光纤中布里渊散射的机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布里渊散射光相对于入射光具有一定的频移,且频移量与外界环境的温度和应力呈线性关系。利用这些特性可以实现高速信号(微波信号)的产生、交换(可控延迟)以及获取(光纤传感)等,这些方面都是实现全光信息技术的核心。因此,系统地研究光纤中布里渊散射的机理及其应用,不仅具有学术价值,而且具有十分重要的社会意义。
     本文分析了光纤布里渊散射的特性,并对其在分布式光纤传感技术、微波信号光学产生技术以及可控光延迟方面的应用进行了理论和实验研究。
     根据布里渊光时域反射技术(BOTDR)对本振光的要求,设计了单频布里渊激光器,理论分析了该激光器的相位噪声;获得的最小布里渊激光线宽为2.8MHz,最大输出功率达到了14dBm;利用该布里渊激光器做相干检测BOTDR系统的本振光源,在53km的传感距离上温度测量误差约为0.5℃。实验结果表明,该方法可以有效地降低BOTDR系统中所需探测器的带宽,且该系统具有较高的测量精度和实用价值。
     分析了基于布里渊散射的微波信号产生机理,提出了级联环形腔结构的可调谐微波信号产生的方法,通过调节布里渊激光器中可调衰减器的损耗、光纤的温度以及泵浦波长,获得了390-453MHz和10.863-11.075GHz两个频段的可调谐微波信号。两个频段微波信号的频率波动为0.2MHz,展现了较高的频率稳定性。如果使用调谐范围较高的温度控制器、布里渊频移间隔较大的增益光纤以及调谐范围较宽的泵浦波长,微波信号的可调谐频率范围可以进一步的增加。
     理论分析了多布里渊增益线慢光的纵模间隔对信号延迟与增益的影响,发现当纵模间隔与布里渊增益谱带宽的比值小于0.3时,信号的展宽可以忽略。提出了利用半导体光放大器获得多纵模宽带泵浦源的方法,当利用可调谐滤波器获得可调谐激光泵浦时,获得的可调谐泵浦源纵模间隔为6MHz,3dB带宽为11.5GHz,调谐范围为1515-1560nm,带宽波动约为100MHz;利用8Gbit/s的高速信号,在17dBm泵浦情况下获得了83ps无误码(BER<10-9)的延迟。在多通道布里渊散射慢光方面,利用两个光纤光栅滤波器获得了双波长宽带泵浦源,其纵模间隔为7MHz,3dB带宽分别为11.6GHz和11.2GHz,在19dBm泵浦时,分别获得了56.4ps和56.0ps无误码的延迟。
Relative to the incident light, the Brillouin scattering light has a certain Brillouin frequency shift, and the frequency shift has a linear relationship with the temperature and strain. These properties can be used in high speed signal (microwave signal) generation, exchange (controllable delay), access (fiber optical sesnsing) and so on, and these aspects are the important parts in all optical information technology. Therefore, the systematic study of Brillouin scattering mechanism and its application not only have academic value, but also have important social significance.
     In this paper we analyze the characteristics of Brillouin scattering, and research the application of Brillouin scattering in theoretical and experimental in distributed optical fiber sensing, photonic generation of tunable microwave signal and controllable optical delay.
     The optimized Brillouin laser with single frequency has been designed as the local oscillator light for coherent detection Brillouin optical time domain reflectometry (BOTDR). The phase noise has been analyzed in theoretical, and the phase fluctuations of Brillouin laser are strongly correlated to that of the pump laser but they are also much weaker. The single frequency Brillouin laser with2.8MHz3dB bandwidth is obtained, and the maximum output power is about14dBm. The BOTDR using Brillouin laser as local light is demonstrated, and the experiment of53km sensing fiber is also performed, the measurement error is less than0.5℃. The experimental results show that the method can effectively reduce the required bandwidth of the detector in BOTDR, and improve the measurement accuracy.
     A simple approach to generate two bands of tunable microwave signal is proposed and demonstrated by using the Briouin laser. The principle generation of tunable microwave signal is analyzed in theoretical. Two single mode fibers with optimized Brillouin frequency shift spacing have been chosen as scattering medium in two cascaded ring cavities. The two bands of tunable microwave signal from390-453MHz and10.863-11.076GHz can be obtained through adjusting the temperature of the fiber and pump wavelength. The frequency fluctuation is less than0.2MHz, which illustrates good stability on frequency. The frequency range of microwave signal can be further expanded by using higher temperature controller, the gain fibers with higher frequency shift interval and wider tuning range of pump wavelength.
