原位在线研究典型多环芳烃在红树植物中的环境行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林是生长在热带、亚热带陆海交汇的海湾河口区潮间带、受周期性潮水浸淹的潮滩湿地木本生物群落。近年来随着人口的增长,流域工农业、沿岸城市开发及港口驳岸海运的发展,大量污染物直接或间接注入而汇集于河口海湾区,日益增加了红树林的环境压力。红树林生态系统因生产力高、富含有机质以及强还原性环境条件等特性,使之成为吸收和积累多环芳烃(Polycyclic AromaticHydrocarbons,PAHs)的重要场所,但目前有关红树林湿地中PAHs的研究大多限于分析湿地沉积物中PAHs的种类、各种组分的含量与分布比例、湿地内PAHs的来源研究以及林地内微生物对PAHs的降解作用等,而作为湿地主体核心的红树植物对环境中PAHs的直接吸收研究很少涉及,亦未对相关机理加以阐释。
     本文首先利用固体表面荧光(Solid Surface Fluorimetry,SSF)分析法结合荧光显微(Fluorescence Microscopy,FM)和双光子激光共焦扫描显微(TWoPhoton Laser Confocal Scanning Microscopy,TPLCSM)技术,建立了红树林生态系统中典型PAHs环境行为原位研究的系统方法,进而利用所建方法初步开展了原位研究典型PAHs在红树植物中环境行为等工作,主要研究内容和结果包括以下几个方面:
     (1)利用荧光分光光度计配合自制的固体样品架建立了直接测定吸附于白骨壤(Avicennia marina,Am)、木榄(Bruguiera gymnorrhiza,Bg)、秋茄(Kandeliacandel,Kc)和红海榄(Rhizophors stylosa,Rs)叶片上An的SSF新方法。实验结果表明:(a)在相同的暴露时间下,不同种红树叶片对An的吸附量不同,且在一定范围内,吸附于四种红树叶片上表面An的量与其SSF相对强度间有较好的线性关系,所建方法的回收率为70.2%~110.8%,可满足实际测定的需要;(b)在相同的暴露An浓度下,随An暴露时间的增加,四种红树叶片上表面富集An后测得的SSF相对强度都呈现先增大后减小的趋势,且测得吸附于四种红树叶片上表面An的SSF相对强度最高处的顺序为:Am>Kc>Rs>Bg;(c)在相同的实验暴露条件下,同种红树叶片上表面吸附An后测得的SSF相对强度都明显强于下表面,但下表面对An的吸附作用亦很重要。实验还发现,吸附在四种红树叶片上表面An的SSF相对强度随吸附部位的不同都表现出较大差异,即可能存在于叶片表面的An并不是“均匀”地穿过表皮蜡质层进入到叶片内部,而是可能存在“优先”的进入位置,但具体原因尚不清楚。
     (2)在上述工作研究基础上,首先,利用荧光分光光度计配合光纤附件建立了直接测定吸附于Kc、桐花树(Aegiceras corniculatum Ac)两种红树叶片上表面单组分及其混合组分An、芘(Py)的光纤同步SSF新方法。实验结果表明,在一定范围内,吸附于两种红树叶片上表面单组分及其混合组分An、Py的量分别与其同步SSF相对强度间有较好的线性关系,且所建方法的回收率为82.9%~116.5%,可满足实际测定的需要;其次,采用所建立的光纤同步SSF法原位研究了存在于活体Kc叶片上表面An的光谱行为,同时辅助GC-MS手段验证了所建方法在实际测定过程中的可行性。实验结果表明,在一定的实验条件下,随暴露时间的延长,采用两种方法测得的存在于Kc叶片表面An的量的变化趋势基本一致;最后,采用所建立的光纤同步SSF法原位研究了An、Py及其混合组分在两种红树叶片上表面的光降解情况。实验结果表明,在实验条件下:(a)吸附于两种红树叶片上表面的单组分An、Py的光降解过程均遵循一级反应动力学过程;在相同的实验条件下,吸附于红树叶片上表面PAH的含量越高,光降解的反应速率越慢,且吸附于同种红树叶片上相同物质量的Py的降解速率远小于An;(b)吸附于两种红树叶片上表面的An、Py混合组的光降解过程均遵循一级反应动力学过程。而对于处于混合组分中相同量的PAH,吸附于Kc叶片上表面PAH的光降解速率慢于吸附于Ac叶片上表面的PAH。实验结果还表明,不管是Kc叶片还是Ac叶片,与吸附于叶片表面单组分An或Py的光降解作用相比,混合组分中An的光降解速率减慢,而Py的光降解速率加快;(c)单组分及其混合组分An、Py在水溶液中的光降解过程均遵循一级反应动力学过程。对于相同量的单组分An、Py,处于水溶液中的PAH的光降解速率都快于吸附于红树叶片表面的PAH。在水溶液中,与单组分An或Py的光降解作用相比,混合组分中An的光降解速率减慢,而Py的光降解速率加快。
