超重型刮板输送机行星传动装置设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高采煤工作面的产量和工效,降低生产成本,刮板输送机向超大功率、超大运量、超长运距、高强度、长寿命以及高可靠性方向发展,其工作环境决定了必须配套行星传动装置。对超重型刮板输送机行星传动装置,要求体积小,可靠性高。目前在对其设计时,以静态设计为主,很少考虑动态特性,没有进行全工况、全性能的分析。而该行星传动在运转过程中速度低、传递扭矩大、载荷不均、润滑和散热差,容易产生磨损失效,寿命短,故在啮合参数、润滑性能等的设计不同于常规齿轮传动。为了提高其可靠性、工作稳定性和使用寿命长,本文在“十一五”国家科技支撑计划重大项目子课题“大采高综放工作面后部刮板输送机研发”(2008BAB36B04)的资助下,对超重型刮板输送机减速器的行星传动装置进行了设计理论研究。主要研究内容和结论如下:
     (1)在对行星传动运动分析的基础上,综合考虑多对齿轮副的时变啮合刚度、间隙和齿轮副综合误差,以及输入端、输出端对它的影响,建立了考虑摩擦的超重型刮板输送机行星传动装置的非线性动力学模型,为研究其固有特性和动力学特性奠定基础。
     (2)基于无阻尼自由振动方程分析了行星传动的固有特性,研究设计参数变化对固有频率和振型的影响,通过对参数敏感度分析来确定设计参数对系统动态性能的影响趋势,为在设计阶段预测传动系统的动力学特性提供理论依据,以提高其动态性能。
     (3)采用数值方法,分析了行星传动装置非线性动力学模型的时域响应,研究了摩擦、含摩擦和不含摩擦时齿侧间隙对系统动态响应、均载系数和动载荷的影响。结果表明:摩擦对超重型刮板输送机行星传动的影响不能忽略,尤其是在瞬态振动阶段。为在设计超重型刮板输送机行星传动装置时动载和均载系数的选取提供了依据。
     (4)根据齿轮啮合原理、传热学和摩擦学,精确计算超重型刮板输送机行星传动装置温度场和热弹耦合应力分析所需的边界条件,结合有限元分析方法,运用ANSYS软件,研究超重型刮板输送机行星传动装置各齿轮的温度场分布和热耦合应力,得出了其温度场分布规律及温度效应对结构应力的影响程度,为行星传动装置齿形参数的选择提供了依据。
     (5)在分析齿形参数对行星传动润滑性能影响的基础上,针对超重型刮板输送机的特殊工况,确立了系统优化设计的变量和目标函数,建立了基于灵敏度分析的行星传动稳健可靠性优化设计数学模型,采用MATLAB优化工具箱进行优化计算,通过实例分析表明,该方法的优化结果较原设计趋于更优,提高了质量稳健性和设计效率。
     (6)按《MT/T101-2000刮板输送机用减速器检验规范》的要求对项目开发的超重型刮板输送机减速器进行了温升和效率试验,测试其动态响应特性。表明该减速器满足检验规范要求,性能良好。
     论文有图101幅,表23个,参考文献163篇。
Armored Face Conveyors are developing new features of ultra-high power, large volume, long transport distance, high strength, long service life and high reliability in order to improve the output and work efficiency of the coal face, reduce production costs, enhance market competitiveness and improve economic efficiency. It must be equipped with the planetary gear because of its working environment. The planetary gear of the Super Heavy-duty Armored Face Conveyor should have small volume and high reliability. Its main design method is static design with little regard for its dynamic characteristics, and the analysis of its all working conditions and performance. But when this planetary transmission works, it has these characteristics ,the speed being slow, transmission torque large, load uneven, and lubricity and heat dissipation poor, and is easy to result in wear failure and short service life, so it’s different from Conventional gear transmission in the selection of gear surface hardness, meshing parameters and lubricity in its design. Supported by the" research and development of large mining height fully mechanized caving face rear scraper conveyor", sub-topic of the major projects of the "Eleventh Five-Year" national scientific and technological supporting plan, this paper studies the design theory of the planetary gear of the Super Heavy-duty Armored Face Conveyor in order to improve its reliability ,working stability and prolong its service life. The main contents are as follows:
     (1)On the basis of the motion analysis of the planetary gear, time-varying meshing stiffness of multiple gear pairs, comprehensive error of clearance and gear pair and the influence of the input and output terminals, the nonlinear dynamic model of the planetary gear based on friction is established to lay a foundation for the study of its natural and dynamic characteristics.