     On analysis of Brillouin controllable optical delay, the Brillouin gain and delay with multi-longitudinal mode pump is analyzed in theoretical. Through the analysis of Brillouin gain, delay and signal broadening affected by the mode spacing, the optimized mode spacing is obtained, and the ratio between the mode spacing and intrinsic Brillouin spectral width must be less than0.3in order to ignore the fluctuation of Brillouin gain and delay. In experiment the multi-longitudinal mode pump with optimized mode spacing is obtained by using semiconductor optical amplifier. A tunable broadband Brillouin pump with tuning range from1515to1560nm is genetared by using an F-P filter in the ring laser, the spectrum of the pump is comprised of a large number of longitudinal modes separated by6MHz,3dB-bandwidth is about11.5GHz and its fluctuation is less than100MHz within the tuning range. An8Gbit/s data signal is delayed by up to83.Ops (bit error rate<10"9) at17dBm pump power. And independent delay control of multi-channel signals is also demonstrated by the laser, which is generated by using two FBG in the SOA ring laser. The spectrum of each pump is separated by7MHz and spanning a bandwidth of11.6GHz and11.2GHz, respectively. The multi-channel broadband Brillouin slow light is demonstrated by using8Gbit/s data signals. The signals in both channels are continuously delayed and the maximal delay time with error free operation are up to56.4ps and56.Ops at19dBm pump power.
引文
1. E. P. Ippen, R. H. Stimulated Brillouin scattering in optical fibers [J]. Applied Physics Letters,1972,21(11):539-541.
    2. R. G. Smith. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering [J]. Applied Optics, 1972,11(11):2489-2494.
    3. D. Cotter. Stimulated Brillouin scattering in monomode optical fiber [J]. Journal of Optical Communications,1983,4(1):10-19.
    4. R. W. Tkach, A. R. Chraplyvy, R. M Derosier. Spontaneous Brillouin scattering for single mode optical fiber characterization [J]. Electronics Letters,1986, 22(19):1011-1013.
    5. T. Kurashima, T. Horiguchi, M. Tateda. Thermal effects of Brillouin gain spectra in single mode fiber [J]. Photonics Technology Letters,1990,2(10):718-720.
    6. T. Sugie. Transmission limitations of CPFSK coherent lightwave systems due to stimulated Brillouin scattering in optical fiber [J]. Journal of Lightwave Technology,1991,9(9):1145-1155.
    7. M. F. S. Ferreira. Impact of stimulated Brillouin scattering in optical fibers with distributed gain [J]. Journal of Lightwave Technology,2005,13(8):1692-1697.
    8. A. Kung. Laser emission in stimulated Brillouin scattering in optical fibers [D]. Ph. D. dissertation No.1740 (Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland,1997).
    9.陈伟民,黄民双,邹建等.一种利用布里渊散射的光纤应变传感新方法[J].光学学报,1999,19(6):728-732.
    10.黄民双,曾励,陶宝棋等.分布式光纤布里渊射应变传感器参数计算[J].航空学报,1999,20(2):137-140.
    11. A. Yeniay, J. M. Delavaux, J. Toulouse. Spontaneous and stimulated Brillouin scattering gain spectrum in optical fibers [J]. Journal of Lightwave Technology, 2002,20(8):1425-1432.
    12. V. I. Kovalev, R. G. Harrison. Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber [J]. Optics Letters, 2002,27(22):2022-2024.
    13. A. H. Mccurdy. Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile [J]. Journal of Lightwave Technology,2005, 23(11):3509-3516.
    14. R. B. Jenkins, R. M. Sova, and R. Joseph. Steady-state noise analysis os spontaneous and stimulated Brillouin scattering in optical fibers [J]. Journal of Lightwave Technology,2007,25(3):763-770.
    15. A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers [J]. Advances in optics and Photonics,2010,2(1):1-59.
    16. F. H. Mountfort, S. Yoo, A. J. Boyland, et al. Temperature effect on the Brillouin gain spectra of highly doped aluminosilicate fibers [C]. Lasers and Electro-optics Europe,2011,1.
    17. T. C. Rich, D. A. Pinow. Evaluation of fiber optical waveguide using Brillouin spectroscopy [J]. Applied Optics,1974,13(6):1376-1378.
    18. N. L. Rowell, P. J. Thomas, H. M. Vandriel, et al. Brillouin spectrum of single-mode optical fibers [J]. Applied Physics Lettes,1979,34(2):139-141.
