interdependent roles for hypoxia inducible factor and nuclear factorkappaB in hypoxic inflammation. J Physiol 2008;586:4055e9.
    [72]Oliver KM, Taylor CT, Cummins EP. Hypoxia. Regulation of NFkappaB signaling during inflammation:the role of hydroxylases. Arthritis Res Ther 2009; 11:215.
    [73]Fukuda R, Zhang H, Kim JW, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129:111e22.
    [74]Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 2002;62:4316e24.
    [75]Wilson SH, Herrmann J, Lerman LO, et al. Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation 2002;105:415e18.
    [76]Dichtl W, Dulak J, Frick M, et al. HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003;23:58e63.
    [77]Loboda A, Stachurska A, Dorosz J, et al. HIF-1 attenuates Ref-1 expression in endothelial cells:reversal by siRNA and inhibition of geranylgeranylation. Vascul Pharmacol 2009;51:133e9.
    [78]Hisada T, Ayaori M, Ohrui N, et al. Statin inhibits hypoxia-induced Endothelin-1 via accelerated degradation of HIF-1 alpha in vascular smooth muscle cells. Cardiovasc Res. Published Online First:14 April 2012. doi:10.1093/cvr/cvsl 10.
    [79]Bosch-Marce, M., Okuyama, H., Wesley, J.B., Sarkar, K., Kimura, H., Liu, Y.V., Zhang, H., Strazza, M., Rey, S., Savino, L., et al. (2007). Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ. Res.101,1310-1318.
    [80]Rey, S., Lee, K., Wang, C.J., Gupta, K., Chen, S., McMillan, A., Bhise, N., Levchenko, A., and Semenza, G.L. (2009). Synergistic effect of HIF-la gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc. Natl. Acad. Sci. USA 106,20399-20404.
    [81]Loinard, C., Ginouve's, A., Vilar, J., Cochain, C., Zouggari, Y., Recalde, A., Duriez, M., Le'vy, B.I., Pouysse'gur, J., Berra, E., and Silvestre, J.S. (2009). Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation 120,50-59.
    [82]Rey, S., Lee, K., Wang, C.J., Gupta, K., Chen, S., McMillan, A., Bhise, N., Levchenko, A., and Semenza, G.L. (2009). Synergistic effect of HIF-la gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc. Natl. Acad. Sci. USA 106,20399-20404.
    [83]Rey, S., Luo, W., Shimoda, L.A., and Semenza, G.L. (2011). Metabolic reprogramming by HIF-1 promotes the survival of bone marrow-derived angiogenic cells in ischemic tissue. Blood 117,4988-4998.
    [84]Creager, M.A., Olin, J.W., Belch, J.J.F., Moneta, G.L., Henry, T.D., Rajagopalan, S., Annex, B.H., and Hiatt, W.R. (2011). Effect of hypoxia-inducible factor-la gene therapy on walking performance in patients with intermittent claudication. Circulation 124,1765-1773.
    [85]Brem, H., Tomic-Canic, M., Entero, H., Hanflik, A.M., Wang, V.M., Fallon, J.T., and Ehrlich, H.P. (2007). The synergism of age and db/db genotype impairs wound healing. Exp. Gerontol.42,523-531.
    [86]Mace, K.A., Yu, D.H., Paydar, K.Z., Boudreau, N., and Young, D.M. (2007). Sustained expression of Hif-la in the diabetic environment promotes angiogenesis and cutaneous wound repair. Wound Repair Regen.15,636-645.
    [87]Liu, L., Marti, G.P., Wei, X., Zhang, X., Zhang, H., Liu, Y.V., Nastai, M., Semenza, G.L., and Harmon, J.W. (2008). Age-dependent impairment of HIF-1 alpha expression in diabetic mice:Correction with electroporationfacilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J. Cell. Physiol.217,319-327.
    [88]Botusan, I.R., Sunkari, V.G., Savu, O., Catrina, A.I., Gru" nler, J., Lindberg, S., Pereira, T., Yla"-Herttuala, S., Poellinger, L., Brismar, K., and Catrina, S.B. (2008). Stabilization of HIF-1 a is critical to improve wound healing in diabetic mice. Proc. Natl. Acad. Sci. USA 105,19426-19431.
    [89]Sarkar, K., Fox-Talbot, K., Steenbergen, C., Bosch-Marce', M., and Semenza, G.L. (2009). Adenoviral transfer of HIF-1 a enhances vascular responses to critical limb ischemia in diabetic mice. Proc. Natl. Acad. Sci. USA 106, 18769-18774.
