尿血管紧张素原与肾脏局部肾素—血管紧张素系统活性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分慢性肾脏病患者尿血管紧张素原检测的意义及其相关因素背景
     肾内血管紧张素原主要分布于近端肾小管。近端肾小管内的血管紧张素原形成后被分泌入肾小管管腔,并在肾素、血管紧张素转换酶的作用下进一步形成血管紧张素Ⅱ,是肾内血管紧张素Ⅱ的主要来源。血管紧张素原分子量大,循环血管紧张素原不能通过肾小球滤过屏障,所以尿血管紧张素原主要来源于近端肾小管,而与循环血管紧张素原无关。已有大量动物试验提示尿血管紧张素原水平与肾内血管紧张素原、血管紧张素Ⅱ含量呈正相关,尿血管紧张素原可能是肾内肾素—血管紧张素系统(renin-angiotensin system, RAS)活性的指标。所以,本研究以慢性肾脏病入手,旨在分析慢性肾脏病患者尿血管紧张素原的相关因素。方法
     2009.4~2009.5在复旦大学附属中山医院肾内科病房住院治疗的临床资料完整的74例慢性肾脏病患者,取得患者知情同意,并排除最近2个月内曾服用血管紧张素转换酶抑制剂和/或血管紧张素Ⅱ受体阻断剂的患者。记录患者的性别、年龄、身高、体重、住院期间血压、尿常规、肾功能、电解质、24小时尿蛋白、尿钠。并于清晨、卧位采集肘静脉血8ml分离血浆和血清,同时收集新鲜晨尿10ml分离上清液,利用放射免疫法和ELISA方法测定血、尿肾素—血管紧张素系统各组分的浓度。评价尿血管紧张素原与临床指标的相关性。结果
     74例慢性肾脏病患者尿血管紧张素原为209.28±133.99 ng/(mg Cr)[49.48-724.81 ng/(mg Cr)],估算肾小球滤过率(estimated glomerular filtration rate, eGFR)为51.34±30.26 ml/min/1.73m2(3.99-163.94 ml/min/1.73m2),尿血管紧张素Ⅱ为134.69±95.09 pg/(mg Cr)[45.73-580.06 pg/(mg Cr)],尿Ⅳ型胶原为672.91±989.10 ng/(mg Cr)[37.53-6269.48 ng/(mg Cr)],尿钠为157.73±76.75 mmol/24h (8.00-425.00 mmol/24h)。经Pearson单因素相关分析,尿血管紧张素原与eGFR呈负相关(r=-0.56,P<0.01);尿血管紧张素原与尿血管紧张素Ⅱ呈正相关(r=0.56,p<0.01);尿血管紧张素原与尿Ⅳ型胶原呈正相关(r=0.41,p<0.01);尿血管紧张素原与尿钠呈负相关(r=-0.25,P<0.05)。进一步对eGFR、尿血管紧张素Ⅱ、尿Ⅳ型胶原、尿钠进行多元回归分析,发现尿血管紧张素原与eGFR呈负相关(P<0.01),尿血管紧张素原与尿血管紧张素Ⅱ、尿Ⅳ型胶原呈正相关(P<0.01)。尿醛固酮、24小时尿蛋白、血浆肾素活性、血清血管紧张素原、血浆血管紧张素Ⅱ、血清醛固酮、血清钠、血清钾、收缩压、舒张压、年龄、体重指数和性别与尿血管紧张素原无显著相关性。eGFR>60 ml/min/1.73m2组的尿血管紧张素原为143.19±60.10 ng/(mg Cr), eGFR<60 ml/min/1.73m2组的尿血管紧张素原为254.33±151.38 ng/(mg Cr), eGFR<60 ml/min/1.73m2组的尿血管紧张素原水平显著高于eGFR>60 ml/min/1.73m2组(P<0.01)。结论
     慢性肾脏病患者尿血管紧张素原与eGFR及尿Ⅳ胶原相关,尿血管紧张素原可能是反映慢性肾脏病中肾脏损伤尤其是慢性损伤程度的指标。
     第二部分尿血管紧张素原与肾脏局部肾素—血管紧张素系统活性的关系背景
     各种证据提示肾内肾素—血管紧张素系统的过度兴奋是慢性肾脏病发生发展的关键因素。尿血管紧张素Ⅱ不仅来自于肾脏局部形成的血管紧张素Ⅱ,还有部分来自循环血管紧张素Ⅱ,尿血管紧张素Ⅱ并不是反映肾内血管紧张素Ⅱ活性的稳定指标。动物研究结果说明尿血管紧张素原可能与肾内血管紧张素Ⅱ活性相关,是肾内肾素—血管紧张素系统活性的评价指标。但是目前关于尿血管紧张素原与肾内血管紧张素Ⅱ活性关系的数据主要来自啮齿类动物的研究,尚缺乏人类研究。如果得到人类研究结果证实,尿血管紧张素原可能成为血压、蛋白尿、肾小球滤过率以外,评价慢性肾脏病患者肾内RAS活化或阻断程度的重要工具。本研究旨在分析慢性肾脏病患者尿血管紧张素原与肾内血管紧张素Ⅱ活性的关系。
     方法
     2009.4~2009.5在复旦大学附属中山医院肾内科病房行肾脏活组织检查的临床和病理资料完整的73例慢性肾脏病患者,取得患者知情同意,并排除最近2个月内曾服用血管紧张素转换酶抑制剂和/或血管紧张素Ⅱ受体阻断剂的患者。收集新鲜晨尿10ml分离上清液,利用ELISA方法测定尿血管紧张素原。同时利用免疫组织化学的方法评价患者肾内肾素—血管紧张素系统各组分的表达,评价尿血管紧张素原与肾内肾素—血管紧张素系统各组分表达的相关性。
     结果
     73例慢性肾脏病患者尿血管紧张素原为210.24±134.65 ng/(mg Cr)[49.48-724.81 ng/(mg Cr)],肾内血管紧张素原免疫组化染色面积为39.15±19.35%(5.00-88.00%),肾内血管紧张素Ⅱ免疫组化染色面积为31.85±19.75%(3.00-81.00%),肾内血管紧张素Ⅱ1型受体免疫组化染色面积为44.50±16.14%(8.00-88.00%)。经Pearson单因素相关分析,尿血管紧张素原与肾内血管紧张素原免疫组化染色面积呈正相关(r=0.45,P<0.01);尿血管紧张素原与肾内血管紧张素Ⅱ免疫组化染色面积呈正相关(r=0.52,P<0.01);尿血管紧张素原与肾内血管紧张素Ⅱ1型受体免疫组化染色面积呈正相关(r=0.28,P<0.05)。尿血管紧张素原与肾内肾素、血管紧张素Ⅱ2型受体免疫组化染色面积无显著相关性。
     结论
     尿血管紧张素原能较好地反映慢性肾脏病患者肾脏局部的血管紧张素Ⅱ活性,可做为肾内RAS活性的无创评价指标。
     第三部分血管紧张素Ⅱ受体阻断剂对肾脏局部肾素—血管紧张素系统表达的影响
     背景
     大量证据表明肾脏存在血管紧张素Ⅱ1型受体高表达,所以肾脏是肾素—血管紧张素系统的主要靶器官。但目前仍缺乏关于血管紧张素Ⅱ受体阻断剂(angiotensinⅡreceptor blocker, ARB)对人体肾内肾素—血管紧张素系统整体活性影响的直接数据,也缺乏数据证明ARB治疗后尿血管紧张素原是否仍能有效反映肾内肾素—血管紧张素系统活性。本研究旨在分析ARB治疗后尿血管紧张素原是否仍能有效反映肾内RAS的活性,并进一步观察ARB治疗对慢性肾脏病患者肾内RAS表达的影响。
     方法
     2009.4~2009.5在复旦大学附属中山医院肾内科行肾脏活组织检查并曾经服用过2周以上ARB(剂量、种类不限)的17例慢性肾脏病患者(ARB治疗组),取得患者知情同意,并排除最近2个月内曾服用血管紧张素转换酶抑制剂的患者。第一部分中的研究对象根据eGFR、24小时尿蛋白、尿钠、血压等情况与之进行1:1配对(空白对照组),共配成17对。记录患者性别、年龄、身高、体重、住院期间血压、尿常规、肾功能、电解质、24小时尿蛋白、尿钠。于清晨、卧位采集肘静脉血8ml分离血浆和血清,同时收集新鲜晨尿10ml分离上清液,利用放射免疫法和ELISA方法测定血、尿肾素—血管紧张素系统各组分的浓度。并利用免疫组织化学的方法评价患者肾内肾素—血管紧张素系统各组分的表达。评价ARB治疗组尿血管紧张素原与肾内肾素—血管紧张素系统各组分表达的相关性以及两组间血、尿和肾组织肾素—血管紧张素系统活性的差异。