     (2)The impact of the changes in design parameters on natural frequency and vibration mode is studied to determine these parameters’effect tendency on the system dynamic performance to provide a theoretical basis to predict the transmission’s dynamic characteristics in the design,and improve its dynamic performance.
     (3)The effect of gear back lash on system dynamic response, load sharing coefficient and dynamic load is studied after using numerical calculation method to compute the time domain response of the nonlinear dynamic model of the planetary gear with friction and without friction. The result shows that the impact of friction on the planetary gear of the Super Heavy-duty Armored Face Conveyor can not be ignored, especially in transient vibration phase, and it provides a basis when determining the dynamic load coefficient and the load sharing coefficient.
     (4)Accurate boundary conditions needed by the temperature field of the planetary gear and thermo-elastic coupling stress analysis are accurately calculated based on the principle of gear engagement, tribological and heat transfer. Temperature field distribution and thermal stress coupling of the multiple gears of the planetary gear is studied to get the impact of the distribution of the temperature field and temperature effect on structural stress using finite element analysis and ANASYS software, and it provides a basis when choosing tooth profile parameters.
     (5)The variables and objective function of the system optimization design are established based on the analysis of the influence of tooth profile parameters on the planetary gear lubricity.Then the mathematic mode of the gear transmission robust reliability optimization design based on sensitivity analysis is established and optimized with MATLAB optimization toolbox.Example analysis shows that optimization results of this method is better that the original design because it improves its quality robustness and design efficiency.
     (6)Test on temperature rise, efficiency and noise of the reducer of the Super Heavy-duty Armored Face Conveyor that has been conducted according to《MT/T101-2000 scraper conveyor reducer test specification》, The test result shows that the reducer meets standards and has good performance.
     There are 101 figuers,23 tables and 163 references in the thesis.
引文
[1]樊运策.综合机械化放顶煤开采技术[M].北京:煤炭工业出版社,2003.
    [2]李志军,宋选民,付玉平等.神东矿区特厚煤层合理开采方法的优化选择[J].矿业研究与开发,2010,30(3):10-11,74.
    [3]尚海涛,吴健.论综放开采技术在我国发展的必然性[J].中国煤炭,1997,23(4):2-7.
    [4]师文林,罗善明.超长综放工作面国产设备的选型配套研究[J].煤炭学报,2000,23(2):141-144.
    [5]赵经彻.我国综采放顶煤开采技术及其展望[J].中国工程科学,2001,3(4):9-16.
    [6]张德生.大功率阀控液力偶合器设计理论及关键技术研究[D],徐州:中国矿业大学,2011.5
    [7]李水平.重型刮板输送机传动装置的可靠性分析及改进[J].机械管理开发,2004,8:46-47.
    [8] DBT.Ultra-long face conveying[J].International Mining,2007,9:36-37.
    [9] S.D.FLOOK,J.J. LEEMING.Recent developments in longwall mining entry development,and room and pillar systems[EB/OL]. [2010-08-10].
    [10]王金华.我国大采高综采技术与装备的现状及发展趋势[J].煤炭科学技术,2006,34(1):4-7.
    [11]刘如玉.国内外刮板输送机行星减速器的性能比较及改制建议[J].煤矿现代化,1999,:34-35.
    [12]连向东,李学来,胡敬东.高效综采发展趋势与重大装备关键技术分析[J].煤,2005,14(3):1-6.
    [13]王继生.研制大功率刮板输送机势在必行[J].科技情报开发与经济,2007,17(23):253-254.
    [14]毛君.刮板输送机动力学行为分析与控制理论研究[D],阜新:辽宁工程技术大学,2006.5.
    [15]姜翎燕.工作面刮板输送机技术现状与发展趋势[J].煤炭科学技术,2007,35(8):102-106.
    [16]朱孝录,鄂中凯主编.齿轮承载能力分析[M].北京:高等教育出版社,1992.
    [17]张博.风力发电机齿轮传动系统动态优化设计[D].重庆:重庆大学,2009.5
    [18] Kahraman A,Singh R.Interactions between time-varying meshing stiffness and clearance non-linearities in a geared system[J].Journal of Sound and Vibration,1991,146:135-156.
    [19] Velex P,Maatar M.A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behavior[J].Journal of Sound and Vibration,1996(191):629-660.
