泡沫钻探消泡方法试验研究及泡沫携岩屑能力数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于复杂储层和复杂地质条件、低压油气资源开发、后期老油气田的改造和稠油等,对21世纪的资源勘探开发提出了更高的要求,而泡沫井技术能够很好的克服钻井作业中遇到的技术难题,并能减少对油气层的伤害、有效保护油气层、提高油气井的产量、实时发现地质异常情况、及时评价低压油气层,能够有效控制漏失、减少和避免压差卡钻等井下复杂情况的发生,具有提高机械钻速、延长钻头使用寿命、缩短钻井周期和降低钻井成本等优点。
     近五十年来,虽然该技术得到了广泛的应用,但仍存在许多问题急需解决。其中消泡问题和水平井泡沫携岩屑问题尤为突出。由于没有合理的消泡方法,泡沫钻井中存在泡沫流体一次性使用量大,重复利用率低的缺点,不仅增加钻井成本而且污染环境。因此,如何节约泡沫剂的使用量,降低泡沫钻井的成本及满足日益严格的环保要求成为泡沫钻井的一大难题。另外人们对于泡沫携岩屑的基础理论研究较少,理论研究严重滞后于工艺的发展,所发表的论文主要是针对携岩屑工艺的描述。泡沫在大多数直井中流速达到0.3m/s左右就足够了,因此在直井钻井过程中泡沫携岩屑基本没有什么问题。但在水平井钻井中,由于颗粒的沉降速度和泡沫流动方向垂直,致使岩屑沉积在井筒底部,如果沉积在下侧井壁的岩屑床得不到较好的清洗和控制,将会造成诸多问题。这些问题主要有:卡钻、高摩阻和扭矩、粘附卡钻、不能有效将钻压传至钻头、不能解释井的方向变化、泡沫液漏入产层而影响最终采收率等等。因此,解决消泡问题和水平井岩屑沉积问题是推进泡沫钻进技术研究进程、扩大其应用领域的关键问题。
     针对上述问题,本文开展了实验和数值模拟研究,得出以下几点结论:
     1、化学消泡剂已经历了四次更新换代,但到目前为止仍没有一种万能的消泡剂适用于所有的消泡领域,对消泡剂消泡机理也没有统一的定论。通过实验测试了消泡剂加入量、泡沫剂种类、温度对消泡剂的消泡和抑泡性能的影响规律。证明了消泡剂加入量存在最优值。同时也证明了泡沫剂种类对消泡剂的消泡能力有很大的影响。在本试验中,阴离子型发泡剂的消泡性较好而复合型发泡剂的抑泡性较好。因此,建议利用化学消泡剂之前应做实验测试以确定消泡剂的适用性。另外随着消泡体系温度的升高,消泡剂的消泡速度加快,但温度超过60℃后,消泡速度基本不再变化;而抑泡时间随着消泡体系温度的升高呈下降趋势。
     2、建立了实验台,并在该实验台上测试了消泡压力、气液比、泡沫稳定性、喷射速度、贮能管等因素对消泡器消泡能力的影响。实验结果表明,消泡率与泡沫稳定性有密切关系。随着泡沫稳定性降低,机械消泡性降低;消泡压力与消泡率呈直线关系;实验得出长1m、直径20cm的贮能管,气液比α为100~200,垫片厚度为0.6mm的条件下,消泡效果最佳。另外借助FLUENT软件对消泡器扩散管和消泡管内部的压力分布及贮能管中泡沫流动速度与泡沫压力的变化进行数值模拟与分析,模拟结果与实验结论相符。
     3、研制了适合大口径水文水井泡沫钻进的XP-400型消泡器。目前,在深水井钻探中采用泡沫钻进,解决了一系列的钻进难题,取得了良好的应用效果。在干旱缺水地区、高山供水困难地区以及低压漏失和永冻地区,泡沫钻井是一种快速、高效、很有发展前景的钻进方法。研制该消泡器(XP-400型)将有效解决近年来影响泡沫钻井在水文水井中应用的消泡问题。
     4、泡沫在环空中携岩屑能力的高低是泡沫钻井成功与否的关键。在水平井钻井过程中,由于颗粒的沉降速度和泡沫流动方向垂直,给水平井泡沫携岩屑能力带来巨大挑战。本文首先阐述了泡沫流体的基本性质,包括泡沫质量、泡沫流体的粘度、泡沫的腐蚀性、泡沫的滤失性、泡沫的热物理性、泡沫的导电性、泡沫稳定性、泡沫流体的流变性等。建立了水平井岩屑运移模型,分析了泡沫携岩屑机理与携岩屑规律。同时分析了环空泡沫的密度、环空泡沫压力、环空泡沫流体的有效粘度、泡沫流体环空流体的摩阻系等因素对水平井泡沫携岩屑能力的影响。另外,本文对水平井泡沫携岩屑过程中岩屑沉降与环空返速之间的关系进行了计算分析,得出泡沫流体的携岩屑率随泡沫环空返速的增大而提高,但环空返速增加到一定程度后会冲刷井壁,严重的可能会导致井塌,因此存在一个临界环空返速。通过数值模拟表明,随泡沫环空返速的增大,颗粒体积分数减小。我们认为在水平井钻井中,环空返速为0.8m/s左右较为合理。
     5、设计了一台模拟井筒装置,将加工后开展影响泡沫携岩屑能实验研究。特别是泡沫环空返速、钻柱旋转、泡沫密度,钻柱偏心、钻进速度及泡沫流变性及岩屑尺寸等等因素。
     总之,通过上述几个方面的创新,为泡沫钻井发展与推广应用提供了新的创造性的思维理念。特别是为新的联合消泡方法提供了理论依据,提出一种新的消泡方法即机械为主化学为辅的联合消泡方法。另外本文所有的实验结果与文献中的结论与模拟结果是相符的,这也验证了本文所采用的研究方法和技术路线的正确性。
Due to Complex reservoirs and complex geological conditions, the highpressure on oil and gas resource development, the transformation of the old oil andgas fields and heavy oil, etc., in this21stcentury has led to a higher demand forexploration and development. Foam drilling technology has come to stay and can wellovercome the technical problems normally encountered in drilling operations, andreduce damage to the reservoir, and can also ensure effective protection of thereservoir, oil and gas well production, real-time detection of geological anomalies,timely evaluation of the low pressure reservoir. This can also effectively control theleakage, reduce and avoid the occurrence of the down hole pressure differentialsticking, etc., which will in turn improve the drilling rate, shorten drilling cycle andreduce drilling costs.