     结果
     ARB治疗组患者尿血管紧张素原为219.17±211.54 ng/(mg Cr)[17.27-700.47 ng/(mg Cr)],肾内血管紧张素原免疫组化染色面积为34.76±15.64% (10.00-65.00%),肾内血管紧张素Ⅱ免疫组化染色面积为33.76±18.82% (10.00-70.00%),肾内血管紧张素Ⅱ1型受体免疫组化染色面积为43.65±26.17%(15.00-92.00%)。经Pearson单因素相关分析,尿血管紧张素原与肾内血管紧张素原免疫组化染色面积呈正相关(r=0.54, P<0.05);尿血管紧张素原与肾内血管紧张素Ⅱ免疫组化染色面积呈正相关(r=0.50, P<0.05);尿血管紧张素原与肾内血管紧张素Ⅱ1型受体免疫组化染色面积呈正相关(r=0.58,P<0.05)。ARB治疗组患者尿血管紧张素原与肾内肾素、血管紧张素Ⅱ2型受体免疫组化染色面积无显著相关性。ARB治疗组血浆血管紧张素Ⅱ63.09±15.14 pg/ml,空白对照组血浆血管紧张素Ⅱ53.66±8.33 pg/ml, ARB治疗组血浆血管紧张素Ⅱ显著高于空白对照组(P<0.05); ARB治疗组肾内肾素免疫组化染色面积为48.65±19.58%,空白对照组肾内肾素免疫组化染色面积为30.29±24.98%, ARB治疗组肾内肾素免疫组化染色面积显著高于空白对照组(P<0.05)。ARB治疗组肾内血管紧张素原、血管紧张素Ⅱ和血管紧张素Ⅱ1型受体免疫组化染色面积略低于空白对照组,但无统计学意义。两组在收缩压、舒张压、eGFR、24小时尿蛋白、尿钠、血浆肾素活性、血清血管紧张素原、血清醛固酮、尿血管紧张素原、尿血管紧张素Ⅱ、尿醛固酮和肾内血管紧张素Ⅱ2型受体免疫组化染色面积等方面无显著性差异。
     结论
     血管紧张素Ⅱ受体阻断剂治疗后,慢性肾脏病患者尿血管紧张素原仍能较好地反映肾脏局部的血管紧张素Ⅱ活性。血管紧张素Ⅱ受体阻断剂治疗对循环和肾脏局部肾素—血管紧张素系统活性的影响不同,可使得循环血管紧张素Ⅱ升高,并可能抑制肾脏局部血管紧张素Ⅱ的表达。
     第四部分原发性IgA肾病患者肾脏局部肾素—血管紧张素系统表达及其与临床病理损伤的关系
     背景
     目前关于人类肾脏,尤其是人类肾脏疾病中肾素—血管紧张素系统各组分的表达及其相互调节的数据很少,大部分关于肾素—血管紧张素系统组分表达和调节的数据来源于动物。有必要对人类肾脏和肾脏疾病中的这些数据进行全面评价,因为循环肾素—血管紧张素系统组分的改变并不能直接反映肾脏局部肾素—血管紧张素系统的表达和调节,而且肾内RAS活性的效应并不能通过单一某种组分的测定得到精确评价,所以必须对RAS各组分的肾内表达进行同时评价。本研究旨在全面分析原发性IgA肾病患者肾脏局部肾素—血管紧张素系统各组分的表达及其相互调节,同时分析肾内血管紧张素Ⅱ表达与临床病理损伤指标间的关系。
     方法
     2009.1~2009.6在复旦大学附属中山医院肾内科病房行肾脏活组织检查,术后病理证实为原发性IgA肾病的36例患者,取得患者知情同意,并排除曾服用糖皮质激素、免疫抑制剂、血管紧张素转换酶抑制剂和/或血管紧张素Ⅱ受体阻断剂的患者。记录研究对象性别、年龄、身高、体重、住院期间血压、尿常规、肾功能、电解质、24小时尿蛋白、尿钠。。肾小球、肾小管及血管的各项病理参数的半定量积分采用Katafuchi评分标准,并利用免疫组织化学的方法评价患者肾内肾素—血管紧张素系统各组分的表达。分析原发性IgA肾病患者肾脏局部肾素—血管紧张素系统各组分表达之间的相关性以及肾内血管紧张素Ⅱ表达与血压、GFR、24小时尿蛋白和肾脏病理评分之间的相关性。
     结果
     36例IgA肾病患者肾内肾素、血管紧张素原和血管紧张素Ⅱ免疫组化染色面积分别为26.86±13.66%(7-55%),38.34±9.71%(12-57%)和32.73±14.74%(6-70%)。经Pearson单因素相关分析,肾内肾素与血管紧张素Ⅱ表达呈正相关(r=0.43, P<0.01),肾内血管紧张素原与血管紧张素Ⅱ表达呈正相关(r= 0.34, P<0.05)。eGFR平均值为55.92±22.87 ml/min/1.73m2(6.62-92.49 ml/min/1.73 m2),肾内血管紧张素Ⅱ免疫组化染色面积与eGFR呈负相关(r=-0.61,P<0.01);慢性化积分为3.06±2.60(0-10),肾内血管紧张素Ⅱ免疫组化染色面积与慢性化积分呈正相关(p=0.39,P<0.05)。
     结论
     IgA肾病患者肾内血管紧张素Ⅱ表达与肾内肾素、血管紧张素原表达相关,并且肾内血管紧张素Ⅱ活性与肾脏纤维化过程相关。
PartⅠThe significance and clinical factors related to the level of urinary angiotensinogen in chronic kidney disease patients
     Background
     Several authors have demonstrated that intrarenal angiotensinogen is mainly local-ized to proximal tubule. The angiotensinogen produced in proximal tubule cells seems to be secreted directly into the tubular lumen and converted to angiotensinⅡ(AngⅡ) by renin and angiotensin converting enzyme (ACE). Tubular angiotensinogen has been proposed to be the major intrarenal source for AngⅡ. Because of its molecular size, it seems unlikely that much of the plasma angiotensinogen filters across the glomerular membrane, further supporting the concept that urinary angiotensinogen is mainly secreted by proximal tubule cells, having nothing to with general angiotensinogen. Many animal experiments have demonstrated that there is positive correlation between urinary angiotensinogen and intrarenal angiotensinogen and AngⅡcontent. These data also suggest the potential of urinary angiotensinogen as a marker of intrarenal RAS activity. This study was designed to analyze the clinical factors related to the level of urinary angiotensinogen in chronic kidney disease (CKD) patients.