     (3)在人工模拟实验条件下,选取An为模型化合物并将其均匀地涂抹于活体Kc叶片的上表面,经过96h的暴露后,首先借助于所建的SSF方法,确定了存在于Kc叶片上表面的目标污染物为An,其次借助于FM技术,直接观察发现,随着An暴露时间的增加,存在于活体Kc叶片上表面An的量逐渐减少,一定时间后,存在于Kc叶片上表面的An会与大气中的An达到挥发和再沉降的“相对平衡状态”,且随着An暴露时间的延长,存在于Kc叶片上表面的An会通过上表面的蜡质层进入到第一、第二内皮层、上栅栏组织,从大气再沉降至Kc叶片下表面的An会通过下表面的气孔进入到下皮层、下栅栏组织,并最终都分别到达海绵组织。实验结果还表明,经过24h的暴露后,在Kc叶片的上、下栅栏组织和海绵组织内部都会观察到一些“淡蓝色”的光斑,很可能是An的代谢产物。同时实验还发现,在相同An暴露时间(24h后)下,存在于叶片“中央”An的量会少于存在于叶片“边缘”An的量,即随着暴露An时间的延长,存在于叶片“中央”An的量减少的“更快”。此研究结果可能暗示了一条重要的信息,即可能存在于红树叶片表面的An并不是“均匀”地穿过表皮蜡质层进入到叶片内部,而是可能存在“优先”的进入位置。
     (4)在人工模拟实验条件下,利用TPLCSM技术,原位观察了典型PAHs从水培液迁移进入活体红树植物幼苗的根部并向其地上组织传输的路径,及其在内部组织中的最终分布情况。实验结果表明:(a)经过20d的培养,萘(Na)、菲(Phen)、An、Py都从水培液迁移进入至Kc幼苗的根部,并在蒸腾拉力的作用下传输至茎、叶等地上组织,且四种PAHs迁移进入并在Kc幼苗内部传输的路径及其最终存在位置类似,且四种PAHs在Kc幼苗内部组织中传输的速率顺序为Na>An和Phen>Py。四种PAHs胁迫对Kc幼苗根的生长都产生了抑制作用,且其抑制作用大小的顺序为Na>An和Phen>Py,其中An和Phen胁迫对Kc幼苗根生长的抑制作用差别不显著,而Na对Kc幼苗根生长的抑制程度最为明显。(b)经过20d的培养,三种PAHs(Na、Phen、Py)都从水培液迁移进入至Ac幼苗的根部,并在蒸腾拉力的作用下传输至茎部,且三种PAHs迁移进入并在Ac幼苗内部传输的路径及其最终存在位置类似,且三种PAHs在Ac幼苗内部组织中传输的速率顺序为Na>Phen>Py。三种PAHs胁迫对Ac幼苗根的生长都产生了抑制作用,且其抑制作用大小的顺序是Na>Phen>Py,其中Na对Ac幼苗根生长的抑制程度最为明显。
     本文首次结合了SSF分析法、FM和TPLCSM技术研究了典型PAHs在红树植物中的环境行为,为PAHs在红树林生态系统中的相关研究提供了新的手段、方法和研究思路。通过研究不同种类红树植物的叶、茎、根对典型PAHs的吸收、转运、降解等过程,初步揭示了红树植物对典型PAHs的植物修复、污染控制的过程、机制等。也为进一步研究PAHs污染胁迫下不同种类红树植物生长情况、生理生态及生化效应等奠定了研究方法基础。
Mangroves are the intertidal plant formations growing along the coastlines oftropical and subtropical regions.Due to an increase in population,and expansion ofindustrial agricultural areas and port,a large number of pollutants are dischargingdirectly or indirectly into offshore marine areas.Human activities have seriously led tothe damage of many mangroves.The unique features of mangrove ecosystems such ashigh primary productivity,abundant detritus,rich organic carbon and anoxic conditionsmake themselves a reservoir of polycyclic aromatic hydrocarbons (PAHs)fromanthropogenic inputs.However,the published research on PAHs in the mangrovewetland has mainly focused on the analysis of concentrations of individual PAH andtotal PAHs compounds in the sediment;the determination of the distribution andproportion of PAHs in different tissues of many mangrove species;the evaluation of thepossible sources of PAHs in the wetland;and the microcosm studies concerning theremoval of PAHs from surface-or bottom-contaminated sediments.As a result,research on the direct uptake of PAHs by mangrove plants as the core of the wetland israrely involved,nor are the related mechanisms being explained.