    19. N. Shibata, R. B. Waaris, R. P. Braun. Brillouin-gain spectra for single-mode fibers having pure-silica, GeO2-doped, and P2O5-doped core [J]. Optics Letters, 1987,12(4):269-271.
    20. T. Horiguchi, T. Kurashima, M. Tateda. Brillouin characterization of fiber strain in bent slot-type optical fiber cable [J]. Journal of Lightwave Technology,1992, 10(9):1196-1201.
    21. T. Kurashima, T. Horiguchi, H. Izumita, et al. Brillouin optical-fiber time domain reflectometry [J]. IEICE Transaction on Communications 1993, E76-B (4): 382-390.
    22. T. R. Parker, M. Farhadiroushan, V. A. Handerek, et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fiber [J]. Optics Letters,1997,22(11):787-789.
    23. M. D. Jones. Using simplex codes to improve OTDR sensitivity [J]. Photonics Technology Letters,1993,15(7):822-824.
    24. S. M. Maughan, H. H. Kee, and T. P. Newson.57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection [J]. Optics Letters,2001,26(6):331-333.
    25. P. C. Wait, and A. H. Hartog. Spontaneous Brillouin based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal [J]. Photonics Technology Letters,2001,13(5):508-510.
    26. M. Song, B. Zhao, and X. Zhang. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception [J]. Chinese Optics Letters,2005,3(5):271-274.
    27. M. A. Soto, G. Bolognini, F. D. Pasquale. Optical pulse coding applied to distributed temperature sensor using coherent detection of spontaneous Brillouin frequency shift [C]. ECOC, September 2008,3:163-164.
    28. M. A. Soto, G. Bolognini, F. D. Pasquale. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse code [J]. Photonics Technology Letters,2009,21(7):450-452.
    29.梁浩,张旭苹,李新华等.布里渊背向散射光谱数据拟合算法设计与实现[J].光子学报,2009,38(4):875-879.
    30. Q. Shang, J. Liu, and Y. Li. Influence of temperature gradient on measurement accuracy of BOTDR system [J]. Intelligent system and applications,2009,1-4.
    31.梁浩,张旭苹,路元刚.基于自发布里渊散射的双路分布式光纤传感器设计与实现[J].中国光学与应用光学,2009,2(1):60-64.
    32. Y. Lu, H. Liang, X. Zhang, et al. Brillouin Optical Time Domain refrectometry based on Hadamard Sequence probe pulse [C]. ICOCN2010, Nanjing 2010.
    33.钟镇,宋跃江,陈勐勐等.相干光时域反射仪中受激布里渊散射的抑制[J].光电子激光,2010,21(10):1499-1502.
    34. F. Wang, C. Li, X. Zhao, et al. Using a mach-zehnder-interference-based passive configuration to eliminate the polarization noise in Brillouin optical time domain reflectometry [J]. Applied Optics,2012,51(2):176-180.
    35. F. Ravet, X. Bao, Q. Yu, et al. Signal Processing Technique for Distributed Brillouin Sensing at Centimeter Spatial Resolution [J]. Journal of Lightwave Technology,2007,25(11):3610-3618.
    36. Y. Li, X. Bao, Y. Dong, et al. A Novel Distributed Brillouin Sensor Based on Optical Differential Parametric Amplification [J]. Journal of Lightwave Technology,2010,28(18):2621-2626.
    37. H. Naruse, and M. Tateda. Optimum temporal pulse shape of launched light for optical time domain reflectometry type sensors using Brillouin backscattering [J]. Optical Review,2001,8(2):126-132.
    38. A. W. Brown, B. Colpitts, K. Brown. Dark-pulse Brillouin optical time-domain sensor with 20mm spatial resolution [J]. Journal of Lightwave Technology,2007, 25(1):381-386.
    39. Y. Koyamada, Y. Sakairi, N. Takeuchi, et al. Novel Technique to Improve Spatial Resolution in Brillouin Optical Time-Domain Reflectometry [J]. Photonics Technology Letters,2007,23(19):1910-1912.
    40. A. W. Brown, M. D. Demerchant, X. Bao, et al. Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method [J]. Journal of Lightwave Technology,1999,17(7):1179-1199.
    41. W. Li, X. Bao, Y. Li, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing [J]. Optics Express,2008,16(26):21616-21625.
    42. Y. Sakairi, S. Matsuura, S. Adachi, et al. Prototype double-pulse BOTDR for measuring distributed strain with 20cm spatial resolution [C]. SICE Annual Conference 2008, Japan:1106-1109.