     For nearly five decades now, although the technology has been widely used, butthere are still many problems and technicalities that need to be resolved; especiallydefoaming and horizontal wells cutting Transport with Foam particularly beingprominent.
     Since there is no reasonable method for defoaming, foam drilling fluid foam usesa large amount of disposable repeated low rate drawback; which not only increase thecost of drilling but a significant source of pollution to the environment. Therefore,how to save the use of foam agent to reduce foam drilling costs and meetsincreasingly stringent environmental requirements has become a major problem offoam drilling.
     The theoretical research on foam cuttings is seriously lagging behind in terms ofprocess of development, all studies published mainly for the description of the FoamCuttings Transport process is in terms of vertical well drilling at about flow rate of0.3m/s, which is sufficient.Therefore, no much problem exists in the vertical well drilling process for foam Cuttings Transport. However, in the horizontal well drilling,because of grain settling velocity the foam flow direction is vertical, resulting indebris deposited at the bottom of the wellbore.
     Against The above problems, this paper carried out experimental and numericalstudies and obtained following conclusions:
     1. One chemical defoamer has gone through four replacements, but so far stillthere is not a panacea defoamer applicable to all areas of anti-foaming, defoamersdefoaming mechanism also has no uniform conclusion. A defoamer dosage tested byexperiment, the type of foaming agent, the temperature influence of defoamersdefoaming and antifoaming performance. Defoamer dosage proved optimal value. Italso shows that the type of foaming agent to defoamer defoaming ability have a greatimpact. In this experiment, the anionic foaming agents, defoaming better suppressionfoam blowing agent compound is found to be better. Therefore, we recommend theuse of chemical defoamer should be done before the experimental test to determinethe applicability of the defoamer. In addition, as the defoaming system temperatureincreases, defoamer defoaming speed is also cause to accelerate, but the temperatureis above60℃, defoaming velocity does not change; and this will increase defoamingtime proportionally to defoaming system temperature trend.