     In this study,a systematic method was established for in situ study on theenvironmental behaviors of typical PAHs in the mangrove wetland utilizing the solidsurface fluorimetry (SSF)and fluorescence microscopy (FM)as well as thecombination of two photon laser confocal scanning microscopy (TPLCSM).And theenvironmental behaviors of typical PAHs in mangrove plants were studied in situ withthe established methods.Main results were summarized as followings:
     (1)A SSF approach combining with a laboratory-made solid substrate holder anda fluorescence spectrophotometer was established for direct determination ofanthracene (An)adsorbed on the leaves of four mangrove species (Avicennia marinaAm,Bruguiera gymnorrhiza Bg,Kandelia candel Kc,Rhizophors stylosa Rs).Theexperimental results were as follows:(a)With the same exposure time (90min)of An, the leaves of the four mangrove species showed different capacities for adsorbing An,and within a certain range,the relative SSF intensities of the An adsorbed on theupper sides of leaves of the four mangrove species increased linearly with incrementsin the exposure quantity of An.The recoveries for the four species were between70.2% and 110.8%,which met the requirement of practical applications.(b)In thesame exposure concentration of An,the relative SSF intensities of leaves of the fourmangrove species increased first and then decreased as the time progressed.And themaximum relative SSF intensities of the four species were in the orderAm>Kc>Rs>Bg.(c)In the same experimental conditions,the relative SSF intensitiesof the adsorbed An on the upper side of the same mangrove leaves were muchstronger than those adsorbed on the lower side,which has many stomata.Therefore,in addition to the uptake of PAH via waxy cuticle,the stomatal pathway was alsoimportant for the PAH entering into the mangrove leaves.Further studies showed thatthe relative SSF intensities in different regions of the same leaf differed from eachother,and it provided us with very important information that the adsorbed An on themangrove leaf surface might not“equally”penetrate the epidermal wax layer into theinternal leaf tissues,but might have“priority”locations.However,the reasons werenot clear.
     (2)Based on the established SSF method,a synchronous solid surface fluorimetry(S-SSF)method combining with an optical fiber and a fluorescencespectrophotometer was established firstly for direct determination of the An andPyrene (Py)which were adsorbed on the leaves of two mangrove species insingle-component or in mixtures.The results indicated that the quantity of An and Pyadsorbed on the mangrove leaves in single-component or in mixtures linearlycorrelated with their S-SSF intensities.And the recoveries of this S-SSF method forthe leaves of two mangrove species were between 82.9% and 116.5%,which met therequirement of practical applications;Secondly,the distribution of An adsorbed onthe living Kc leaves were studied in situ utilizing the established S-SSF approach,and the GC-MS was also used to verify the accuracy of the S-SSF method.Theexperimental results demonstrated that in a certain period of exposure time of An,thetrends of the quantity of adsorbed An on the upper side of Kc leaves determined bythe two methods were similar.Thus,the S-SSF could be used as a novel in situmethod for further studies.Finally,the photolysis of An and Py on the leaves of twomangrove species in single-component or in mixtures were directly studied by theS-SSF,and the results were as follows:(a)The processes of photolysis of An and Pyin single-component adsorbed on the leaves of two mangrove species followedfirst-order reaction kinetics.And in the same experimental conditions,the higher thequantity of adsorbed PAH on the mangrove leaves,the slower the reaction rate of thephotolysis of the PAH,moreover,the raction rate of the adsorbed Py on the leaves ofthe same mangrove species was much slower than that of the same amount ofadsorbed An.(b)The processes of photolysis of An and Py in mixtures adsorbed onmangrove leaves also followed first-order reaction kinetics.And to the same amountof PAH in mixtures,the raction rate of PAH adsorbed on Kc was slower than thatadsorbed on Ac.The experimental results also revealed that compared with the Anand Py in single-component mode adsorbed on the same kind of mangrove leaves,thereaction rate of An in mixtures slowed down,while the reaction rate of Py in mixturesspeeded up.(c)The processes of photolysis of An and Py in single-component or inmixtures,and in water followed first-order reaction kinetics.And to the same amountof PAH in single-compont mode,the reaction rate of PAH in water was faster thanthat adsorbed on mangrove leaves.Compared with An and Py in single-componentmode in water,the reaction rate of An in mixtures slowed down,while the reactionrate of Py in mixtures speeded up.