    [20] Paclot.J.P,Velex P.Simulation of the dynamic behaviour of Single and multistage geared systems with shape deviations and mounting errors by using a spectral method[J].Journal of Sound and Vibration,1998,220(5):861-903.
    [21] Iwatusbo N,Arii S,Kawai R.Coupled lateral torsional vibration of rotor system trained by gears(Part I Analysis by transfer matrix method)[J].Bulletin of JSME,1984(27):271-277.
    [22]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [23]王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程,1998(12):55-58.
    [24]李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998.
    [25]王建军,李润方.齿轮系统间隙非线性振动研究综述[J].非线性动力学学报,1995(3).
    [26]王建军,李润方.齿轮系统参数振动问题研究综述[J].振动与冲击,1997(4):69-73.
    [27]李润方,韩西,林腾蛟.齿轮系统耦合振动的理论分析与试验研究[J].机械工程学报,2000,36(6):79-81.
    [28]李绍彬.高速重载齿轮传动热弹变形及非线性耦合动力学研究[D].重庆:重庆大学,2003.11.
    [29] Jost H P.The Tasks of Tribology Societies in a Changing World [C].Opening Address of the Second World Tribology Congress,Vienna,2001.
    [30]周长江,唐进元,钟志华,等.齿轮传动齿面摩擦因数计算方法的研究[J].润滑与密封,2006(10):185-191.
    [31] Masatoshi Yoshizaki,Chotaro Naruse,Ryozo Nemoto,et al.Study on Frictional Loss of Spur Gears (Concerning the Influence of Tooth Form,Load,Tooth Surface Roughness,and Lubricating Oil) [J].Tribology Transactions,1991,34(1):138-146.
    [32] Michlin Y,Myunster V.Determination of Power Losses in GearTransmissions with Rolling and Sliding Friction Incorporated [J].Mechanism and Machine Theory,2002,37(2):167-174.
    [33] Xu F R.Effect of the Sliding Friction between Teeth on the Bending Fatigue Stress on the Tooth Root of the Great Gear in the Machine Tool Increasing Speed Gearing [J].J of University of Shanghai for Science and Technology,2000,22 (2):119-125.
    [34]高创宽,周谋,亓秀梅.齿面摩擦力对齿轮接触应力的影响[J].机械强度,2003,25 (6):642-645.
    [35] Vijayarangan S,Ganesan N.Static Contact Stress Analysis of a Spur Gear Tooth Using the Finite Element Method,including Frictional Effects [J].Computers & Structures,1994,51(6):765-770.
    [36]方宗德,杨宏斌.用规划法的齿轮有摩擦三维连续弹性接触分析[J].机械工程学报, 1999,35 (6):98-101.
    [37] Fla?ker J,Fajdiga G,Glodez S,et al.Numerical Smiulation of Surface Pitting due to Contact Loading [J].International Journal of Fatigue,2001,23 (7):599-605.
    [38] Lewicki D G,Handschuh R F,Spievak L E,et al.Consideration of Moving Tooth Load in Gear Crack Propagation Predictions [J].ASME Journal of Mechanical Design,2001,123 (3):118-124.
    [39] Iida H,Tamura A,Yamada Y.Vibrational characteristics of friction between gear teeth[J].Bull JSME 1985,28:1521-1519.
    [40] Shing T K,Tsai L W,Krishnaprasad P S.Dynamic model of a spur geared system with backlash and friction consideration.In:ASME Proc Machine Elements and Machine Dynamics Conf,DE-71,1994,155-163.
    [41] Borner I,Houser D R.Friction and bending moments on gear noise excitations[J].SAE Trans,1996,105:1669-1676.
    [42] Vedmar L,Henriksson B.A general approach for determining dynamic force in spur gears[J].ASME Mech Des,1998,120:593-598.
    [43] VELEX P,CAHOUET V.Experimental and numerical investigations on the influence of tooth friction in spur and helical gear dynamics[J].ASME Journal of Mechanical Design,2000,122(4):515-522.
    [44] VELEX P,SAINSOT P.An analytical study of tooth friction excitations in Errorless spur and helical hears[J].Mechanism and Machine Theory,2002,37:641-658.
    [45] Vaishya M,Singh R.Analysis of periodically varying gear mesh systems with Coulomb friction using Floquet[J].J Sound Vib,2001,243:525-545.
    [46]王三民,沈允文,董海军.含摩擦和间隙直齿轮副混沌与分岔研究[J].机械工程学报,2002,38(9):8-11.