    [90]Zhang, X., Liu, L., Wei, X., Tan, Y.S., Tong, L., Chang, R., Ghanamah, M.S., Reinblatt, M., Marti, G.P., Harmon, J.W., and Semenza, G.L. (2010). Impaired angiogenesis and mobilization of circulating angiogenic cells in HIF-1 a heterozygous-null mice after burn wounding. Wound Repair Regen.18, 193-201.
    [91]Zhang, X., Sarkar, K., Rey, S., Sebastian, R., Andrikopoulou, E., Marti, G.P., Fox-Talbot, K., Semenza, G.L., and Harmon, J.W. (2011b). Aging impairs the mobilization and homing of bone marrow-derived angiogenic cells to burn wounds. J. Mol. Med.89,985-995.
    [92]Sarkar, K., Rey, S., Zhang, X., Sebastian, R., Marti, G.P., Fox-Talbot, K., Cardona, A.V., Du, J., Tan, Y.S., Liu, L., et al. (2012). Tie2-dependent knockout of HIF-1 impairs burn wound vascularization and homing of bone marrowderived angiogenic cells. Cardiovasc. Res.193,162-169.
    [93]Wilkes, D.S. (2011). Chronic lung allograft rejection and airway micro vasculature:is HIF-1 the missing link? J. Clin. Invest.121,2155-2157.
    [94]Luckraz, H., Goddard, M., McNeil, K., Atkinson, C., Charman, S.C., Stewart, S., and Wallwork, J. (2004). Microvascular changes in small airways predispose to obliterative bronchiolitis after lung transplantation. J. Heart Lung Transplant.23, 527-531.
    [95]Jiang, X., Khan, M.A., Tian, W., Beilke, J., Natarajan, R., Kosek, J., Yoder, M.C., Semenza, G.L., and Nicolls, M.R. (2011). Adenovirus-mediated HIF-1a gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection. J. Clin. Invest.121,2336-2349.
    [96]Bernhardt, W.M., Gottmann, U., Doyon, F., Buchholz, B., Campean, V., Scho" del, J., Reisenbuechler, A., Klaus, S., Arend, M., Flippin, L., et al. (2009). Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc. Natl. Acad. Sci. USA 106,21276-21281.
    [97]Laughner, E., Taghavi, P., Chiles, K., Mahon, P.C., and Semenza, G.L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1a (HIF-1a) synthesis:novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol.21,3995-4004.
    [98]Liu, Y.V., Hubbi, M.E., Pan, F., McDonald, K.R., Mansharamani, M., Cole, R.N., Liu, J.O., and Semenza, G.L. (2007). Calcineurin promotes hypoxia-inducible factor 1a expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J. Biol. Chem.282,37064-37073.
    [99]Karhausen, J., Furuta, G.T., Tomaszewski, J.E., Johnson, R.S., Colgan, S.P., and Haase, V.H. (2004). Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest.114,1098-1106.
    [100]Hirota, S.A., Fines, K., Ng, J., Traboulsi, D., Lee, J., Ihara, E., Li, Y., Willmore, W.G., Chung, D., Scully, M.M., et al. (2010). Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 139,259-269, e3.
    [101]Cummins, E.P., Seeballuck, F., Keely, S.J., Mangan, N.E., Callanan, J.J., Fallon, P.G., and Taylor, C.T. (2008). The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134,156-165.
    [102]Yoon, D., Ponka, P., and Prchal, J.T. (2011). Hypoxia and hematopoiesis. Am. J. Physiol. Cell Physiol.300, C1215-C1222.
    [103]Formenti, F., Constantin-Teodosiu, D., Emmanuel, Y., Cheeseman, J., Dorrington, K.L., Edwards, L.M., Humphreys, S.M., Lappin, T.R., McMullin, M.F., McNamara, C.J., et al. (2010). Regulation of human metabolism by hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA 107,12722-12727.
    [104]Smith, T.G., Brooks, J.T., Balanos, G.M., Lappin, T.R., Layton, D.M., Leedham, D.L., Liu, C., Maxwell, P.H., McMullin, M.F., McNamara, C.J., et al. (2006). Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med.3, e290.
    [105]Semenza, G.L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29,625-634.
    [106]Majmundar, A.J., Wong, W.J., and Simon, M.C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40,294-309.
    [107]Wang, Y., Liu, Y., Malek, S.N., Zheng, P., and Liu, Y. (2011). Targeting HIFla eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8,399-411.