    43. Y. Dong, X. Bao, W. Li. Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long distance distributed fiber sensor [J]. Applied Optics,2009,48(22):4297-4301.
    44.王峰,张旭苹,路元刚等.提高布里渊光时域反射仪测量空间分辨率的等效脉冲拟合法[J].光学学报,2008,28(1):4349.
    45. F. Wang, X. Zhang, Y. Lu, et al. Spatial Resolution Analysis for DFT-Based Brillouin Optical Time Domain Reflectometry [J]. Measurement Science & Technology,2009,20:025202-1-025202-6.
    46. K. Shimizu, T. Horiguchi, and Y. Koyamada. Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time domain reflectometry [J]. Optics Letters,1995,20(5):507-509.
    47. T. R. Parker, M. Farhadiroushan, V. A. Handerek et al. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter [J]. Photonics Technology Letters,1997,9(7):979-981.
    48. C. C. Lee, P. W. Chiang, and S. Chi. Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift [J]. Photonics Technology Letters,2001,13(10): 1094-1096.
    49. L. Zou, X. Bao, A. V. Shahrama, and L. Chen. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber [J]. Optics Letters,2004,29(13):1485-1487.
    50. M. N. Alahbabi, Y. T. Cho, and T. P. Newson. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering [J]. Optics Letters,2005,30(11):1276-1278.
    51.董玉明,张旭苹,路元刚等.布里渊散射光纤传感器的交叉敏感问题[J].光学学报,2007,27(2):197-201.
    52. K. D. Souza, T. P. Newson. Brillouin based fiber-optic distributed temperature sensor with optical preamplification [J]. Optics Letters,2000,25(18):1331-1333.
    53. M. N. Alahbabi, Y. T. Cho, and T. P. Newson.100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter [J]. Measurement Science & Technology,2004,15(8):1544-1547.
    54. Y. T. Cho, M. N. Alahbabi, G. Brambilla, et al. Distributed Raman amplification combined with a remotely pumped EDFA utilized to enhance the performance of spontaneous Brillouin-based distributed temperature sensors [J]. Photonics Technology Letters,2005,17(6):1256-1258.
    55. M. N. Alahbabi, Y. T. Cho, T. P Newson. Long-range distributed temperature and strain optical fiber sensor based on the coherent detection of spontaneous Brillouin scattering with in-line Raman amplification [J]. Measurement Science and Technology,2006,17(5):1082-1090.
    56.董玉明.自发布里渊散射分布式光纤传感技术及其应用研究[D].[博士学位论文].南京大学物理系,2007.
    57.张旭苹,王峰,路元刚.基于布里渊效应的连续分布式光纤传感技术[J].激光与光电子学进展,2009,11:14-20.
    58.张旭苹,王顺,张益昕等.一种布里渊散射谱实时频谱分析装置及其数据处理方法[P].中国发明专利,2010,CN101813497.
    59. X. Zhang, Y. Lu, F. Wang, et al. Development of fully distributed fiber sensors based on Brillouin scattering [J]. Photonic Sensors,2011,1(1):54-61.
    60. K. Komatsu, K. Fujihashi, M. Okutsu. Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device (BOTDR) [C]. Proc. SPIE 4920,2002.
    61.施斌,徐学军,王镝等.隧道健康诊断BOTDR分布式光纤应变检测技术研究[J].岩石力学与工程学报,2005,24(15):2622-2628.
    62.丁勇,施斌,孙宇等.基于BOTDR的白泥井3号隧道拱圈变形检测[J].工程地质学报,2006,14(5):649-653.
    63. J. Ge. Application of BOTDR to monitoring sea dyke subsidence [J]. Rock and Soil Mechanics,2009,30(6):1856-1860.
    64. http://ocer.nju.edu.cn/cn/NewsDetail.asp?id=224
    65. V. Lecoeuche, M. W. Hathaway, D. J. Webb, et al.20-km distributed temperature sensor based on spontaneous brillouin scattering. IEEE Photonics Technology Letters,2000,12(10):1367-1369.
    66. J. Geng, S. Staines, M. Blake, et al. Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering [J]. Applied Optics,2007,46(23):5928-5932.
    67. D. Iida and F. Ito. Low bandwidth and cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam [J]. IEEE Photonics Technology Letters, 2008,12(10):1367-1369.