     (3)Under the artificial simulating conditions,the An selected as the model PAHwas applied as a homogeneous layer to the upper side of the living Kc leaves.Duringthe exposure time of 96 hours,the SSF was firstly utilized for direct determination ofthe adsorbed An on the Kc leaves,then the FM was used to visualize how An was taken up into Kc leaves and where it was located in the inner leaf tissues.The resultsdemonstrated that the overall amount of An residing on the Kc leaf surface decreasedgradually as time progressed.And after a certain period of exposure time,equilibration of the An might be achieved between the leaf surface and theatmosphere.And as the time passed,the An existing on the upper side of Kc leaveswas observed moving from the upper epicuticular wax into the first and secondhypodermis and upper palisade tissue,and the An existing on the lower side of Kcleaves moving from the stomata into the lower hypodermis and the lower palisadetissue,then ultimately into the spongy mesophyll.The results also showed that afterexposed for 24 hours,there were several light blue dots in the upper and lowerpalisade tissues and spongy mesophyll,which might be the autofluorescence of Anmetabolites.Further studies also revealed that the residual quantity of An at the centerwas much less than that remaining at the edges of the same leaf surface after exposureof 24 hours,and this suggested that as time passed,the quantity of An retaining at thecenter of the leaf surface decreased more quickly,which might provide important newinformation about how An enters into Kc leaves.
     (4)Under the artificial simulating conditions,the uptake,transportation anddistribution of PAHs were in situ visualized in mangrove plants using TPLCSM,some results were as follows:(a)After 20 days of culture in contaminated solutions,the Naphthalene (Na),An,Phenanthrene (Phen)and Py had been observed enteringinto the roots of Kc seedlings and being transmitted to the stem and leaf due totranspiration.The pathways of the four PAHs from the culture solutions into theplants were similar,and the results also indicated that the transmission rates of thefour PAHs in Kc seedings were in the order Na>An and Phen>Py.The growth of theroot of Kc seedlings was inhibited by the PAHs and the inbibitional effect was in theorder Na>An and Phen>Py.In addition,the inhibition of An and Phen to the rootgrowth was not significant difference,and the inhibition of Na was the most obvious.(b)After 20 days of culture in contaminated solutions,the three PAHs (Na,Phen,Py) had been observed entering into the roots ofAegiceras corniculata (Ac)seedlings andbeing transmitted to the stem due to transpiration.The pathways of the three PAHsfrom the culture solutions into the plants were similar,and the results also indicatedthat the transmission rates of the three PAHs in Ac seedlings were in the orderNa>Phen>Py.The growth of the root of Ac seedlings were inhibited by the PAHs andthe inbibitional effect was in the order Na>Phen>Py,and the inhibition of Na was themost obvious.
     In this study,the SSF,FM and TPLCSM were firstly combined for in situ studyon the environmental behaviors of typical PAHs in the mangrove plants.It providednovel means,methods,and research idea for the related studies of PAHs in mangroveecosystems.Through studying the processes of uptake,transportation and degradationof typical PAHs in different kinds of mangrove leaves,stem and roots,we revealedthe processes and mechanisms on phytoremediation for typical PAHs and pollutioncontrol of mangrove plants.Moreover,it layed a methodological foundation forfurther study of the growth,ecophysiology and biochemical effects of different kindsof mangrove plants under the pollution stress of PAHs.
引文
[1]林鹏.红树林[M].北京:海洋出版社,1984.
    [2]Nybaken J W.海洋生物学,生态学探讨[M].北京:海洋出版社,1991.