    [47] HE Song,GUNDA R,SINGH R.Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J].Journal of Sound and Vibration,2004,278(3):927-949.
    [48]韩致信.考虑摩擦力时的齿轮系统动力学分析[J].机床与液压,2005,2:73-77.
    [49]陈思雨,唐进元.间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响[J].机械工程学报,2009,45(8):119-124.
    [50] HOUSER D R,VAISHYA M,SORENSON J D.Vibroacoustic effects of friction in gears:An experimental investigation[R].SAE Paper 2001-01-1516,2001.
    [51] August A,Kasuba R.Torsional Vibration and Dynamic Loads in a Basic Planetary Gear System[J].Journal of Acoustics,Stress,and Reliability in Design.Transaction of the ASME 1986,108:348-253.
    [52] Jarchow F,Vonderschmidt R.Gearing Power Transm.Proc.Int. Symp,1981,327.
    [53]日高照晃,山本信行,石田武.行星齿轮装置均载机构中的各种误差和载荷分配的关系[C].日本机械学会论文集(C编)52卷480号,1986,2200-2206.
    [54]Kish J G.Sikorsky Aircraft Advanced Rotorcraft Transmission(ART)Program-Final Report.NASA CR-191079,NASA Lewis Research Center,1993.
    [55] Kish J G.Comanche Drive System.Rotary Wing Propulsion Specialists’Meeting Proceedings,American Helicopter Society,1993.
    [56] Parker R G.Mesh Phasing for Epicyclic Gear Vibration.Proeedings of the International Conference on Mechanical Transmissiom[C].Chongqing,P.R. China,2001,4:53-57.
    [57] Parker R G.A Physical Explanation for the Effectiveness of Planet Phasing to Suppress P1anetaryGear Vibration[J].Journal of Sound and Vibration,2000,236(4):561-573.
    [58] Robert R G,Lin J.Modeling,Modal Properties and Mesh Stiffness Variation Instabilities of Planetary Gears.NASA/CR—2001-210939.
    [59] Kahraman A.Load sharing characteristics of planetary transmissions[J].Mechanism and Machine Theory,1994,29(8):1151-1165.
    [60] Kahraman A,Blankenship G W.Planet mesh phasing in epicyclic gear sets[J].Proc. of International Gearing Conference,Newcastle UK,1994:99-104.
    [61] Kahraman A.Natural modes of planetary gear trains[J].Journal of Sound and Vibration.1994,173(1):125-130.
    [62] Lin J,Parker R G.Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration[J].Journal of Vibration and Acoustics,1999(121):316-321.
    [63] Lin J,Parker R G.Structured vibration characteristics of planetary gears with unequally spaced planets[J].Journal of Sound and Vibration.2000,233(5):921-928.
    [64] Lin J,Parker R G.Analytical Characterization of the Unique Properties of Planetary Gear FreeVibration[J].Journal of Vibration and Acoustics,1999,121:316-321.
    [65] Parker R G.A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration[J].Journal of Sound and Vibration,2000,236(4):561-573.
    [66] Parker R G,Lin J.Mesh phasing relationships in planetary and epicyclic gears[J],Journal of Mechanical Design,2004(126):365-370.
    [67] Ambarisha V K,Parker R G.Suppression of planet mode response in planetary gear dynamics through mesh phasing[J],ASME Journal of Vibration and Acoustics,2006(128):133-142.
    [68]张建云,阮忠唐,丘大谋.2K-H型行星齿轮减速器的动态特性分析[J].西安工业大学学报.1997,17(1):83-86.
    [69]孙涛,胡海岩.基于离散傅立叶变换与谐波平衡法的行星齿轮系统非线性动力学分析[J].机械工程学报,2002,38(11):58-61.
    [70]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002,38(2):44-52.
    [71]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学建模与方程[J].机械工程学报,2002,38(3):6-10.
    [72]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报,2002,38(3):11-15.
    [73]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科学版),2003,43(5):636-639.
    [74]杨通强,宋轶民,张策等.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报,2005,41(7):50-55.
    [75]周建星,董海军.基于非线性动力学的行星传动均载性能研究[J].机械科学与技术,2008,27(6):808-811.
    [76]潜波,巫世晶,周广明等.行星齿轮传动系统动力学特性研究[J].系统仿真学报,2009,21(20):6608-6613.