    68. D. Iida and F. Ito. Cost-effective bandwidth-reduced Brillouin optical time domain reflectometry using a reference Brillouin scattering beam [J]. Applied Optics,2009,48(22):4302-4309.
    69. J. J. O'Reilly, P. M. Lane, R. Heidemann, et al. Optical generation of very narrow linewidth millimeter wave signals [J]. Electronics Letters,1992,28(25): 2309-2311.
    70. J. J. O'Reilly and P. M. Lane. Fiber-supported optical generation and delivery of 60 GHz signals [J]. Electronics Letters,1994,30(16):1329-1330.
    71. P. Shen, N. J. Gomes, P. A. Davies, et al. High-purity millimeter-wave photonic local oscillator generation and delivery [C]. Microwave Photonics Topical Meeting, Sep.10-12,2003,189-192.
    72. G. Qi, J. Yao, J. Seregelyi, et al. Generation and Distribution of a Wide-Band Continuously Tunable Millimeter-Wave Signal with an Optical External Modulation Technique [J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(10):3090-3097.
    73. G. Qi, J. Yao, J. Seregelyi, et al. Optical Generation and Distribution of Continuously Tunable Millimeter-Wave Signals Using an Optical Phase Modulator [J]. Journal of Lightwave Technology,2005,23(9):2687-2695.
    74. L. Goldberg, H. F. Taylor, J. F. Weller, et al. Microwave Signal Generation with Injection-Locked Laser diodes [J]. Electronics Letters,1983,19(13):491-493.
    75. R. C. Steele. Optical phase-locked loop using semiconductor-laser diode [J]. Electronics Letters,1983,19(2):69-71.
    76. A. Bordonalli, C. Walton, and A. J. Seeds. High-performance phase locking of wide linewidth semiconductor laser by combined use of optical injection locking and optical phaselock loop [J]. Journal of Lightwave Technology,1999,17(2): 328-342.
    77. M. Hyodo, M. Tani, S. Matsuura, et al. Generation of millimeter-wave radiation using a dual longitudinal mode microchip laser [J]. Electronics Letters,1996, 32(17):1589-1591.
    78. Y. Yao, X. Chen, Y. Dai, et al. Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation [J]. IEEE Photonics Technology Letters,2006,18(1-4):187-189.
    79. H. Zhang, B. Liu, J. Luo, et al. Photonic generation of microwave signal using a double-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser [J]. Optics Communications,2009,282:4114-4118.
    80. X. Steve Yao. High-quality microwave signal generation by use of Brillouin scattering in optical fibers [J]. Optics Letters,1997,22(17):1329-1331.
    81. T. Schneider, M. Junker, and K. U. Lauterbach. Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves [J]. Journal of the Optical Society of America B,2006,23(6):1012-1018.
    82. Z. Wu, Q. Shen, L. Zhan, et al. Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser [J]. IEEE Photonics Technology Letters,2010,22(8):568-570.
    83. X. Feng, L. Cheng, J. Li, et al. Tunable microwave generation based on a Brillouin fiber ring laser and reflected pump [J]. Optics and Laser Technology, 2011,43(7):1355-1357.
    84. D. J. Gauthier. Physics and applications of slow light [C].2nd Annual summer school, Fitzpatrick center for photonics and communication system, Duke University, July 27,2004.
    85. K. Y. Song, M. G. Herraez, and L. Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering [J]. Optics Express,2005,13(1):82-88.
    86. Y. Okawachi, M. S. Bigelow, J. E. Sharping, et al. Tunable all-optical delays via Brillouin slow light in an optical fiber [J]. Physical Review Letters,2005,94(5): 153902-1-153902-4.
    87. Z. Zhu, D. J. Gauthier, Y. Okawachi, et al. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber [J]. Journal of the Optical Society of America B,2005,22(11):2378-2384.
    88. M. G. Herraez, K. Y. Song, and L. Thevenaz. Arbitrary-bandwidth Brillouin slow light in optical fibers [J]. Optics Express,2006,14(4):1395-1400.
    89. M. G. Herraez, K. Y. Song and L. Thevenaz. Broad-bandwidth Brillouin slow light in optical fibers [C]. In Proc. OFC 2006, paper OTuA2.
    90. Z. Zhu, A. M. C. Dawes and D. J. Gauthier.12-GHz-Bandwidth SBS Slow Light in Optical Fibers [C]. In Proc. OFC 2006, paper PDP11.
    91. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, et al. Broadband SBS slow light in an optical fiber [J]. Journal of Lightwave Technology,2007,25(1):201-206.
