碳化硅宽带隙半导体薄膜的异质外延生长技术及其结构性质分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC是一种宽带隙半导体材料、第三代半导体材料的代表,是制造高温、高频、大功率、抗辐照等半导体器件的优选材料,又被称为极端电子学材料,在微电子学领域具有广阔的应用前景。本论文提出了在蓝宝石上引入一层缓冲层材料形成复合衬底,采用常压化学气相淀积(APCVD)方法在其上异质外延生长SiC薄膜的技术,分析了CVD法生长SiC的物理化学过程,通过实验提出SiC薄膜生长的工艺条件,并通过X射线衍射(XRD)、X射线光电子能谱(XPS)、光致发光谱(PL谱)和扫描电镜(SEM)对外延薄膜的结构性质进行分析。结果表明,在蓝宝石复合衬底上可以生长出均匀连续的SiC单晶薄膜。
As a wide bandgap semiconductor material, silicon carbide is an exellent material with superior thermal, electrical, mechanical and chemical properties for the fabrication of high temperature, high power, high frequency and radiation hardening electronic devices. In this paper, the growth technology is presented for epitaxial silicon carbide films on sapphire with a buffer layer by atmospheric-pressure chemical vapor deposition (APCVD) process. The effect of temperature and precursors flow rates on the growth of silicon carbide films by chemical vapor deposition is analyzed. The structural properties of the films grown on sapphire compound substrate are studied by X-ray diffraction (XRD),X-ray photospectroscopy (XPS) and photoluminescence spectroscopy. The surface morphology is studied by scanning electron microscopy (SEM). The results reveal that the single-crystal silicon carbide films with smooth and continuous apperance are obtained under the reported experimental conditions.
引文
[1] J.B. Casady and R.W. Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A Review[J]. Solid-State Electronics, 1996,39(10):1409~1422.
    [2] Ravi K. Nadella and M.A. Capano. High-resistance layers in n-type 4H-silicon carbide by hydrogen ion implantation[J], Appl. Phys. Lett., 1997,70(7):886~888.
    [3] 周立军.半导体材料的发展及现状[J].半导体情报,2001,38(1):12~15.
    [4] 孙国胜.迎接碳化硅晶体时代[J].中国电子报,2000年3月3日.
    [5] Krishna N. Vinod, Kristian A. Zorman, Azzam A.Yasseen, et al. Fabrication of Low Defect Density 3C-SiC on SiO_2 Structures Using Wafer Bonding Techniques[J]. J. Electron. Mater., 1998, 27 (3): L17~L20.
    [6] A. Faessler. Proc. Int. Conf. Semiconductor Phys., Praque, Academic Press Inc., 1960, 914.
    [7] H. morkoc, S. Strite, G.B. Gao, M.E. Lin, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ Znse-based semiconductor device technologies[J]. J. Appl. Phys., 1994, 76 (3): 1363~1398.
    [8] Imran A. Khan and James A. Cooper. Measure of high-field electron transpor in silicon carbide[J]. IEEE Transactions on Electon Devices, 2000,47(2):269~272.
    [9] 黄继颇,王连卫,林成鲁.性能优异的多功能宽禁带半导体AlN薄膜[J].功能材料,1999,30(2):141~142.
    [10] 党冀萍.今日SiC电子学[J].半导体情报,1999,36(2):8~12.
    [11] Hui-feng Li, Sima Dimitrijev, Denis Sweatman, et al. Investigation of nitric oxide and Ar annealed SiO_2/SiC interfaces by X-ray photoelectron spectroscopy[J]. J. Appl. Phys.,1999,86(8):4316~4321.
    [12] 郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[M].北京:科学出版社,2000.
    [13] 党冀萍.迅速发展的SiC半导体技术[J].半导体情报,1995,32(5):1~6.
    [14] 华庆恒.宽禁带材料前景诱人[J].半导体杂志,1999,12.
    [15] A.K. Agarwal, J.B. Casady, et al. 1.1kV 4H-SiC Power UMOSFET's[J]. IEEE Electron Device Lett, 1997,18(12):586~588.
    
    
    [16] J. A. Powell, J. B. Petit, J. H. Edgar, et al. Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers[J]. Appl. Phys. Lett. , 1991, 59(3) : 333-335.