    [77]马星国,杨伟,尤小梅等.行星轮系刚柔耦合多体动力学分析[J].中国工程机械学报,2009,7(2):146-153.
    [78]陆波.基于热弹耦合大功率船用齿轮箱动态特性研究[D],重庆:重庆大学,2009.5
    [79] Blok H.Theoretical study on temperature rise at surface of actual contact under oiliness lubrication conditions[J].In:Proceeding of the General Discussion on Lubrication& Lubricants,London,1937,A publication of IME,1937:222-235.
    [80] Blok H.Thermal Network for Predicting Bulk Temperature in Gear Transmissions. Proc.7th Round Table Discussion[J].Marin Reduction Gears,Fins pong,Sweden(1995):3-25.
    [81] J.C.Jaeger.“Moving Sources of Heat and Temperature at Sliding Contacts”[J].Journal of Proceedings Royal Society of New South Wales,1942.
    [82] T.Tobe and M.Kato.“A Study on Flash Temperatures on the Spur Gear Teeth”[J].Transactions of the ASME,Journal of Engineering for Industry,February,1974.
    [83] Deng G,Kato M.Initial temperature evaluation for flash temperature index of gear tooth[J].Transaction of the ASME,Journal of Tribology,1995,117(3):476-481.
    [84] Y.Terauchi and H.Mori.“Comparison of Theories and Experiemntal Results for Surface Temperature of Spur Gear Teeth”[J].Transactions of the ASME,Journal of Engineering for Industry,February,1974.
    [85] N.Patir.“Estimate of the Bulk Temperature in Spur Gears Based on Finite Element Temperature Analysis”[J].MSc Degree Thesis,Northwestern University,USA,May,1976.
    [86] N.Patir and,H.S.Cheng.“Prediction of the Bulk Temperature in Spur Gears Based on Finite Element Temperature Analysis”[J].The ASLE/ASME Lubrication Conference,PREPRINT NO.77-LC-3B-2,USA,1977.
    [87] D.P.Townsend and L.S.Akin.“Analytical and Experimental Spur Gear Tooth Temperature as Affected by Operating Variables”[J].Transactions of the ASME,Journal of Mechanical Design,January,1981,103.
    [88] Ebubekir Atan.On the prediction of the design criteria for modification of contact stresses due to thermal stresses in the gear mesh[J].Tribology International,2005,38(3):227-233.
    [89] Murat Taburdagitan,Metin Akkok.Determination of surface temperature rise with thermo-elastic analysis of spur gears[J].Wear,2006,261(2):656–665
    [90]李润方,汤庆平.运转过程中轮齿耦合热弹性接触有限元分析[J].齿轮,Vol.13,No.1,1989.
    [91]李润方,黎豫生.耦合热弹性接触有限元法及其在齿轮传动中的应用[J].重庆大学学报,1993,(1):96-101.
    [92]李润方.关于有摩擦的弹塑性接触问题的有限元分析[J].重庆大学学报,1987,(3):47-53.
    [93]朱才朝.环式减速器发热问题分析.重庆大学学报[J].2001,24(2):5-8.
    [94]邱良恒,辛一行.齿轮本体温度场和热变形修形计算[J].上海交通大学学报,1995,29(2):79-86.
    [95]李绍彬.基于热弹变形的圆柱齿轮理想修形曲线[J].中国机械工程,2003,14(14):1175-1179.
    [96]龙慧.旋转齿轮瞬时接触应力和温度的分析模拟[J].机械工程学报,2004,40(8):24-29.
    [97]赵宁.双圆弧齿轮传动系统失油润滑瞬态热分析[J].计算机仿真,2008,25(7):77-81.
    [98]赵宁.基于热弹耦合的双圆弧齿轮接触特性研究[J].机床与液压,2008,36(1):37-40.
    [99]贺向东,机械结构可靠性稳健设计若干关键问题的研究[D].长春:吉林大学,2005,4
    [100] Frangopol D M.Structural optimization using reliability concepts[J].J.Struct. Eng.,ASCE,1985,111(11):2288-2296.
    [101] Moses F.Problems and prospect of reliability-based optimization[J].Eng. Struct.,1997,19(4):293-301.
    [102]刘善维.机械零件的可靠性优化设计[M].北京:中国科学技术出版社,1993.
    [103]陈立周,何晓峰,翁海珊,等.工程随机变量优化设计方法—原理与应用[M].北京:科学出版社,1997.