     2. In response to these issues, this paper carried out experimental and numericalstudies, to draw the following conclusion; the experimental results show that thedefoaming rate is closely related to foam stability. As the foam stability decreased, thedefoaming rate is reduced; a linear relationship between the defoaming pressure anddefoaming rate is achieve at an experimental length of about1m and20cm indiameter storage pipe, gas-liquid ratio of α100to200, the gasket thickness of0.6mm.The antifoaming effect conditions were measured in addition with the FLUENTsoftware. Defoaming device diffusion tubes and storage pipe internal pressuredistribution and storage can take control of the flow velocity of the foam and the foampressure changes in the numerical simulation and analysis and simulation results areconsistent with the experimental conclusion.
     3. Developed for large diameter Water Well foam drilling XP-400foam breaking device used in the drilling of deep wells foam drilling to solve a series of drillingproblems, and achieved good application. In arid areas and mountains water supply isdifficult and low pressure loss and permafrost regions, the bubble is a fast, efficientdrilling, promising drilling methods. The development of the defoaming (XP-400)will effectively address the impact of foam drilling in recent years in the Water Welldefoaming research.
     4. The level of foam in the annulus to bring the rock capacity is the key to thesuccess of foam drilling. In the horizontal drilling process, due to particle settlingvelocity and bubble flow direction is vertical to horizontal wells, this brings a hugechallenge. This paper first describes the basic properties of the foam fluid, includingthe foam quality, foam viscosity of the fluid, corrosiveness of the bubble, the filtrationof the foam, foam thermal physics, electrical conductivity of foam, foam stability,foam fluid flow degeneration and other aspects of foam drilling. Horizontal wellcuttings transport model is used to analyze the mechanism of foam to bring rock lawinto place. Annular bubble density, bubble pressure of the annulus, the effectiveviscosity of the annulus foam fluid, foam fluid annulus fluid friction and other factorswere all considered on the ability of foam to bring the rock to horizontal wells. Inaddition, the process of horizontal wells foam to bring rock cuttings settlement andthe relationship between annulus velocities were calculated and analyzed. To bringrock ratio derived foam fluid foam annulus velocity increases improve, but the ringempty return the speed to a certain extent after erosion sidewall, and when this getssevere may lead to the well collapse, so there is a critical annulus velocity. Numericalsimulation shows that, with the foam annular return velocity increases, the particlevolume fraction decreases. We believe that horizontal drilling annulus velocity atabout0.8m/s is more reasonable.
     5. Experimental study will be carried out on the design of a simulated wellboredevice that affects the foam to bring rock and this will be processed. In particular,foam annular speed, the rotation of the drill string, foam density, eccentric drill string,drilling speed and foam rheology and cuttings size, among other factors.
     In short, these aspects of innovation in foam drilling development will promote the use of a new concept of creative thinking. In particular, this provides a theoreticalbasis for the new joint anti-foaming method, proposed a new defoaming machinerybased chemistry, supplemented by joint anti-foaming method. In addition all theexperimental results, conclusions and the simulation results are consistent with whatis in the literature, which also verified the correctness of this line of research methodsand techniques.
引文
[1]张祖培,殷琨,蒋茉庆,孙友宏.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [2]聂衍钊.泡沫介质流变性试验研究及应用[D].长春:吉林大学建设工程学院,2004.
    [3] Haza Mohammed,SUN Youhong,Ould Houssein Yarbane.Parameters affectfoaming and foam stability during foam drilling[J].Global Geology,2007,10(2):203-207.
    [4]李勇.海上氮气泡沫注入系统研究与应用[D].山东:石油大学(华东),2008.
    [5]万里平,孟英峰,赵晓东.泡沫流体循环利用研究进展[J].钻采工艺,2010,33(1):76-79.
    [6]张亨.消泡研究进展[J].精细石油化工进展,2000,01(7):44-45.
    [7]马文英,王中华,曹品鲁.泡沫流体在油田的应用[J].油田化学,2010,27(2):221-226.
    [8] DOAN Q. T.Modeling of transient cuttings transports in under balanced drilling[J].SPE Journal,2003,6(2):160-167.
    [9] LI Y.,KURU E.Numerical modeling of cuttings transport with foam in horizontalwells [J].Journal of Canadian Petroleum Technology,2003,42(10):54-61.
    [10]杨虎.泡沫钻井携岩屑极限井深模拟与实例研究[J].钻井液与完井液,2010,27(4):4-6.
    [11]李惠仁.消泡装置[J].化学装置,1985,27(2):21-23.