    [17] Kuan-Lun Cheng, Huang-Chung Cheng, Wen-Horng Lee, et al. Deposition of Polycrystalline *-SiC Films on Si Substrate at Room Temperature [J] . Appl. Phys. Lett. , 1997, 70(2) : 223-225.
    [18] Tomoaki Hatayama, Norihiro Tanaka, Takashi Fuyuki, et al. Initial Stage for Heteroepitaxy of 3C-SiC on the Si (001) Surface in Dimethylgermance Source Molecular Beam Epitaxy[J]. Appl. Phys. Lett. , 1997, 70 (11) : 1411-1413.
    [19] Jens Hofmann, Stan Veprek, and J. Heind. Pseudomorphic Growth of Ultrathin Cubic 3C-SiC Films on Si(100) by Temperature Programmed Organometallic Chemical Vapor Deposition[J]. J. Appl. Phys., 1999, 85 (5) : 2652-2657.
    [20] Tatsuro Miyasato , Yong Sun , and J. Keith Wigmore. Growh and Characterization of Nanoscale 3C-SiC Islands on Si Substrates[J]. J. Appl. Phys. , 1999, 85 (7) : 3565-3568.
    [21] 师昌绪.发展高新材料应注重应用开发[J].功能材料,2001,增刊:1~2.
    [22] 杨树人,丁墨元.外延生长技术[M].北京:国防工业出版社,1992.
    [23] J. P. Colinge. Silicon-on-insulator technology[M]. Boston:Kluwer Academic Publishers, 1991.
    [24] B. S. Sywe, Z. J. Yu, S. Burckhard, et al. Epitaxial Gowth of SiC on Sapphire Substrates whith an A1N Buffer Layer[J]. J. Electrochem. Soc. , 1994, 141(2) : 510-513.
    [25] Manabu Ishimaru, Robert M. Dickerson, and Kurt E. Sickafus. Scanning Transmission Electron Microscopy-Energy Dispersive X-Ray/Electron Energy Loss Spectroscopy Studies on SiC-on-Insulator Structures[J]. J. Electrochem. Soc. , 2000, 147(5) : 1979-1981.
    [26] Manabu Ishimaru and Kurt E.Sickafus. Dose Dependence of Microstructural Evolution in Oxygen-Ion-Implanted Silicon Carbide [J]. Appl. Phys. Lett. , 1999, 75 (10) : 1392-1394.
    [27] Manabu Ishimaru, Robert M. Dickerson, and Kurt E. Sickafus. High-dose oxygen ion implantation into 6H-SiC[J]. Appl. Phys. Lett. , 1999, 75 (3) : 352-354.
    [28] Q.-Y. Tong, U. Gosele, C. Yuan, et al. Silicon Carbide Wafer Bonding [J].
    
    J. Electrochem. Soc. , 1995, 142(1) : 232-236.
    [29] M. Bruel. Silicon on Insulator Material Technology [J] . Electron. Lett. , 1995, 31 (14) : 1201-1202.
    [30] L. Di Cioccio.Y. Le Tiec,F. Letertre, et al. Silicon Carbide on Insulator Formation Using the Smart Cut Process[J]. Electron. Lett. , 1996, 32(12) : 1144-1145.
    [31] 田凤仁.无机材料结构基础[M].北京:冶金工业出版社,1993.
    [32] 张永华,彭军.发展中的SiCOI技术[J].《微电子学》录用.
    [33] X. Tang, K. G. Irvine,Z. Ping, et al. Measurement of electro-optical properties of β-SiC on sapphire substrates and free-standing films[J]. Mater. Sci. Eng. , 1992,811:39-42.
    [34] L. Rimai, R. Ager, J. Hangas, et al. Pulsed laser depostion of SiC films on fused silisa and sapphire substrates[J]. J. Appl. Phys., 1993, 73(12) : 8242-8249.
    [35] H. Nakamatsu, K. Hirata, and S. Kawai. Mater. Res. Soc. Symp., 1988, 101:397.