    92. A. Zadok, A. Eyal and M. Tur. Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp [J]. Optics Express, 2006,14(19):8498-8505.
    93. T. Schneider, M. Junker and K. U. Lauterbach. Potential ultra wide slow-light bandwidth enhancement [J]. Optics Express,2006,14(23):11082-11087.
    94. K. Y. Song and K. Hotate.25 GHz bandwidth Brillouin slow light in optical fibers [J]. Optics Letters,2007,32(3):217-219.
    95. B. Zhang, L.-S. Yan, J.-Y. Yang, et al. A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels [J]. IEEE Photonics Technology Letters,2007,19(14):1081-1083.
    96. B. Zhang, L. Yan, L. Zhang, et al. Multichannel SBS slow light using spectrally sliced inconherent pumping [J]. Journal of Lightwave Technology,2008,26(23): 3763-3768.
    97. Y. Zhu, M. Lee, M. A. Neifeld, et al. High-fidelity, broadband stimulated Brillouin scattering based slow light using fast noise modulation [J]. Optics Express,2011,19(2):687-697.
    98. M. Lee, Y. Zhu, D. J. Gauthier, et al. Information-theoretic analysis of a stimulated Brillouin scattering based slow light system [J]. Applied Optics,2011, 50(32):6063-6072.
    99. M. D. Stenner, M. A. Neifeld, Z. Zhu, et al. Distortion management in slow-light pulse delay [J]. Optics Express,2005,13(25):9995-10002.
    100.A. Minardo, R. Bernini and L. Zeni. Low distortion Brillouin slow light in optical fibers using AM modulation [J]. Optics Express,2006,14(13):5866-5876.
    101.Z. Lu, Y. Dong, and Q. Li. Slow light in multi-line Brillouin gain spectrum [J]. Optics Express,2007,15(4):1871-1877.
    102.Y. Dong, Z. Lu, Q. Li, et al. Broadband Brillouin slow light based on multi-frequency phase modulation in optical fibers [J]. Journal of the Optical Society of America B,2008,25(12):c109-c115.
    103.程光煦.拉曼布里渊散射原理及其应用[M].北京:科学出版社,2001.
    104.B. Soller, D. Gifford, M. Wolfe, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies [J]. Optics Express,2005,13(2):666-674.
    105.I. L. Fabelinski. Molecular Scattering of Light [M]. New York:Plenum Press, 1968.
    106.G. P. Agrawal, Nonlinear Fiber Optics [M].2001, New York:Academic Press.
    107.H. P. Li and K. Ogusu. Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1999,38(11):6309-6315.
    108.T. Horiguchi and M. Tateda. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory [J]. Journal of Lightwave Technology,1989,7(8):1170-1176.
    109.R. D. Esman. Brillouin Scattering:Beyond Threshold [C]. Proceedings of the Optical Fibre Communications Conference,1996:227-228.
    110.T. Kurashima, Y. Horiguchi. Strain and temperature characteristics of Brillouin spectra in optical fiber for distributed sensing techniques[C]. ECOC98,1998: 20-24.
    111.A. Kobyakov, S. Kumar, D. Chowdhury, et al. Design concept for optical fibers with enhanced SBS threshold [J]. Optics Express,2005,13(14):5338-5346.
    112.K. Shiraki, M. Ohashi, M. Tateda. SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution [J]. Journal of Lightwave Technology,1996,14(1): 50-57.
    113.R. G. Smith. Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering [J]. Applied Optics, 1972,11(11):2489-2494.
    114.P. Bayvel and P. M. Radmore. Solutions of the SBS Equations in Single Mode Optical Fibres and Implications for Fibre Transmission Systems [J]. Electronics Letters,1990,1(22):434-436.
    115.X. Bao, J. Dhliwayo, N. Heron, et al. Experimental and theoretical studies on a distributed temperature sensor bases on Brillouin scattering [J]. Journal of Lightwave Technology,1995,13(7):1340-1348.
    116.T. Horiguchi, K. Shimizu, T. Kurashima, et al. Development of a distributed sensing technique using Brillouin scattering [J]. Journal of Lightwave Technology,1995,13(7):1296-1302.
    117.D. D.erickson, C. Vobis, L. Stokes, et al. Fiber Optic Test and Measurement [M]. Prentice Hall PTR,1998.
    118.M. Nikles, L. Thevenaz, and P. A. Robert. Brillouin gain spectrum characterization in single-mode optical fibers [J]. Journal of Lightwave Technology,1997,15(10):1842-1851.