    [3]王文卿,王瑁.中国红树林[M].北京:科学出版社,2006.
    [4]Mclusky D S.The estuarine ecosystem[M].John Wiley and Sons,1981.
    [5]张其永,洪万树.大弹涂鱼资源增值研究[J].海洋科学,199l,ll(6):19-21.
    [6]廖宝文,郑松发,陈玉军等.红树林湿地恢复技术的研究进展[J].生态科学,2005,24(1):61-65.
    [7]李庆芳,章家恩,刘金苓.红树林生态系统服务功能研究综述[J].生态科学,2006,25(5):472-475.
    [8]Tam N F Y,Ke L,Wang X H,et al.Contamination of polycyclic aromatic hydrocarbons in surface sediment of mangrove swamps[J].Environmental Pollution,2001,114:255-263.
    [9]Walsh G E,Ainsworth K A,Rigby R.Resistance of red mangrove seedling to lead,cadminm and mercury[J].Biotropica,1979,11:22-27.
    [10]郑文教,郑逢中,连玉武等.广西英罗湾红海榄红树群落锰镍元素的累积和循环[J].厦门大学学报(自然科学版),1995,34:829-834.
    [11]Natarajan R.Mangrove ecosystem research in Asia--a perspective.In:Proseedings of Asia-Pacific Symposium on Mangrove Ecosystem.Environment Research and Management.(Eds.E.Soepadmo et al.)Kuala Lumpar:UNESCO and University of Malaya Press,1984,1-4.
    [12]林鹏.中国红树林生态系[M].北京:科学出版社.1997,297-316.
    [13]Peters E C,Gassman N J,Firman J C,et al.Ecotoxicology of tropical marine ecosystems[J].Environment Toxiclogy and Chemistry,1997,16:12-40.
    [14]张军,袁东星,陆志强等.九龙江口红树林区表层沉积物中多环芳烃含量与来源[J].厦门大学学报(自然科学版),2003,42(4):499-503.
    [15]孙娟,郑文教,陈文田.红树林湿地多环芳烃污染研究进展[J].生态学杂志,2005,24(10):12l1-1214.
    [16]陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布[D].厦门:厦门大学,2002.
    [17]Wolf H D,Rashid R.Heavy metal accumulation in Littoraria scabra along polluted and pristine mangrove areas of Tanzania[J].Environmental Pollution,2008,152:636-643.
    [18]MacFarlane G R,Burchett M D.Cellular distribution of copper,lead and zinc in the grey mangrove,Avicennia marina (Forsk.) Vierh[J].Aquatic Botany,2000,68:45-59.
    [19]Agoramoorthy G,Chen F A,Hsu M J.Threat of heavy metal pollution in halophytic and mangrove plants ofTamil Nadu,India[J].Environmental Pollution,2008,155:320-326.
    [20]MacFarlane G R,Pulkownik A,Burchett M D.Accumulation and distribution of heavy metals in the grey mangrove ,Avicennia marina (Forsk.) Vierh.:biological indication potential[J].Environmental Pollution,2003,123:139-151.
    [21]Thomas S,Eong O J.Effects of the heavy metals Zn and Pb on R.nucromata and A.alba seedlings[A].In E.Soepadmo,A.M.Rao,M.D.NacIntosh (Eds.),Proceedings of Asian Symposium on mangroves and environment,research and management.Malaysia VCH Press,1984,568-574.
    [22]Walsh G E,Rigby R.Resistance of the mangrove (Rhizpohora mangle (L.)) seedlings to Pb,cadmium and mercury[J].Biotropica,1979,11 (1):22-27.
    [23]郑逢中,林鹏,郑文教.红树植物秋茄幼苗对镉耐性的研究[J].生态学报,1994,14(4):408-414.
    [24]Sasekumar A.Mangrove fisheries and connections[R].ASEAN Australia Marine Science Project,1993.
    [25]MacFarlane G R,Burchett M D.Zinc distribution and excretion in the leaves of the grey mangrove,Avicennia marina (Forsk.)Vierh[J].Environmental and Experimental Botany,1999,41:167-175.
    [26]Drennran P,Pammenter N W.Physiology of salt excretion in the mangrove,Avicennia marina (Forsk.) Vierh[J].New Phytologist,1982,91:597-606.