    [104]龚小平,仝崇楼,刘万俊,等.行星齿轮减速器可靠性优化设计[J].机械设计与制造,2001,(5):1-2.
    [105]韩翔.2K-H行星减速器可靠性优化设计[J].重型机械,2003(5):46-48.
    [106]尹力.渐开线行星轮系参数优选及可靠性优化设计[J].工程设计学报,2004,11(5):277-280.
    [107]王安麟,蒋涛,昝鹏宇,等.大型行星齿轮系统可靠性设计的多目标优化[J].中国工程机械学报,2009,7(3):253-257.
    [108] Taguchi G.Introduction to Quality Engineering[M].Tokyo:Asian Productivity Organization,1986.
    [109]韩之俊.三次设计[M].北京:机械工业出版社,1992.
    [110]陈立周.稳健设计[M].北京:机械工业出版社,2000.
    [111]闻邦椿,周知承.现代机械产品设计在新产品开发中的重要作用—兼论面向产品总体质量的“动态优化、智能化和可视化”三化综合设计法[J].机械工程学报,2003,39(10):43-52.
    [112]陈立周.工程稳健设计发展现状与趋势[J].中国机械工程,1998,9(6):59-62.
    [113]李泳鲜,孟庆国,姬振豫.机械稳健设计的研究概况与趋势[J].工程设计,1999,4(1):1-4.
    [114]陈立周.工程稳健设计[J].机械设计,1998,15(7):4-5.
    [115] Phadke M S.Quality Engineering Using Robust Design.Prentic-Hall International Inc.,1989.
    [116] Goli T N.Taguchi methods:some technical,cultural and pedagogical perspective[J].Qual. Reliab. Eng. Int,1993,9(3):185-202.
    [117] Parkinson A.Robust mechanical design using engineering models[J].ASME J. Mech. Des.,1995,117(2):48-54.
    [118]郭惠听.模糊目标与模糊约束时的稳健设计研究[J].西安交通大学学报,2002,36(1): 66-69.
    [119]郭惠听,蔡安辉,何哲明.模糊约束条件的可行稳健性研究及其应用[J].机械科学与技术,2002,21(2):201-206.
    [120]郭惠听.产品质量的模糊稳健性研究及模糊稳健优化设计方法[J].中国机械工程,2002,13(3):221-225.
    [121]郭惠听.望大望小特性设计目标的模糊稳健优化设计方法[J].西安交通大学学报,2002,36(5):532-540.
    [122]张荣荣,朱如鹏.2K-H行星齿轮传动稳健优化设计[J].机械工程师,2005(5):45-48.
    [123]张蕾,董恩国,申焱华.基于蒙特卡罗法的行星齿轮机构稳健性分析[J].机械传动,2008,32(4):17-20.
    [124]董恩国,张蕾,孙奇涵.基于双响应面法的行星齿轮机构稳健设计研究[J].机械传动,2009,33(2):35-39.
    [125]李永华.稳健可靠性理论及优化方法研究[D].大连:大连理工大学,2005,3.
    [126] Zhang Yimin,He Xiangdong,Liu Qiaoling,et al.Reliability-based optimization of front-axle with non-normal distribution parameters[J].Transactions of the Chinese Society of Agricultural Engineering,2003,19(5):60-63.
    [127]张义民,贺向东,刘巧伶,等.汽车零部件的可靠性稳健优化设计:理论部分[J].中国工程科学,2004,6(3):75-79.
    [128]张义民,贺向东,刘巧伶,等.汽车零部件(轴)的可靠性稳健优化设计[J].中国工程科学,2004,6(4):67-71.
    [129]贺向东,张义民,刘巧伶,等.非正态分布参数的扭杆的可靠性优化设计[J].中国机械工程,2004,15(10):849-851,891.
    [130]张义民,贺向东,刘巧伶,等.汽车零部件(弹簧)的可靠性稳健优化设计[J].中国工程科学,2004,6(5):61-64,78
    [131]张义民,贺向东,刘巧伶,等.任意分布参数的机械零件的可靠性稳健设计(一):理论部分[J].工程设计学报,2004,11(5):233-237.
    [132]张义民,贺向东,刘巧伶,等.任意分布参数的机械零件的可靠性稳健设计(二):轴[J].工程设计学报,2004,11(5):238-242.
    [133]张义民,贺向东,刘巧伶,等.任意分布参数的机械零件的可靠性稳健设计(三):弹簧[J].工程设计学报,2004,11(6):297-300.