    119.K. Shimizu, T. Horiguchi, Y. Koyamada, et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers [J]. Journal of Lightwave Technology,1994,12(5):730-736.
    120.S. M. Maughan, H. H. Kee, and T. P. Newson. A calibrated 27km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power [J]. IEEE Photonics Technology Letters,2001,13(5): 511-513.
    121.T. Horiguchi, K. Shimizu, T. Kurashima, et al. Development of a distributed sensing technique using Brillouin scattering [J]. Journal of Lightwave Technology,1995,13(7):1296-1302.
    122.H. Izumita, T. Sato, M. Tateda, et al. Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator [J]. IEEE Photonics Technology Letters,1996,8(12): 1674-1676.
    123.S. B. Cho, and J. J. Lee. Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor [J]. Optics Express, 2004,12(18):4339-4346.
    124.V. Lanticq, S. Jiang, R. Gabet, et al. Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers [J]. Optics Letters,2009, 34(7):1018-1020.
    125.Debut, S. Randoux, and J. Zemmouri. Linewidth narrowing in Brillouin laser: Theoretical analysis [J]. Physical Review A,2000,62(2):023803-1-023803-4.
    126.Debut, S. Randoux, and J. Zemmouri. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers [J]. Journal of the Optical Society of America B,2001,18(4):556-567.
    127.S. Randoux, V. Lecoeuche, B. Segard, et al. Dynamical analysis of Brillouin fiber lasers:An experimental approach [J]. Physical Review A,1995,51(6): R4345-R4348.
    128.V. Lecoeuche, S. Randoux, B. Segard, et al. Dynamics of a Brillouin fiber ring laser:off-resonant case [J]. Physical Review A,1996,53(4):2822-2828.
    129.S-B. Cho, Y-G. Kim, J-S. Heo, et al. Pulse width dependence of Brillouin frequency in single mode optical fibers [J]. Optics Express,2005,13(23): 9742-9749.
    130.祝华宁.光电子器件微波封装和测试[M].北京科学出版社,2007:170-191.
    131.V. T. Company, M. F. Alonso, and J. Lancis. Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation [J]. Optics Express,2006,14(21):9617-9626.
    132.C. T. Lin, W. R. Peng, P. C. Peng, et al. Simultaneous generation of base band and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity [J]. IEEE Photonics Technology Letters,2006,18(23): 2481-2483.
    133.M. Mohamed, X. Zhang, B. Hraimel, et al. Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems [J]. Optics Express,2008,16(14):10786-10802.
    134.J. Yao. Microwave photonics [J]. Journal of Lightwave Technology,2009,27(3): 314-335.
    135.M. Brunel, F. Bretenaker, S. Blanc, et al. High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop [J]. IEEE Photonics Technology Letters,2004, 16(3):870-872.
    136.D. Wake, C. R. Lima, and P. A. Davies. Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser [J]. IEEE Transactions on Microwave Theory and Techniques,1995,43(9): 2270-2276.
    137.S. Gao, Y. Gao, and S. He. Photonic generation of tunable multi-frequency microwave source [J]. Electronics Letters,2010,46(3):46-47.
    138.H. Zhang, B. Liu, J. Luo, et al. Photonic generation of microwave signal using a dual-wave length single-longitudinal-mode distributed Bragg reflector [J]. Optics Communications,2009,282(20):4114-4118.
    139.J. Sun, Y. Dai, X. Chen, et al. Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation [J]. IEEE Photonics Technology Letters,2006,18(24):2587-2589.
    140.Djafar K. Mynbaev, Lowell L. Scheiner. Fiber-Optic Communications Technology(徐公权等.译)[M].北京机械工业出版社,2002,307-320,359-360,369-370,403-417,426-434.
    141.T. Kurashima, and M. Tateda. Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers [J]. Applied Optics,1990,29(15):2219-2222.
    142.M. Nikles, L. Thevenaz, and P. A. Robert. Brillouin Gain Spectrum Characteriza-tion in Single Mode Optical Fibers [J]. Journal of Lightwave Technology,1997, 15(10):1842-1851.
    143.Goldblattn. Stimulated Brillouin scattering [J]. Applied Optics,1969,8(8): 1559-1566.
    144.V. I. Kovalev, and R. G. Harrison. Threshold for stimulated Brillouin scattering [J]. Optics Express,2007,15(26):17625-17630.
    145.Velchev, and W. Ubachs. High-order stimulated Brillouin scattering with nondiffracting beams [J]. Optics Letters,2001,26(8):530-532.