     Methods
     Seventy-four CKD patients who were hospitalized in Shanghai Zhongshan Hospital between April 2009 and May 2009, had not received angiotensin converting enzyme inhibitor(ACEI) or angiotensinⅡreceptor blocker(ARB) during last two months, and gave informed consent were included in the study. We recorded gender, age, height, body weight, blood pressure, urine routine, renal function, serum electrolytes, urinary protein of 24 hours and urinary sodium. Blood samples were collected at bed rest early in the morning and fresh urine samples were collected after waking up. We measured plasma renin activity, plasma and urinary angiotensinogen, AngⅡand aldosterone by RIA or ELISA in order to determine the clinical factors related to the level of urinary angiotensinogen.
     Results
     Average urinary angiotensinogen in 74 chronic kidney disease patients was 209.28±33.99 ng/(mg Cr)[49.48-724.81 ng/(mg Cr)]. Average estimated glomerular filtration rate(eGFR) was 51.34±30.26 ml/min/1.73m2(3.99-163.94 ml/min/1.73m2) and there was negative correlation between urinary angiotensinogen and eGFR(r= -0.56, P<0.01). Average urinary AngⅡwas 134.69±95.09 pg/(mg Cr)[45.73-580.06 pg/(mg Cr)] and there was positive correlation between urinary angiotensinogen and urinary AngⅡ(r= 0.56, P<0.01). Average urinary typeⅣcollagen was 672.91±989.10 ng/(mg Cr)[37.53-6269.48 ng/(mg Cr)] and there was positive correlation between urinary angiotensinogen and urinary type IV collagen(r=0.41, P<0.01). Average urinary soduim was 157.73±76.75 mmol/24h(8.00-425.00 mmol/24h) and there was negative correlation between urinary angiotensinogen and urinary sodium(r=-0.25, P<0.05). Multiple regression analysis indicated that low eGFR(P<0.01), high urinary AngⅡ(P<0.01) and high urinary typeⅣcollagen (P<0.01 correlated significantly with high urinary angiotensinogen. Urinary angiotensinogen did not correlate significantly with plasma renin activity, serum angiotensinogen, plasma AngⅡ, serum and urinary aldosterone, urinary protein of 24 hours, serum sodium, serum potassium, blood pressure, BMI, or gender. Average urinary angiotensinogen in patients whose eGFR were lower than 60 ml/min/1.73m2 was higher than that in patients whose eGFR were higher than 60 ml/min/1.73m2 [254.33±151.38 ng/(mg Cr) vs.143.19±60.10 ng/(mg Cr), P<0.01].
     Conclusion
     There is negative correlation between urinary angiotensinogen and eGFR and there is positive correlation between urinary angiotensinogen and urinary type IV collagen in chronic kidney disease patients.Urinary angiotensinogen maybe a marker of kidney injury, especially chronic kidney injury in chronic kidney disease.
     PartⅡThe relationship between urinary angiotensinogen and intrarenal renin-angiotensin system activity
     Background
     The crucial role of over-activation of intrarenal renin-angiotensin system (RAS) in the development and progression of chronic kidney disease is widely recognized. Urinary AngⅡincludes focal AngⅡformed intrarenally and part of general AngⅡfiltering across the glomerular membrane. Urinary AngⅡis not a stable marker of intrarenal AngⅡactivity. Many animal experiments have demonstrated that there is positive correlation between urinary angiotensinogen and intrarenal AngⅡactivity and these data also suggest the potential of urinary angiotensinogen as a marker of intrarenal RAS activity. However, most data about urinary angiotensinogen and intrarenal AngⅡactivity derive from animal studies. Studies in humans are lacking, but if results from the preliminary studies are confirmed, urinary angiotensinogen might constitute an invaluable tool for measuring the degree of RAS activation or blockade in individuals with chronic kidney disease, beyond blood pressure, proteinuria and eGFR. This study was designed to analyze the relationship between urinary angiotensinogen and intrarenal AngⅡactivity.
     Methods
     Senenty-there CKD patients who were hospitalized in Shanghai Zhongshan Hospital between April 2009 and May 2009, had not received ACEI or ARB during last two months, and gave informed consent were included in the study. Fresh urine samples were collected after waking up and we measured urinary angiotensinogen by ELISA. Experssion of all the components of intrarenal RAS was assessed by immunohistochemistry staining (IHCS) in order to determine the relationship between urinary angiotensinogen and expression of all the components of intrarenal renin-angiotensin system.
     Results
     Average urinary angiotensinogen in 73 chronic kidney disease patients was 210.24±134.65 ng/(mg Cr)[49.48-724.81 ng/(mg Cr)]. Positive IHCS area of intrarenal angiotensinogen was 39.15±19.35%(5.00-88.00%) and there was positive correlation between urinary angiotensinogen and positive IHCS area of intrarenal angiotensinogen (P<0.01). Positive IHCS area of intrarenal AngⅡwas 31.85±19.75% (3.00-81.00%) and there was positive correlation between urinary angiotensinogen and positive IHCS area of intrarenal AngⅡ(P<0.01). Positive IHCS area of intrarenal angiotensinⅡtype 1 receptor (AT1R) was 44.50±16.14%(8.00-88.00%) and there was positive correlation between urinary angiotensinogen and positive IHCS area of intrarenal AT1R (P<0.05). Urinary angiotensinogen did not correlate significantly with positive IHCS area of intrarenal renin and angiotensinⅡtype 2 receptor(AT2R).
     Conclusion
     Urinary angiotensinogen can reflect intrarenal agiotensinⅡactivity in chronic kidney disease patients and constitutes an invasive marker of intrarenal RAS activity.
     PartⅢThe effect of angiotensinⅡreceptor blocker on expression of intrarenal renin-angiotensin system
     Background
     The kidney is a major target for the RAS, as evidenced by the robust renal expression of the AT1R. Data about the effect of ARB on intrarenal RAS activity is still lacking and there is no evidence to support that urinary angiotensinogen is still a marker of intrarenal RAS activity after the treatment of ARB. This study was designed to analyze whether urinary angiotensinogen is still a marker of intrarenal RAS activity after the treatment of ARB and observe the effect of ARB on expression of intrarenal renin-angiotensin system.
     Methods
     Senenteen CKD patients who were hospitalized in Shanghai Zhongshan Hospital between April 2009 and May 2009, had received ARB for at least two weeks, had not received ACEI during last 2 months, and gave informed consent were included in the study (ARB group). They were matched pair with patients in partⅠaccording to eGFR, urinary protein of 24 hours, urinary sodium and blood pressure (control group). We recorded gender, age, height, body weight, blood pressure, urine routine, renal function, serum electrolytes, urinary protein of 24 hours and urinary sodium. Blood samples were collected at bed rest early in the morning and fresh urine samples were collected after waking up. We measured plasma renin activity, plasma and urinary angiotensinogen, AngⅡand aldosterone by RIA or ELISA and assess experssion of all the components of intrarenal RAS by immunohistochemistry staining in order to determine the relationship between urinary angiotensinogen and expression of all the componenets of intrarenal renin-angiotensin system in ARB group and the difference of general and focal renin-angiotensin system activity between two groups.