    [108]Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C.A., Gouvin, L.M., Sharma, V.M., and Mercurio, A.M. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1 alpha and inhibiting VEGF-mediated snail nuclear localization:implications for Gleason grading. Cancer Cell 17,319-332.
    [109]Huang, L.E., Bindra, R.S., Glazer, P.M., and Harris, A.L. (2007). Hypoxiainduced genetic instability-a calculated mechanism underlying tumor progression. J. Mol. Med.85,139-148.
    [110]Liao, D., and Johnson, R.S. (2007). Hypoxia:a key regulator of angiogenesis in cancer. Cancer Metastasis Rev.26,281-290.
    [111]Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O'Meally, R., Cole, R.N., Pandey, A., and Semenza, G.L. (2011). Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145,732-744.
    [112]Swietach, P., Vaughan-Jones, R.D., and Harris, A.L. (2007). Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev.26, 299-310.
    [113]Lukashev, D., Ohta, A., and Sitkovsky, M. (2007). Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev.26,273-279.
    [114]Chan, D.A., and Giaccia, A.J. (2007). Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev.26,333-339.
    [115]Moeller, B.J., Richardson, R.A., and Dewhirst, M.W. (2007). Hypoxia and radiotherapy:opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev.26,241-248.
    [116]Vaupel, P., Mayer, A., and Ho" ckel, M. (2004). Tumor hypoxia and malignant progression. Methods Enzymol.381,335-354.
    [117]Wong, C.C., Gilkes, D.M., Zhang, H., Chen, J., Wei, H., Chaturvedi, P., Fraley, S.I., Wong, C.M., Khoo, U.S., Ng, I.O., et al. (2011). Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc. Natl. Acad. Sci. USA 108,16369-16374.
    [118]Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, D.D., Jin, D.K., Shido, K., Kerns, S.A., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438,820-827.
    [119]Erler, J.T., Bennewith, K.L., Cox, T.R., Lang, G., Bird, D., Koong, A., Le, Q.T., and Giaccia, A.J. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15,35-44.
    [120]Feinman, R., Deitch, E.A., Watkins, A.C., Abungu, B., Colorado, I., Kannan, K.B., Sheth, S.U., Caputo, F.J., Lu, Q., Ramanathan, M., et al. (2010). HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol.299, G833-G843.
    [121]Shimoda, L.A., and Semenza, G.L. (2011). HIF and the lung:role of hypoxiainducible factors in pulmonary development and disease. Am. J. Respir. Crit. Care Med.183,152-156.
    [122]Brusselmans, K., Compernolle, V., Tjwa, M., Wiesener, M.S., Maxwell, P.H., Collen, D., and Carmeliet, P. (2003). Heterozygous deficiency of hypoxiainducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J. Clin. Invest.111, 1519-1527.
    [123]Bonnet, S., Michelakis, E.D., Porter, C.J., Andrade-Navarro, M.A., The' baud, B., Bonnet, S., Haromy, A., Harry, G., Moudgil, R., McMurtry, M.S., et al. (2006). An abnormal mitochondrial-hypoxia inducible factor-la-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats:similarities to human pulmonary arterial hypertension. Circulation 113,2630-2641.
    [124]Fletcher, E.C., Lesske, J., Behm, R., Miller, C.C.,3rd, Stauss, H., and Unger, T. (1992). Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J. Appl. Physiol.72,1978-1984.
    [125]Peng, Y.J., Yuan, G., Ramakrishnan, D., Sharma, S.D., Bosch-Marce, M., Kumar, G.K., Semenza, G.L., and Prabhakar, N.R. (2006). Heterozygous HIF-la deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J. Physiol. 577,705-716.
    [126]Yuan, G., Khan, S.A., Luo, W., Nanduri, J., Semenza, G.L., and Prabhakar, N.R. (2011). Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J. Cell. Physiol.226, 2925-2933.
    [127]Nanduri, J., Wang, N., Yuan, G., Khan, S.A., Souvannakitti, D., Peng, Y.J., Kumar, G.K., Garcia, J.A., and Prabhakar, N.R. (2009). Intermittent hypoxia degrades HIF-2a via calpains resulting in oxidative stress:implications for recurrent apnea-induced morbidities. Proc. Natl. Acad. Sci. USA 106, 1199-1204.
    [128]Peng, Y.J., Nanduri, J., Khan, S.A., Yuan, G., Wang, N., Kinsman, B., Vaddi, D.R., Kumar, G.K., Garcia, J.A., Semenza, G.L., and Prabhakar, N.R. (2011). Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc. Natl. Acad. Sci. USA 108,3065-3070.