    [134] Zhang Y M,He X D,Liu Q L,Wen B C,et al.Reliability sensitivity of automobile components with arbitrary distribution parameters.Proceedings of the Institution of Mechanical Engineers,Part D[J].Journal of AutomobileEngineering,2005,219(2):165-182.
    [135]李永华,黄洪钟,刘忠贺.结构稳健可靠性分析的凸集模型[J].应用基础与工程科学学报,2004,12(4):383-391.
    [136] Huang Hong-Zhong,Li Yong-Hua,Zuo Ming J.Robust reliability analysis of vibration components[J].International Journal of Reliability and Applications,2004,5(2):59-74.
    [137]李永华,何卫东.机械零件的稳健可靠性优化设计[J].机械设计,2009,26(5):46-49.
    [138]孙涛,行星齿轮系统非线性动力学研究[D],西安:西北工业大学,2000,6.
    [139]杨通强,斜齿行星传动动力学研究[D],天津:天津大学,2003,12.
    [140]王世宇,基于相位调谐的直齿行星齿轮传动动力学理论与实验研究[D],天津:天津大学,2005,1.
    [141] Parker R.G, A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration, Journal of sound and vibration, 2000, 236(4):561-573.
    [142]何韶君,刮板输送机行星齿轮传动的弹流润滑研究[J],起重运输机械,2008(2):71-73.
    [143] Buckingham.Analytical Mechanics of Gears [M].Dover,NewYork,1949.
    [144]张焕武,张国瑞.渐开线少齿差行星齿轮传动的滑动系数[J],起重运输机械,1980(3):24-29.
    [145]张家驷.NGW型行星传动装置齿轮耐磨持久性计算[J].齿轮,1989,13(4):17-21.
    [146]徐辅仁.弹性变形及滑动摩擦对精密渐开线齿轮强迫振动的影响[J].航空精密制造技术,2004,40(3):42-46.
    [147]鲍和云.两级星型齿轮传动系统分流特性及动力学研究[D].南京:南京航空航天大学,2006.9.
    [148]方宗德,沈允文,黄镇东.2K-H行星减速器的动态特性[J].西安:西北工业大学学报.1990.8(4):361-371.
    [149]国家煤炭工业局.MT101-2000刮板输送机减速器检验标准.北京:煤炭工业出版社,2000.5.
    [150]张茂.刮板输送机传动系统的可靠性研究[D].阜新:辽宁工程技术大学,2006,4.
    [151] Hartnet J P,Deland E C. The influence of prandtl number on the heat transfer from rotating non-isothermal disks and cones[J].Journal of Heat Transfer, Transactions of the ASME,1961,7(2):95-96.
    [152] Dorfman L A. Hydrodynamic resistance and the heat loss of rotating solids[J].Oliver and BoydLtd.Translated,1963,18(2):77-101.
    [153] Arend de Winter,Harmen Blok.齿轮的冲离冷却[C].国际齿轮装置与传动会议论文选.北京:机械工业出版社,1977:427-443.
    [154]高创宽,周谋,亓秀梅.齿面摩擦力对齿轮接触应力的影响[J].机械强度,2003,25 (6): 642-645.
    [155] L SAkin. Interdisciphnary Lubrication Theory for Gears (with Particular Emphasis on the Scufing Mode of Failure) [C].Soviet Atomic Energy (Paper),n72-PrG-6,Oct8-12,1972:26.
    [156] E JWellauer,G A Holloway.Application of EHD oil film theory to industrial gear drives [J].Trans ASME,1976,98(2):372-379.
    [157]刘文吉,王家序,肖科,等.考虑润滑性能的少齿差行星传动多目标优化设计[J],2008,33(8):86-89.
    [158]道森D,希金森G R.弹性流体动力润滑[M].北京:机械工业出版社,1982.
    [159]齿轮手册编委会.齿轮手册[M].北京:机械工业出版社,2002.
    [160]叶秉良,赵匀,俞高红,等.拖拉机NGW型行星式最终传动多目标可靠性优化[J],2008,24(11):89-94.
    [161]胡来瑢,何金国,林经德.行星传动设计与计算[M].北京:煤炭工业出版社,1996.
    [162]郭厚明,行志刚,荆双喜.无量纲参数在矿用低速重载齿轮故障诊断中的应用[J].煤炭科学技术,2006.34(8):28-31.
    [163]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.