     Results
     Average urinary angiotensinogen in ARB group was 219.17±211.54 ng/(mg Cr) [17.27-700.47 ng/(mg Cr)]. Positive IHCS area of intrarenal angiotensinogen was 34.76±15.64%(10.00-65.00%) and there was positive correlation between urinary angiotensinogen and positive IHCS area of intrarenal angiotensinogen (P<0.05). Positive IHCS area of intrarenal AngⅡwas 33.76±18.82%(10.00-70.00%) and there was positive correlation between urinary angiotensinogen and positive IHCS area of intrarenal AngⅡ(P<0.05). Positive IHCS area of AT1R was 43.65±26.17% (15.00-92.00%) and there was positive correlation between urinary angiotensinogen and positive IHCS area of intrarenal ATIR (P<0.05). Urinary angiotensinogen did not correlate significantly with positive IHCS area of intrarenal renin and AT2R. Average plasma AngⅡin ARB group was significantly higher than that in control group (63.09±15.14 pg/ml vs.53.66±8.33 pg/ml, P<0.05). Positive IHCS area of intrarenal renin in ARB group was significantly higher than that in control group (48.65±19.58% vs.30.29±24.98%, P<0.05). Positive IHCS area of intrarenal angio-tensinogen, AngⅡand ATIR in ARB group was lower than those in control group, but the difference had no statistical meaning. There was no difference between two groups on eGFR, urinary protein of 24 hours, blood pressure, urinary sodium, plasma renin activity, serum and urinary angiotensinogen, urinary Angll, serum and urinary al-dosterone, or positive IHCS area of intrarenal AT2R.
     Conclusion
     Urinary angiotensinogen still can reflect intrarenal angiotensinⅡactivity in chronic kidney disease patients treated by ARB. ARB has different influence on the activity of general and intrarenal RAS. ARB can elevate general angiotensinⅡand probably can inhibit the expression of intrarenal angiotensinⅡ.
     PartⅣExpression of intrarenal renin-angiotensin system and its relationship with clinical-pathological injury in primary IgA nephropathy patients
     Background
     Little information is available about the RAS expression and regulation in the human kidney and particularly in kidney diseases and data on the RAS expression and regulation were mostly obtained in animals.These data in humans and in diseased kidneys would be worthwhile being evaluated because changes in general RAS do not closely reflect local expression and regulation of intrarenal RAS. On the contrary, the simultaneous assessment of the expression and regulation of all components of intrarenal RAS is necessary for evaluation of the net effect of the intrarenal RAS activity. Indeed, the effect of RAS activity on the kidney can not be accurately assessed by the measurement of one component alone. This study was designed to analyze expression and regulation of all the components of intrarenal RAS and the relationship between intrarenal AngⅡexpression and clinical-pathological injury index in primary IgA nephropathy patients.
     Methods
     Thirty-six biopsy-proved IgA nephropathy patients who were hospitalized in Shanghai Zhongshan Hospital between January 2009 and June 2009, had not received ACEI, ARB, glucocorticoids or immunosuppressive agents, and gave informed consent were included in the study. We recorded gender, age, height, body weight, blood pressure, urine routine, renal function, serum electrolytes, urinary protein of 24 hours and urinary sodium. We assessed pathological injury by semiquantitative Katafuchi score and assessed intrarenal experssion of all the components of the intrerenal RAS by immunohistochemistry staining. We assessed expression and regulation of all the components of intrarenal RAS and the relationship between intrarenal Ang II activity and clinical-pathological injury index in primary IgA nephropathy patients.
     Results
     Positive IHCS area of intrarenal renin, angiotensinogen and AngⅡwere 26.86±13.66%(7-55%),38.34±9.71%(12-57%) and 32.73±14.74%(6-70%), respectively. There were positive correlation between positive IHCS area of intrarenal renin and positive IHCS area of intrarenal Ang II (P<0.01), positive IHCS area of intrarenal angiotensiongen and positive IHCS area of intrarenal Ang II (P<0.05). Average eGFR in 36 IgA nephropathy patients was 55.92±22.87 ml/min/1.73m2(6.62-92.49 ml/min/1.73m) and there was negative correlation between positive IHCS area of intrarenal AngⅡand eGFR(P<0.01). Average pathological chronicity index in 36 IgA nephropathy patients was 3.06±2.60 (0-10) and there was positive correlation between positive IHCS area of intrarenal AngⅡand pathological chronicity index (P<0.05).
     Conclusion
     Expression of intrarenal AngⅡcorrelates positively with expression of intrarenal renin and angiotensinogen in IgA nephropathy. Intrarenal AngⅡactivity plays an important role in kidney fibrosis in IgA nephropathy.
引文
1.McCullough PA. Cardiovascular disease in chronic kidney disease from a cardiologist's perspective. Curr Opin Nephrol Hypertens, 2004, 13: 591-600.
    2.Siragy HM. Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens, 2006, 1 5: 50-53.
    3.Schelling P, et al. Angiotensin and cell growth:a link to cardiovascular hypertrophy? J Hypertens, 1991, 9:3-15.
    4.Ketteler M, et al.Transforming growth factor-beta and angiotensin II: the missing link fromglomerular hyperfiltration to glomerulosclerosis? Annu Rev Physiol, 1995, 57: 279-295.
    5.Atiyeh BA, et al. In vitro production of angiotensin II by isolated glomeruli. Am J Physiol Renal Physiol, 1995, 268: F266-F272.
    6.Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens, 2004, 13: 107-115.
    7.Schalekamp MA, Danser AH. Angiotensin II production and distribution in the kidney—II. Model-based analysis of experimental data. Kidney Int, 2006, 69: 1553-1557.
    8.NavarLG, etal. Tubularfluidconcentrationsandkidneycontentsof angiotensins I and II in anesthetized rats. J Am Soc Nephrol, 1994, 5: 1153-1158.
    9.Seikaly MG, et al. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest, 1990, 86: 1352-1357.
    10.Nishiyama A, et al. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension, 2002, 39: 129-134.
    11.Sharma M, Sharma R, Greene AS, et al. Documentation of angiotensin II receptors in glomerular epithelial cells. Am J Physiol, 1998, 274:F623- F627.
    12.Schnermann J, Briggs JP. Restoration of tubuloglomerular feed-back in volume expanded rats by angiotensin II. Am J Physiol, 1990, 259:F565-F572 .
    13.Schnermann J, Traynor BT, Yang T, et al. Absence of tubuloglomerular feedback responses in ATI A receptor-deficient mice. Am J Physiol, 1997, 273: F315-F320.
    14.Kim S, Iwao H. Molecular and cellular mechanisms ofangiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev, 2000, 52: 11-34.
    15.Graciano ML, Cavaglieri Rde C, Delle H, et al. Intrarenal reninangiotensin system is upregulated in experimental model of progressive renal disease induced by chronic inhibition of nitric oxide synthesis. J Am Soc Nephrol, 2004, 15: 1805-1815.
    16.Del Prete D, Gambaro G, Lupo A, et al. Precocious activation of genes of the
    renin-angiotensin system and the fibrogenic cascade in IgA glomerulonephritis. Kidney Int, 2003, 64: 149 -159.
    17. Pellicano R, Kerr PG, Atkins RC. What have we learned from clinical trials on prevention? Kidney Int, 2005, Suppl 94: S101-S106.
    18. Tatsuo Y, Tsutomu N, Hiroyuki S, et al. Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol, 2007, 18: 1558-1565.
    19. Hollenberg NK. Implications of species difference for clinical investigation: studies on the renin-angiotensin system. Hypertension, 2000, 35: 150-154.
    1. Davisson RL, Ding Y, Stec DE, et al. Novel mechanism of hypertension revealed by cell-specific targeting of human angiotensinogen in transgenic mice. Physiol Genomics,1999,1:3-9.
    2. Rohrwasser A, Morgan T, Dillon HF, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension,1999,34: 1265-1274.
    3. Kobori H, Nishiyama A, Harrison-Bernard LM, et al. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension,2003, 41:42-49.
    4. Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int,2002,61: 579-585.
    5. Kobori H, Nishiyama A. Effects of tempol on renal angiotensinogen production in Dahl salt-sensitive rats. Biochem Biophys Res Commun,2004,315: 746-750.