    [12]周滢,朱菊香,俞晓梅.易起泡物系消泡构件的研究[J].化肥工业,2002,29(2):18-20.
    [13]陈方泉,徐昌曦.实验用脱泡装置的设计与计算[J].合成纤维工业,2004,27(1):54-56.
    [14]冯梅琳,刘延霞.一种实用型在线脱泡装置的研制与应用[J].机械设计与应用,2005,17(2):71-74.
    [15]李绪俭,王淑兰.喷射球罐破碎分散法消泡装置的研制与应用[J].矿山机械,2007,35(4):69-70.
    [16]晨光.有机硅单体及聚合物[M].北京:化学工业出版社,1986.
    [17]罗蒙贤,倪勇.聚醚改性有机硅消泡剂的研究[J].杭州师范学院学报,2003,2(4):38-42.
    [18]胡伟.聚醚改性有机硅消泡剂的合成研究[D].南京:林业大学硕士论文,2008.
    [19]李春静,卢义和,宫素芝.消泡剂的发展概述[J].四川化工,2005,8(6):20-23.
    [20]马洛平.消除有害泡沫技术[M].北京:化学工业出版社,1987.
    [21]黄宪章,黄登宇.有机硅消泡剂消泡机理特性及用途研究[J].科技情报开发与经济,2003,13(1):161-163.
    [22] Guo,B.,Sun,K.and Ghalambor,A..A.Closed Form Hydraulics Equation forPredicting Bottom-Hole Pressure in UBD with Foam[J].SPE,2003.
    [23]Kutay,S.M.The Physical and Rhelogical Properties of Polymer-thickened FoamsinBulk and Porous Media[D].2000.
    [24]Capo,J..Cuttings Transport With Foam at Intermediate Inclination Angles[D].2002.
    [25]唐代绪.有利于分析欠平衡钻井的泡沫计算机模型[J].国外油田工程,2000,46-49.
    [26]李治龙,钱武鼎.我国油田泡沫流体应用综述[J].石油钻采工艺,1993,15(6):88-93.
    [27]罗世应等.气藏泡沫欠平衡钻井数学模型研究[J].天然气工业,2000,20(5):47-50.
    [28]杨虎等.牛102井欠平衡泡沫水平井钻井技术[J].石油学报,2002,23(1):87-93.
    [29]F.Ramirez, R. Greaves, J. Montilva. Experience using microbubbles-aphrondrillingfluid in mature reservoirs of lake Maracaibo[C].SPE73710,2002.
    [30]Ozbayoglu,M.E..Cuttings Transport with Foam in Horizontal and Highly-inclined Wellbores[D].2002.
    [31]袁照永.水平井环空泡沫携岩屑流动规律研究[D].山东:中国石油大学(华东),2009.
    [32]杨虎,鄢捷年.泡沫钻井流体环空携岩屑能力的影响因素[J].石油钻探技术,2003,31(5):49-52.
    [33]李兆敏,李松岩,尚朝辉,李勇.流速和环空偏心对泡沫携砂能力的影响数值模拟[J].石油钻采工艺,2007,29(3):97-100.
    [34]陈礼仪.泡沫及泡沫钻进技术的理论与实践[D].成都:成都理工大学,2004.
    [35]王承泉.嗽压乙二醉发渔机理及消渔剂优选[D].大庆石:大庆石油学院,2007.
    [36]Sudarshi T.A.Regismond, Francoise M.Winnik, E.Desmond Goddard, et al.Stabilization of aqueous foams by polymer/surfactant systems effect of surfactantchain length[J].Colloids and surfaces A,1998,141(1):165-171.
    [37]Andrew M. Kraynik.Foam microrheology: from honeycombs to random foams[D].USA:Department of Mathematics Southern Methodist University,1999.
    [38]Christopher James William Breward.The Mathematics of Foam [D].UK:StAnne's College University of Oxford,1999.
    [39]Margolles C l,Arias A P,Blaneo G D.Influence of fatty acids on foamingproperties of cider [J].J Agric.FoodChem,2003,51(21):6314-6316.
    [40]Alargova R G,warhadPande DS,Paunov V N,Velev O D.Foam superstabilization by Polymer micro rods [J].Langmuir,2004,20(24):10371-10374.
    [41]吴飞.氟烷基改性聚硅氧烷的合成及消抑泡性能研究[D].南京:理工大学,2008.