    [36] S. W. King, R. F. Davis, C. Ronning, et al. Valence band discontinuity, surface reconstruction, and chemistry of (0001) , (000 1) ,and (1100) 2H-AlN/6H-SiC interfaces [J]. J. Appl. Phys., 1999, 86(8) : 4483-4490.
    [37] Satoshi Yamada, Jun-ichi Kato, Satoru Tanaka, et al. Nucleation and growth kinetics of AlN films on atomically smooth 6H-SiC(0001) surfaces [J]. Appl. Phys. Lett. , 2001, 78(23) :3612-3614.
    [38] J. Lu, L. Haworth,D. I. Westwood, et al. Initial stages of molecular-beam epitaxy growth of GaN on 6H-SiC(0001) [J]. Appl. Phys. Lett. , 2001, 78 (8) : 1080-1082.
    [39] James B. Webb, H. Tang, J. A. Bardwell, et al. Mobility transistor structures on 4H-SiC by ammonia molecular-beam epitaxy[J]. Appl. Phys. Lett. , 2001, 78 (24) : 3845-3847.
    [40] S. C. Jain, M. Willander, et al. *-nitrides: Growth, Characterization and Properties [J]. J. Appl. Phys. , 2000, 87 (3) : 965-1003.
    [41] A. Saxler, P. Kung, C. J.Sun, et al. High quality aluminum nitride epitaxial layers grown on sapphire substrates[J]. Appl. Phys. Lett. , 1994, 64(3) : 339-341.
    [42] Chen Z Z, Shen B, Zhang X Y, et al. Study of Transient Photoconctivity of GaN Epilater Grown by Metalorganic Chemical Vapor Deposition[J]. Appl Phys A, 1998, 67(4) : 567-570.
    
    
    [43]Sean W. King, R. Scott Kern, Mark C. Benjamin, et al. Chemical Vapor Cleaning of 6H-SiC Surfaces[J]. J. Electrochem. Soc.,1999,146(9): 3448~3454.
    [44]Mark D. Allendorf and Robert J. Kee. A Model of Silicon Carbide Chemical Vapor Deposition[J]. J. Electrochem. Soc.,1991,138(3):841~852.
    [45]天津大学物理化学教研室编.物理化学(第二版上册)[M].北京:高等教育出版社,1982.
    [46]陈治明,王建农.半导体器件的材料物理学基础[M].北京:科学技术出版社,1999.
    [47]Zhinqi Guo, Tao Fu, and Hengzhi Fu. Crystal Orientation Measured by XRD and Annotation of the Butterfly Diagram[J]. Materials Characterization, 2000,44,431~434.
    [48]W.J. Bartels. Characterization of thin layers on perfect crystals with a multipurpose high/resolution X-ray diffractometer[J]. J. Vac. Sci. Technol., 1983, B1 (2): 338~345.
    [49]常铁军,祁欣等.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [50]Sean W. King, Robert J. Nemanich, and Robert F. Davis. Dry Ex Situ Cleaning Processes for(0001)_(si) 6H-SiC Surfaces[J]. J. Electrochem. Soe. 1999, 146(7): 2648~2651.
    [51]刘恩科,朱秉升,罗晋升等.半导体物理学[M].北京:国防工业出版社,1994.
    [52]H. Matsunami et al. VPE Growth of SiC on Step-controlled Substrates, in Amorphous and Crystalline Silicon Carbide and Ralated Materials[A]. Edited by Harris, G.L. et al. Proceedings of the First Internatonal Conference[C]. Berlin:Springer, 1989,34.
    [53]S. Wang et al. Characterization of Defect Structures in SiC Single Crystals Using Synchrotron X-ray Topographg[A],in:Applictivns of Synchrotron Radiation Techniques to Materials Science Materials Research Society Symposium Proceedings[C],Eds. by D.L. Perry, et al.,Publ, by Materials Research Society, Pittsburgh, PA, USA, 1993, 307,249.
    [54]J.W. Yang and P. Pirouz. The α→β Polytypic trnsformation in High-temperature indented SiC[J]. J. Mater. Res.,1993,8(11):2902~2907.
    [55]S.E. Saddm, T.E. Schattner, M. Shamsuzzoha et al. TEM investigation of silicon carbide wafers with reduced micropipe density[J]. J. Electron Mater., 2000, 29 (3): 364~367.