    6. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med,2006,145:247-254.
    7. Lai KN, et al. Gene expression of the reninangiotensin system in human kidney. J Hypertens,1998,16:91-102.
    8. Singh R, et al. Mechanism of increased angiotensin II levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol,2003,14:873-880.
    9. Ingelfinger JR, et al. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule:a hypothesis for the intrarenal renin angiotensin system. J Clin Invest,1990,85:417-423.
    10. Gomez RA, et al. Renin and angiotensinogen gene expression in maturing rat kidney. Am J Physiol,1988,254:F582-F587.
    11. Kobori H, et al. Enhanced intrarenal angiotensinogen contributes to early renal injury in spontaneously hypertensive rats. J Am Soc Nephrol,2005,16:2073-2080.
    12. Navar LG, Mitchell KD, Harrison-Bernard LM, et al. Intrarenal angiotensin Ⅱ levels in normal and hypertensive states. J Renin Angiotensin Aldosterone Syst, 2001,2:S176-S184.
    13. Ding Y, Davisson RL, Hardy DO, et al. The kidney androgen-regulated protein promoter confers renal proximal tubule cell-specific and highly androgen-responsive expression on the human angiotensinogen gene in transgenic mice. J Biol Chem,1997,272:28142-28148.
    14. Modrall JG, Sadjadi J, Brosnihan KB, et al. Depletion of tissue angiotensin-converting enzyme differentially influences the intrarenal and urinary expression of angiotensin peptides. Hypertension,2004,43:849-853.
    15. Kobori H, et al. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin Ⅱ-dependent hypertension. Hypertension,2004,43: 1126-1132.
    1. Gould AB, Green D. Kinetics of the human renin and human substrate reaction. Cardiovasc Res,1971,5:86-89.
    2. Kobori H, Nishiyama A, Harrison-Bernard LM, et al. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension,2003,41: 42-49.
    3. Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int,2002,61: 579-585.
    4. Kobori H, Nishiyama A. Effects of tempol on renal angiotensinogen production in Dahl salt-sensitive rats. Biochem Biophys Res Commun,2004,315: 746-750.
    5. Hollenberg NK. Implications of species difference for clinical investigation: studies on the renin-angiotensin system. Hypertension,2000,35:150-154.
    6. Tatsuo Y, Tsutomu N, Hiroyuki S, et al. Urinary angiotensinogen as a marker of intrarenal angiotensin Ⅱ activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol,2007,18:1558-1565.
    7. Kobori H, et al. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin Ⅱ-dependent hypertension. Hypertension,2004,43: 1126-1132.
    8. Davisson RL, Ding Y, Stec DE, et al. Novel mechanism of hypertension revealed by cell-specific targeting of human angiotensinogen in transgenic mice. Physiol Genomics,1999,1:3-9.
    9. Ding Y, Davisson RL, Hardy DO, et al. The kidney androgen-regulated protein promoter confers renal proximal tubule cell-specific and highly androgen-responsive expression on the human angiotensinogen gene in transgenic mice. J Biol Chem,1997,272:28142-28148.
    10. Li XC, et al. Genetic deletion of AT1a receptors attenuates intracellular accumulation of ANG Ⅱ in the kidney of AT1 a receptor-deficient mice. Am J Physiol Renal Physiol,2007,293:F586-F593.
    11. Li XC, et al. AT1 receptor-mediated accumulation of extracellular angiotensin Ⅱ in proximal tubule cells:role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol,2006,291:F375-F383.
    1. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med,2006,145:247-254.
    2. Li XC, Campbell DJ, Ohishi M, et al. AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol,2004,290:F1024-F1033.
    3. Kotlo K, et al. Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells. Am J Physiol Renal Physiol,2007,293:F1047-F1053.
    4. Leong PK, et al. Effects of ACE inhibition on proximal tubule sodium transport. Am J Physiol Renal Physiol,2006,290:F854-F863.
    5. Biollaz J, et al. Antihypertensive therapy with MK 421:angiotensin Ⅱ-renin relationships to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmaco,1982,14:966-972.
    6. Farquharson CA, Struthers AD. Gradual reactivation over time of vascular tissue angiotensin Ⅰ to angiotensin Ⅱ conversion during chronic lisinopril therapy in chronic heart failure. J Am Coll Cardiol,2002,39:767-775.
    7. Ferrario CM, et al. Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int,2005,68:2189-2196.
    8. Iyer SN, et al. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the reninangiotensin system. Hypertension,1998,31:356-361.
    9. van der Wouden EA, et al. Does angiotensin (1-7) contribute to the anti-proteinuric effect of ACE inhibitors. J Renin Angiotensin Aldosterone Syst, 2005,6:96-101.
    10. Menard J, Campbell DJ, Azizi M, et al. Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation,1997,96:3072-3078.
    11. Brasier AR, Li J. Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension,1996,27:465-475.
    12. Nishiyama A, Yoshizumi M, Rahman M, et al. Effects of AT1 receptor blockade on renal injury and mitogenactivated protein activity in Dahl salt-sensitive rats. Kidney Int, 2004,65:972-981.
    13. Tatsuo Y, Tsutomu N, Hiroyuki S, et al. Urinary angiotensinogen as a marker of intrarenal angiotensin Ⅱ activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol,2007,18:1558-1565.
    1. Cassis LA, Saye J, Peach MJ. Location and regulation of rat angiotensinogen messenger RNA. Hypertension,1988,11:591-596.
    2. Naftilan AJ, et al. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall. J Clin Invest,1991,87:1300-1311.
    3. Moe OW, Ujiie K, Star RA, et al. Renin expression in renal proximal tubules. J Clin Invest,1993,91:774-779.
    4. Chen M, Harris MP, Rose D, et al. Renin and renin mRNA in proximal tubules of the rat kidney. J Clin Invest,1994,94:237-243.
    5. Wilkes BM, Bellocci A. Properties of glomerular angiotensin receptors in acute renal failure in the rat. JLab Clin Med,1983,102:909-917.
    6. Ballermann BJ, Skorecki KL, Brenner BM. Reduced glomerular angiotensin Ⅱ receptor density in early untreated diabetes mellitus in the rat. Am J Physiol,1984, 247(Supp 16):F110-F116.
    7. Wilkes BM. Reduced glomerular angiotensin Ⅱ receptor density in diabetes mellitus in the rat:Time course and mechanism. Endocrinology,1987, 120:1291-1298.
    8. Wilkes BM, Mento PF. Glomerular angiotensin II receptor modulation in glycerol-induced acute renal failure. Am J Physiol,1987,252 (Suppl 21):F109-F114.
    9. Timmermans V, Peake PW, Charlesworth JA, et al. Angiotensin Ⅱ receptor regulation in anti-glomerular basement membrane nephritis. Kidney Int,1990, 38:518-524.
    10. Wagner J, Volk S, Haufe CC, et al. Renin gene expression in human kidney biopsies from patients with glomerulonephritis or graft rejection. JAm Soc Nephrol,1995,5:1469-1475.
    11. Katafuchi R, Kiyoshi Y, Oh Y, Uesugi N, Ikeda K, Yanase T, Fujimi S.Glomerular score as a prognosticator in IgA nephropathy:its usefulness and limitation.Clinical Nephrology,1998,49(1):1-8.
    12. Koboril H, Katsurada A, Ozawa Y, et al. Enhanced Intrarenal Oxidative Stress and Angiotensinogen in IgA Nephropathy Patients. Biochem Biophys Res Commun,2007, 358(1):156-163.
    13. Dorella del P, Giovanni G, Antonio L, et al.Precocious activation of genes of the renin-angiotensin system and the fibrogenic cascade in IgA glomerulonephritis. Kidney International,2003,64:149-159.