    [42]Basheva ES,Simeon S,Nikolai DD.Foam Boosting by amPhiPhilic moleculesin the Presence of silicone oil [J].Langmuir,2001,17(20):969-979.
    [43]Marinova K G,Denkov N D.Foam destruction by mixed solid-liquid antifoamsin solutions of alkyl glucoside: Electrostatic interactions and dynamic effects [J].Langmuir,2001,17(8):2426-2436.
    [44]Tsujii K.Role of betaine as foam booster in the Presence of silicone oil droPs[J].Langmuir.2000,16(3):1000-1013.
    [45]Hadjiiski A,Teholakova S,Denkov ND,DurbutP,Broze G,Mehreteab A. Effectof oily additives on the formability and foam stability.2.Entry barrlers[J].Langmuir,2001,17(15):7011-7022.
    [46]徐江伟.消泡剂的复合及其消泡机理探讨[J].中国甜菜糖业,2002,12(4):31-33.
    [47]Joshi K S,Jeelani S A K,Bliekenstorfer C,Naegeli l,Oliviero C,Windhab EJ.Nonionic bloke copolymer antifoams[J].Langmuir,2006,22(16):6893-6904.
    [48] Marinova K G,Teholakova S,Denkov N D.Model studies on the mechanism ofDeactivation (exhaustion) of mixedoil-silica antifoams [J].Langmuir,2003,19(7):3084-3089.
    [49]Margolles Cl,Arias AP,BlaneoGD.Influenee of fatty acids on foaming propertieof cider[J].JAgric.Food Chem,2003,51(21):6314-6316.
    [50]徐江伟.消泡剂的复合及其消泡机理探讨[J].中国甜菜糖业.2002,12(4):31-32.
    [51]DiPPenaar A.The destabilization of froth by solids,I:The meehanism of filmruPtur [J].Int.J Miner Process,1982,9(l):l-14.
    [52]Frye G C,Berg J C.Mechanisms for the synergistic antifoam action byhydroPhob Bic Solid particles in insoluble liquids[J]. J Colloid InterfaceSci.1989,130(1):54-59.
    [53]Garrett P R,Moor P R.Foam and dynamic surface ProPerties of micellar alkylBenzene sulPhonates[J].J Colloid Interface Sci,1993,159(l):214-225.
    [54]Jha B K,Christiano S P,Shah D O.Silicone antifoams Performance:Correlationwith sPreading and surfactant monolayerpacking[J]. Langmuir,2000,16(26):9947-99.
    [55]Bergeron V,Langevin D.Monolayer films of Poly(dimethylsiloxane)on aqueoussurfactant solutions[J].Macromol,1996,29(1):306-312.
    [56]李想.有机硅消泡剂的消泡机理及其应用[J].化学工程师,2009,160(1):47-48.
    [57]危志斌,张瑞杰.大型纸机通过使用消泡剂提高生产效率和生产能力[J].造纸化学品,2011,23(1):32-36.
    [58]亚尔巴.泡沫稳定性及消泡方法的实验研究[D].长春:吉林大学建设工程学院,2007.
    [59]胡伟.聚醚改性有机硅消泡剂的合成研究[D].南京:林业大学,2008.
    [60]韩玉林,张美松.一种硅醚乳液消泡剂的制备[J].精细与专用化学品,2005,1(310):28~29.
    [61]张光碧,邓军,刘超,朱迪生.河道水流三维流速场的数值模拟研究[J].四川大学学报(工程科学版),2007,39(1):58-62.
    [62]焦学瞬.消泡剂制备与应用[M],北京:中国轻工业出版社,1996.
    [63]吴飞,曹治平.两种新型造纸消泡剂的现场应用测试[J].造纸化学品,2006,18(4):21-23.
    [64]Standard Test Method for Effectiveness of Defaming Agents.ASTM-E2407-04,2004.
    [65]孙友宏,张祖培,叶建良.水文水井泡沫水泵增压钻探技术[M].北京:地质出版社,2005.
    [66]胡鹏.三峡水库成库初期库区泥沙淤积研究[D].(重庆):交通大学,2011.
    [67]Haza Mohammed, SUN Youhong, Ould Houssein Yarbane. Research onexperiment and calculation of foam bursting device [J].Global Geology,2007,10(1):33-38.