    146.Djupsjobacka, G. Jacobsen, and B. Tromborg. Dynamic stimulated Brillouin scattering analysis [J]. Journal of Lightwave Technology,2000,18(3):416-424.
    147.R. G. Harrsion, D. Yu, W. Lu, et al. Chaotic stimulated Brillouin scattering: Theory and experiment [J]. Physica D:Nonlinear Phenomena 1995,86 (1-2): 182-188.
    148.R. E. Giacone, and H. X. Vu. Nonlinear kinetic simulations of stimulated Brillouin scattering [J]. Phys. Plasmas.1998,5(5):1455-1460.
    149.M. A. Okey, and M. R. Osborne. Broadband stimulated Brillouin scattering [J]. Optics Communications,1992,89(2):269-275.
    150.R. Chu, M. Kanefsky, and J. Falk. Numerical study of transient stimulated Brillouin scattering [J]. Applied Physics.1992,71(10):4653-4658.
    151.K. S. Abedin. Stimulated Brillouin scattering in single-mode tellurite glass fiber [J]. Optics Express,2006,14(24):11766-11772.
    152.H. L. Sang, and C. M. Kim. Chaotic stimulated Brillouin scattering near the threshold in a fiber [J]. Optics Letters,2006,31(21):3131-3133.
    153.Z. Zhu, D. J. Gauthier, Y. Okawachi, et al. Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fibers [J]. Journal of the Optical Society of America B,2005,22(11):2378-2384.
    154.A. Zadok, A. Eyal, and M. Tur. Stimulated Brillouin scattering slow light in optical fibers [J]. Applied Optics,2011,50(25):E38-E49.
    155.R. W. Boyd, and D. J. Gauthier. Slow and Fast Light [C]. Progress in Optic, E. Wolf, ed. Elsevier, Amsterdam,2002,43:497-530.
    156.R. Pant, M. D. Stenner, M. A. Neifeld, et al. Maximizing the opening of eye diagrams for slow-light systems [J]. Applied Optics,2007,46(26):6513-6519.
    157.M. Lee, Y. Zhu, D. J. Gauthier, et al., Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow light system [J]. Applied Optics,2011, 50(32):6063-6072.157
    158.Y. Zhu, M. Lee, M. A. Neifeld, et al. High-fidelity, broadband stimulated Brillouin-scattering-based slow light using fast noise modulation [J]. Optics Express,2011,19(2),687-697.
    159.B. Zhang, L. Yan, I. Fazal, et al. Slow light on Gbit/s differential phase shift keying signals [J]. Optics Express,2007,15(4),1878-1883.
    160.L. Yi, Y. Jaouen, W. Hu, et al. Improved slow-light performance of 10Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS [J]. Optics Express,2007, 15(25):16972-16979.
    161.R. Pant, M. D. Stenner, M. A. Neifeld, et al. Optimal pump profile designs for broadband SBS slow-light systems [J]. Optics Express,2008,16(4):2764-2777.
    162.E. Cabrera-Granado, O. G. Calderon, S. Melle, et al. Observation of large 10-Gb/s SBS slow light delay with low distortion using an optimized gain profile [J]. Optics Express,2008,16(20):16032-16042.
    163.M. Lee, Y. Zhu, D. J. Gauthier, et al. Information-theoretic analysis of a stimulated-Brillouin-scattering-based slow-light system [J]. Applied Optics,2011, 50(32):6063-6072.
    164.T. Sakamoto, T. Yamamoto, K. Shiraki, et al. Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb [J]. Optics Express, 2008,16(11):8026-8032.
    165.Y. Dong, Z. Lu, Q. Li, et al. Broadband Brillouin slow light based on multifrequency phase modulation in optical fibers [J]. Journal of the Optical Society of America B,2008,25(12):c109-c115.
    166.L. Yi, L. Zhan, W. Hu, et al. Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump [J]. IEEE Photonics Technology Letters,2007,19(8):619-621.
    167.Z. Shi, R. Pant, Z. Zhu, et al. Boyd. Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity [J]. Optics Letters,2007,32(14):1986-1988.
    168.E. Shumakher, N. Orbach, A. Nevet, et al. On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers [J]. Optics Express,2006,14(13): 5877-5884.
    169.Michael J. Connelly. Semiconductor optical Amplifiers [J]. Kluwer Academic Publisher 2002.
    170.Hodgson, N. and H. Weber. Laser resonators and beam propagation [M].2nd ed. 2005:Springer.