    14. Hahn AWA, Jonas U, Buhler FR, et al. Activation of human peripheral monocytes by angiotensin Ⅱ. FEBS Lett,1994,374:178-184.
    15. Farber HW, Center DM, Rounds S, et al. Components of the angiotensin system cause release of a neutrophil chemoattractant from cultured bovine and human endothelial cells. Eur Heart J,1990, 11(Suppl B):100-107.
    16. Ai Kim J, Berliner JA, Nadler JL. Angiotensin Ⅱ increases monocyte binding to endothelial cells. Biochem Biophys Res Commun,1996,226:862-868.
    17. Hernandez-Presa M, Bustos C, Ortego M, et al. Angiotensin converting enzyme inhibition prevents arterial NF-κ activation, MCP-1 expression and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation,1997,95:1532-1541.
    18. Wolf G. Molecular mechanisms of angiotensin Ⅱ in the kidney:Emerging role in the progression of renal disease:beyond haemodynamics. Nephrol Dial Transplant,1998,13:1131-1142.
    19. Lai KN, Leung JCK, Lai KB, et al. Gene expression of the reninangiotensin system in human kidney. J Hypertens,1998,16:91-102.
    1. Dzau VJ, Re R. Tissue angiotensin system in cardiovascular medicine:a paradigm shift? Circulation,1994,89:493-498.
    2. Lai KN, et al. Gene expression of the reninangiotensin system in human kidney. J Hypertens,1998,16:91-102.
    3. Cassis LA, et al. Local adipose tissue reninangiotensin system. Curr Hypertens Rep,2008,10:93-98.
    4. von Bohlen, Halbach O. The reninangiotensin system in the mammalian central nervous system. Curr Protein Pept Sci,2005,6:355-371.
    5. Leung PS, de Gasparo M. Involvement of the pancreatic renin-angiotensin system in insulin resistance and the metabolic syndrome. J Cardiometab Syndr,2006,1: 197-203.
    6. Siragy HM. Angiotensin II compartmentalization within the kidney:effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens,2006,15:50-53.
    7. Schelling P, et al. Angiotensin and cell growth:a link to cardiovascular hypertrophy? J Hypertens,1991,9:3-15.
    8. Ketteler M et al. Transforming growth factor-beta and angiotensin II:the missing link from glomerular hyperfiltration to glomerulosclerosis? Annu Rev Physiol,1995, 57:279-295.
    9. Chappell MC, et al. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. Contrib Nephrol,2004,143: 77-89.
    10. Haulica I, et al. Biphasic effects of angiotensin (1-7) and its interactions with angiotensin II in rat aorta. J Renin Angiotensin Aldosterone Syst,2003,4:124-128.
    11. Brosnihan KB, et al. Enhanced expression of Ang-(1-7) during pregnancy. Braz J Med Biol Res,2004,37:1255-1262.
    12. Tallant EA, et al. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol,2005,289: H1560-H1566.
    13. Yoshida M, et al. L-158,809 and (D-Ala(7))-angiotensin Ⅰ/Ⅱ (1-7) decrease PAI-1 release from human umbilical vein endothelial cells. Thromb Res,2002,105: 531-536.
    14. Santos RA, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor mas. Proc Natl Acad Sci USA,2003,100:8258-8263.
    15. Rice GI, et al. Evaluation of angiotensinconverting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J, 2004,383:45-51.
    16. Velez JC, et al. Characterization of reninangiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol,2007,293:F398-F407.
    17. Ardaillou R, Chansel D. Synthesis and effects of active fragments of angiotensin Ⅱ. Kidney Int,1997,52:1458-1468.
    18. Dharmani M, et al. Effect of des-aspartateangiotensin I on the actions of angiotensin II in the isolated renal and mesenteric vasculature of hypertensive and STZ-induced diabetic rats. Regul Pept,2005,129:213-219.
    19. Campbell WB, et al. (Des-Asp1) angiotensin I:a study of its pressor and steroidogenic activities in conscious rats. Endocrinology,1997,100:46-51.
    20. Plovsing RR, et al. Effects of truncated angiotensins in humans after double blockade of the renin system. Am J Physiol Regul Integr Comp Physiol,2003,285: R981-R991.
    21. Cesari M, et al. Biological properties of the angiotensin peptides other than angiotensin II:implications for hypertension and cardiovascular diseases. J Hypertens,2002,20:793-799.
    22. Goto Y, et al. Enzymatic properties of human aminopeptidase A:regulation of its enzymatic activity by calcium and angiotensin IV. J Biol Chem,2006,281: 23503-23513.
    23. Carrera MP, et al. Renin-angiotensin system-regulating aminopeptidase activities are modified in the pineal gland of rats with breast cancer induced by N-methyl-nitrosourea. Cancer Invest,2006,24:149-153.
    24. Nguyen G. The (pro)renin receptor:pathophysiological roles in cardiovascular and renal pathology. Curr Opin Nephrol Hypertens,2007,16:129-133.
    25. Atiyeh BA, et al. In vitro production of angiotensin Ⅱ by isolated glomeruli. Am J Physiol Renal Physiol,1995,268:F266-F272.
    26. Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens,2004,13:107-115.
    27. Schalekamp MA, Danser AH. Angiotensin Ⅱ production and distribution in the kidney—Ⅱ. Model-based analysis of experimental data. Kidney Int,2006,69: 1553-1557.
    28. Navar LG, et al. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol,1994,5:1153-1158.
    29. Seikaly MG, et al. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest,1990,86:1352-1357.
    30. Nishiyama A, et al. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension,2002,39:129-134.
    31. Franco M, et al. Renal angiotensin Ⅱ concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol,2007,293:R251-R256.
    32. Hollenberg NK. Implications of species difference for clinical investigation: studies on the renin-angiotensin system. Hypertension,2000,35:150-154.
    33. Campbell DJ, et al. Differential regulation of angiotensin peptide levels in plasma and kidney of the rat. Hypertension,1991,18:763-773.
    34. Singh R, et al. Mechanism of increased angiotensin Ⅱ levels in glomerular mesangial cells cultured in high glucose. J Am Soc Nephrol,2003,14:873-880.
    35. Ingelfinger JR, et al. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule:an hypothesis for the intrarenal renin angiotensin system. J Clin Invest,1990,85:417-423.
    36. Gomez RA, et al. Renin and angiotensinogen gene expression in maturing rat kidney. Am J Physiol,1988,254:F582-F587.
    37. Kobori H, et al. Enhanced intrarenal angiotensinogen contributes to early renal injury in spontaneously hypertensive rats. J Am Soc Nephrol,2005,16:2073-2080.
    38. Navar LG, Mitchell KD, Harrison-Bernard LM, et al. Intrarenal angiotensin Ⅱ levels in normal and hypertensive states. J Renin AngiotensinAldosterone Syst,2001, 2:S176-S184.
    39. Rohrwasser A, Morgan T, Dillon HF, et al. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension,1999, 34:1265-1274.
    40. Kobori H, Nishiyama A, Harrison-Bernard LM, et al. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension,2003, 41:42-49.
    41. Ding Y, Davisson RL, Hardy DO, et al. The kidney androgen-regulated protein promoter confers renal proximal tubule cell-specific and highly androgen-responsive expression on the human angiotensinogen gene in transgenic mice. J Biol Chem, 1997,272:28142-28148.
    42. Davisson RL, Ding Y, Stec DE, et al. Novel mechanism of hypertension revealed by cell-specific targeting of human angiotensinogen in transgenic mice. Physiol Genomics,1999,1:3-9.