    [68]江帆.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [69]赵金洲,张桂林.钻井工程技术手册[M].北京:中国石化出版社,2004.
    [70]李治龙.我国油田用泡沫流体综述[J].钻井液与完井液,1994,18(1):1-5.
    [71]王渊.泡沫流体冲砂洗井参数设计[D].石油大学(华东),山东东营,2001.
    [72]张云连,陈永明,杲传良等.泡沫钻井液的静液柱压力分析与计算[J].石油钻探技术,2000,28(3):19-20.
    [73]方敏,李家龙,何纶.欠平衡泡沫流体钻井工艺技术[J].天然气工业,2001,21(1):72-76.
    [74]祖庸,李春洲,马宝岐.泡沫流变性研究现状及进展[J].西北大学学报,1993,23(6):527-532.
    [75]唐金库.泡沫稳定性影响因素及性能评价技术综述[J].舰船防化,2008,4(1):1-8.
    [76]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [77]Koehler S A,Hilgenfeldt S,Weeks E R.Foam drainageon the microscale II.Imaging flow through single Plateauborders[J].J.Colloid Interface Sci.,2004,276:439.
    [78]刘德生,陈小榆.温度对泡沫稳定性的影响研究[J].中国海洋平台,2006,21(4):19-22.
    [79]李晓明,蒲晓林,罗兴树.一种分析泡沫钻井液稳定性的新方法[J].西南石油学院学报,2004,26(2):47-49.
    [80]Denis Weaire.The rheology of foam[J].Current Opinion in Colloid&InterfaceScience,2007,13(2008):171–176.
    [81]L. Piazza,J. Gigli,A. Bulbarello.Interfacial rheology study of espresso coffeefoam structure and properties[J].Journal of Food Engineering,2007,84(2008):420–429.
    [82]柳贡慧,宋廷远,李军,气体钻水平井气体携岩屑能力分析[J].石油钻探技术,2003,37(5):26-.23
    [83]汪海阁,刘希圣.水平井钻井液携岩屑机理研究[J].钻采工艺,1996,19(2):10~14.
    [84]沈伟,谭树人.大位移井钻井作业的关键技术[J].石油钻采工艺,2002,22(6):21-26.
    [85]杨树人,张景富,申家年.大斜度井中钻井液携屑规律的实验研究[J].大庆石油学院学报,1997,21(1):126-129.
    [86]鹿传世.倾斜井眼内岩屑运移的数值计算与清岩工具设计流场计算[D].山东:石油大学(华东),2008.
    [87]Tomren,P.H.,et al. An Experimental Study of Cuttings Transport in DirectionalWells [J].SPE12123,1983.
    [88]WANG Rui-he.Numerical simulation of transient cuttings transport with foamfluid in well bore [J]. Journal of hydrodynamics,2009,21(4):437-444.
    [89]孙茂盛.泡沫流体冲砂洗井数值模拟研究及应用[D].北京:石油大学,2007.
    [90]M.E. Ozbayoglu,T,S.Z. Misk,T. Reed.Using foam in horizontal well drilling:Acuttings transport modeling approach[J]. Journal of Petroleum Science andEngineering46(2005)267–282.
    [91]林日亿.蒸汽—氮气泡沫体系流动规律研究及应用[D].北京:石油大学,2007.
    [92]邵发展.沥青摊铺机布料槽内集料运动的稳定性研究[D].重庆:交通大学,2011.
    [93]王春燕.有机硅单体合成流化床的多相流模拟与流化特性研究[D].青岛:科技大学,2009.
    [94]陈志乐.直立圆柱周围流场与局部冲刷的数值模拟方法研究[D].上海:交通大学,2008.
    [95]李兆敏,蔡国琰.非牛顿流体力学[M].山东东营:石油大学出版社,2001.
    [96]朱振兴.硫酸铵结晶过程的研究及其固—液多相流的计算流体力学研究[D].天津:天津大学,2008.
    [97]邵雄飞.旋流板塔内两相流场的CFD模拟与分析[D].杭州:浙江大学,2004.
    [98]吴琳.液—固流化床换热器分布器的研究[D].北京:化工大学,2003.
    [99]王福军.计算流体动力学分析[M].北京:清华大学出版社,2006.
    [100]温正,石良辰,任毅如.FLUENT流体计算应用教程[M].北京:清华大学出版社,2009.