    43. Casarini DE, Boim MA, Stella RC, et al. Angiotensin Ⅰ-converting enzyme activity in tubular fluid along the rat nephron. Am J Physiol,1997,272:F405-F409.
    44. Modrall JG, Sadjadi J, Brosnihan KB, et al.Depletion of tissue angiotensin-converting enzyme differentially influences the intrarenal and urinary expression of angiotensin peptides. Hypertension,2004,43:849-853.
    45. Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angio-tensinogen reflects intrarenal angiotensinogen production. Kidney Int,2002, 61:579-585.
    46. Kobori H, Nishiyama A. Effects of tempol on renal angiotensinogen production in Dahl salt-sensitive rats. Biochem Biophys Res Commun,2004, 315:746-750.
    47. Singh R, et al. A novel mechanism for angiotensin Ⅱ formation in streptozotocin-diabetic rat glomeruli. Am J Physiol Renal Physiol,2005,288: F1183-F1190.
    48. Navar LG, et al. Enhancement of intrarenal angiotensin Ⅱ levels in 2 kidney 1 clip and angiotensin II induced hypertension. Blood Pressure,1995, Suppl 2:88-92.
    49. Sachetelli S, et al. RAS blockade decreases blood pressure and proteinuria in transgenic mice overexpressing rat angiotensinogen gene in the kidney. Kidney Int 2006,69:1016-1023.
    50. Liu F, et al. Overexpression of angiotensinogen increases tubular apoptosis in diabetes. J Am Soc Nephrol,2008,19:269-280.
    51. Price DA, et al. The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol,1999,10:2382-2391.
    52. Durvasula RV, Shankland SJ. Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol,2008,294:F830-F839.
    53. Neves FA, et al. Cathepsin B is a prorenin processing enzyme. Hypertension, 1996,27:514-517.
    54. Siragy HM, et al. Angiotensin subtype-2 receptors inhibit renin biosynthesis and angiotensin II formation. Hypertension,2005,45:133-137.
    55. Deinum J, et al. Increase in serum prorenin precedes onset of microalbuminuria in patients with insulin-dependent diabetes mellitus. Diabetologia,1999,42: 1006-1010.
    56. Klar J, et al. Aldosterone enhances renin gene expression in juxtaglomerular cells. Am J Physiol Renal Physiol,2004,286:F349-F355.
    57. Nguyen G, et al. Pivotal role of the renin/prorenin receptor in angiotensin Ⅱ production and cellular responses to renin. J Clin Invest,2002,109:1417-1427.
    58. Batenburg WW, et al. Prorenin is the endogenous agonist of the (pro)renin receptor:binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens,2007,25:2441-2453.
    59. Huang Y, et al. Renin increases mesangial cell transforming growth factor-β1 and matrix proteins through receptor-mediated, angiotensin Ⅱ-independent mechanisms. Kidney Int,2006,69:105-113.
    60. Ichihara A, et al. Involvement of (pro)renin receptor in the glomerular filtration barrier. J Mol Med,2008,86:629-635.
    61. Krebs C, et al. Antihypertensive therapy upregulates renin and (pro)renin receptor in the clipped kidney of Gold blatt hypertensive rats. Kidney Int,2007,72: 725-730.
    62. Ichihara A, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the "handle" region for nonproteolytic activation of prorenin. J Clin Invest,2004,114:1128-1135.
    63. Azizi M. Renin inhibition. Curr Opin Nephrol Hypertens,2006,15:505-510.
    64. Stanton A, et al. Blood pressure lowering in essential hypertension with an oral renin inhibitor, aliskiren. Hypertension,2003,42:1137-1143.
    65. Feldman DL, et al. Effects of aliskiren on blood pressure, albuminuria, and (pro)rennin receptor expression in diabetic TG(mRen-2)27 rats. Hypertension,2008, 52:130-136.
    66. Parving HH, et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med,2008,358:2433-2446.
    67. Pilz B, et al. Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in doubletransgenic rats. Hypertension,2005,46:569-576.
    68. Luft FC, Weinberger MH. Antihypertensive therapy with aliskiren. Kidney Int,2008,73:679-683.
    69. Segall L, et al. Direct renin inhibitors:the dawn of a new era, or just a variation on a theme? Nephrol Dial Transplant,2007,22:2435-2439.
    70. Anderson S, et al. Renal renin-angiotensin system in diabetes:functional, immunohistochemical, and molecular biological correlations. Am J Physiol Renal Physiol,1993,265:F477-F486.
    71. Vidotti DB, et al. High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol,2004,286:F1039-F1045.
    72. Pisitkun T, et al. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA,2004,101:13368-13373.
    73. Mizuiri S, et al. Renal ACE immunohistochemical localization in NIDDM patients with nephropathy. Am J Kidney Dis,1998,31:301-307.
    74. Yoo TH, et al. Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int,2007,71:1019-1027.
    75. Miyake-Ogawa C, et al. Tissue-specific expression of renin-angiotensin system components in IgA nephropathy. Am J Nephrol,2005,25:1-12.
    76. Kliem V, et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int,1996,49:666-678
    77. Lee FT, et al. Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol,2004,15:2139-2151.
    78. Ye M et al. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme:implications for albuminuria in diabetes. J Am Soc Nephrol,2006,17:3067-3075.
    79. Wysocki J, et al. ACE and ACE2 activity in diabetic mice. Diabetes,2006,55: 2132-2139.
    80. Lew RA, et al. Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol,2008,93:685-693.
    81. Warner FJ, et al. Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J Biol Chem, 2005,280:39353-39362.
    82. Lely AT, et al. Renal ACE2 expression in human kidney disease. J Pathol,2004, 204:587-593
    83. Gurley SB, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest,2006,116:2218-2225.
    84. Soler MJ, et al. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int,2007, 72:614-623.
    85. Wong DW, et al. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol,2007,171:438-451.
    86. Mizuiri S, et al. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis,2008,51:613-623.
    87. Kohlstedt K, et al. Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Hypertension,2005,45: 126-132.
    88. Murakami M, et al. Role of angiotensin Ⅱ generated by angiotensin converting enzyme-independent pathways in canine kidney. Kidney Int,1997, Suppl 63: S132-S135.
    89. Wei CC, et al. Differential ANG Ⅱ generation in plasma and tissue of mice with decreased expression of the ACE gene. Am J Physiol Heart Circ Physiol,2002,282: H2254-H2258.
    90. Liebau MC, et al. Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol,2006,290:F710-F719.
    91. Shaltout HA, et al. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep:evidence for ACE2-dependent processing of angiotensin Ⅱ. Am J Physiol Renal Physiol,2007,292:F82-F91.
    92. Huang XR, et al. Chymase is upregulated in diabetic nephropathy:implications for an alternative pathway of angiotensin Ⅱ-mediated diabetic renal and vascular disease. J Am Soc Nephrol,2003,14:1738-1747.
    93. Sadjadi J, et al. Angiotensin converting enzyme-independent angiotensin ii production by chymase is up-regulated in the ischemic kidney in renovascular hypertension. J Surg Res,2005,127:65-69.
    94. Tokuyama H, et al. Differential regulation of elevated renal angiotensin II in chronic renal ischemia. Hypertension,2002,40:34-40.
    95. McPherson EA, et al. Chymase-like angiotensin II-generating activity in end-stage human autosomal dominant polycystic kidney disease. J Am Soc Nephrol, 2004,15:493-500.
    96. Sanders JS, et al. Renal expression of matrix metalloproteinases in human ANCA-associated glomerulonephritis. Nephrol Dial Transplant,2004,19: 1412-1419.
    97. Igic R, et al. Localization of carboxypeptidase A-like enzyme in rat kidney. Peptides,2003,24:1237-1240.
    98. Wolf G, et al. Renal expression of aminopeptidase A in rats with two-kidney: one-clip hypertension. Nephrol Dial Transplant,2000,15:1935-1942.
    99. Stange T, et al. Immunoelectron microscopic single and double labelling of aminopeptidase N (CD 13) and dipeptidyl peptidase IV (CD 26). Acta Histochem,1996,98:323-331.
    100. Troyanovskaya M, et al. Expression of aminopeptidase A, an angiotensinase, in glomerular mesangial cells. Hypertension,1996,27:518-522.
    101. Stefanovic V, et al. Cell surface aminopeptidase A and N activities in human glomerular epithelial cells. Kidney Int,1992,41:1571-1580.
    102. Mentzel S et al. Mouse glomerular epithelial cells in culture with features of podocytes in vivo express aminopeptidase A and angiotensinogen but not other components of the renin-angiotensin system. J Am Soc Nephrol,1997,8:706-719.
    103. Bauer J, et al. Quantification of conversion and degradation of circulating angiotensin in rats. Am J Physiol,1999,277:R412-R418.
    104. Danser AH, et al. Angiotensin I-to-II conversion in the human renal vascular bed. J Hypertens,1998,16:2051-2056.
    105. Nomura M, et al. Possible involvement of aminopeptidase A in hypertension and renal damage in Dahl salt-sensitive rats. Am J Hypertens,2005,18:538-543.
    106. Thaiss F, et al. Angiotensinase A gene expression and enzyme activity in isolated glomeruli of diabetic rats. Diabetologia,1996,39:275-280.
    107. Song L, Healy DP. Kidney aminopeptidase A and hypertension, part Ⅱ: effects of angiotensin Ⅱ. Hypertension,1999,33:746-752.
    108. Mitsui T, et al. Hypertension and angiotensin Ⅱ hypersensitivity in aminopeptidase A-deficient mice. Mol Med,2003,9:57-62.
    109. Bodineau L, et al. Orally active aminopeptidase A inhibitors reduce blood pressure:a new strategy for treating hypertension. Hypertension,2008,51: 1318-1325.
    110. Landry C, et al. Characterization of neutral endopeptidase 24.11 in dog glomeruli. Biochem J,1993,291:773-779.
    111. Edwards RM, et al. Distribution of neutral endopeptidase activity along the rat and rabbit nephron. Pharmacology,1999,59:45-50.
    112. Li N, et al. The role of angiotensin converting enzyme 2 in the generation of angiotensin 1-7 by rat proximal tubules. Am J Physiol Renal Physiol,2005,288: F353-F362.
    113. Debiec H, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N Engl J Med,2002,346:2053-2060.
    114. Li XC, et al. Genetic deletion of AT1a receptors attenuates intracellular accumulation of ANG II in the kidney of AT1 a receptor-deficient mice. Am J Physiol Renal Physiol,2007,293:F586-F593.
    115. Li XC, et al. AT1 receptor-mediated accumulation of extracellular angiotensin Ⅱ in proximal tubule cells:role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol,2006,291:F375-F383.
    116. Brown GP, Venuto RC. Angiotensin Ⅱ receptors in rabbit renal preglomerular vessels. Am J Physiol Renal Physiol,1988,255:E16-E22.
    117. Lewis EJ, et al. The effect of angiotensinconverting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med,1993,329: 1456-1462.
    118. Brenner BM, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med,2001,345: 861-869.
    119. Nakao N, et al. Combination treatment of angiotensin-Ⅱ receptor blocker and angiotensinconverting-enzyme inhibitor in non-diabetic renal disease (COOPERATE):a randomised controlled trial. Lancet,2003,361:117-124.
    120. Crowley SD, et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest,2005,115: 1092-1 099.
    121. Crowley SD, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA,2006,103: 17985-17990.
    122. Siragy HM. AT1 and AT2 receptor in the kidney:role in health and disease. Semin Nephrol,2004,24:93-100.
    123. Ozono R, et al. Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension,1997,30:1238-1246.
    124. Hakam AC, Hussain T. Angiotensin Ⅱ AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway. Am J Physiol Renal Physiol,2006,290:F1430-F1436.
    125. Wang ZQ, et al. Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin-dependent hypertension. Hypertension,1999,33:96-101.
    126. Sharma M, et al. Documentation of angiotensin Ⅱ receptors in glomerular epithelial cells. Am J Physiol Renal Physiol,1998,274:F623-F627.
    127. Padia SH, et al. Conversion of renal angiotensin Ⅱ to angiotensin Ⅲ is critical for AT2 receptor-mediated natriuresis in rats. Hypertension,2008,51: 460-465.
    128. Padia SH, et al. Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor-blocked rats. Hypertension,2007,49:625-630.
    129. Wamberg C, et al. Effects of different angiotensins during acute, double blockade of the renin system in conscious dogs. Am J Physiol Regul Integr Comp Physiol,2003,285:R971-R980.
    130. Hus-Citharel A, et al. Aminopeptidase A activity and angiotensin III effects on [Ca2+]i along the rat nephron. Kidney Int,1999,56:850-859.
    131. Pinheiro SV, et al. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension,2004,44:490-496.
    132. De Souza AM, et al. Angiotensin Ⅱ and angiotensin-(1-7) inhibit the inner cortex Na+ -ATPase activity through AT2 receptor. Regul Pept,2004,120:167-175.
    133. Walters PE, et al. Angiotensin-(1-7) acts as a vasodepressor agent via angiotensin Ⅱ type 2 receptors in conscious rats. Hypertension,2005,45:960-966.
    134. Stegbauer J, et al. Effects of angiotensin-(1-7) and other bioactive components of the reninangiotensin system on vascular resistance and noradrenaline release in rat kidney. J Hypertens,2003,21:1391-1399.
    135. Ren Y, et al. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension,2002,39:799-802.
    136. van Rodijnen WF, et al. Renal microvascular actions of angiotensin Ⅱ fragments. Am J Physiol Renal Physiol,2002,283:F86-F92.
    137. van der Wouden EA, et al. The role of angiotensin(1-7) in renal vasculature of the rat. J Hypertens,2006,24:1971-1978.
    138. Magaldi AJ, et al. Angiotensin-(1-7) stimulates water transport in rat inner medullary collecting duct:evidence for involvement of vasopressin V2 receptors. Pflugers Arch,2003,447:223-230.
    139. Handa RK, et al. Autoradiographic analysis and regulation of angiotensin receptor subtypes AT(4), AT(1), and AT((1-7)) in the kidney. Am J Physiol Renal Physiol,2001,281:F936-F947.
    140. Li XC, et al. AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol,2006, 290:F1024-F1033.
    141. Kotlo K, et al. Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells. Am J Physiol Renal Physiol,2007,293:F1047-F1053.
    142. Leong PK, et al. Effects of ACE inhibition on proximal tubule sodium transport. Am J Physiol Renal Physiol,2006,290:F854-F863.
    143. Biollaz J, et al. Antihypertensive therapy with MK 421:angiotensin Ⅱ —renin relationships to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmacol,1982,4:966-972.
    144. Farquharson CA, Struthers AD. Gradual reactivation over time of vascular tissue angiotensin I to angiotensin II conversion during chronic lisinopril therapy in chronic heart failure. J Am Coll Cardiol,2002,39:767-775.
    145. Ferrario CM, et al. Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int,2005,68:2189-2196.
    146. Iyer SN, et al. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the reninangiotensin system. Hypertension,1998,31:356-361.
    147. van der Wouden EA, et al. Does angiotensin (1-7) contribute to the anti-proteinuric effect of ACE inhibitors. J Renin Angiotensin Aldosterone Syst, 2005,6:96-101.