    [27]Miao S Y,Chen G Z,Delaune R D,et al.Partitioning and removal of Cd and Mn using a simulated mangrove wastewater treatment system[J].Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering,2007,42(4):405-411.
    [28]缪绅裕,陈桂珠.模拟秋茄湿地系统中镍、铜的分布积累与迁移[J].环境科学学报,1999,19(5):545-549.
    [29]陈桂葵,陈桂珠.锌在红树植物白骨壤-土壤系统中的分布与迁移[J].应用生态学报,2007,18(7):1505-1509.
    [30]郑逢中,洪丽玉,郑文教.红树植物落叶碎屑对水中重金属吸附的初步研究[J].厦门大学学报(自然科学版),1998,37(1):137-141.
    [31]郑文教,林鹏.深圳福田白骨壤群落Cr、Ni、Mn的累积及分布[J].应用生态学报,1996,7(2):139-144.
    [32]郑文教,王文卿,林鹏.九龙江口桐花树红树林对重金属的吸收与累积[J].应用与环境生物学报,1996,2(3):207-213.
    [33]Zheng W J,Chen X Y,Lin P.Accumulation and biological cycling of heavy elements in Rhizophorastylosa mangroves in Yingluo Bay,China[J].Marine Ecology Progress Series,1997,159:293-301.
    [34]Brito E M S,Duran R,Guyoneaud R.A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro,Brazil)[J].Marine Pollution Bulletin,2009,58:418-423.
    [35]Getter C D,Scott G I,Michel J.The effect ofoil spill on mangrove forests:a comparison on five oil spill sites in the Gulf of Mexico and Carribbean Sea. In: Proseedings of the 1981 Oil Spill Conference. American Petroleum Institute, Washington DC. 1981, 534-535.
    [36] Getter C D, Ballou T G Koons C B. Effects of dispersed oil on mangroves. Synthesis of a seven-year study[J]. Marine Pollution Bulletin, 1985, 16: 318-324.
    [37] Proffitt C E Devlin D J. Are there cumulative effects in red mangrove from oil spills during seedling and sapling stages[J]. Ecological Applications, 1998, 8: 121-127.
    [38] Suprayogi B, Murray F. A field experiment of the physical and chemical effects of two oils on mangroves[J]. Environment Toxicology and Chemistry, 1999, 42: 211-229.
    [39] Tam N F Y, Wong T W Y, Wong Y S. A case study on fuel oil contamination in a mangrove swamp in Hong Kong[J]. Marine Pollution Bulletin, 2005, 51: 1092-1100.
    [40] Burns KA, Codi S. Pratt C, et al. Weathering of hydrocarbons in mangrove sediments: testing the effects of using dispersants to treat oil spills[J]. Organic Geochemistry, 1999, 30:1273-1286.
    [41] Bums K A, Codi S, Duke N C. Gladstone Australia field studies: Weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol[J]. Marine Pollution Bulletin, 2000, 41(7-12):392-402.
    [42] Duke N C, Burns K A, Swannell R P J, et al. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spill on mangrove: The Gladstone field trials[J]. Marine Pollution Bulletin, 2000, 41:403-412.
    [43] Hoffman E J. Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters[J]. Environmental Science and Technology, 1984, 18: 580-587.
    [44] Kennish J K. Estuary restoration and maintenance. The National Estuary Program[M]. Boca Raton, Florida: CRC Press, 2000.
    
    [45]张军.典型红树林湿地中多环芳烃的含量、来源和迁移研究[D].厦门:厦门大学,2006.
    
    [46] Boxall A B A, Maltby L. The effects of motorway runoff on freshwater ecosystems:3.Toxicant conformation[J]. Archivex of Environmental Contamination and Toxicology,1997,33:9-16.
    [47] Callahan M A, Slimak M W, Gabelc N W. Water-Related Environmental Fate of 129 Priority Pollutants[M]. Washington DC: US Environment Protection Agency, EPA-440/4-79-029,1979.
    [48] Suess M J. The environmental load and cycle of polycyclic aromatic hydrocarbons[J].Science of the Total Environment, 1976, 6: 239-250.
    
    [49] Harvey R G. Polycyclic Aromatic Hydrocarbons[M]. Wiley Press: New York, 1996.
    [50] Bradley C, Vickers G W. Automated rapid prototyping utilizing laser scanning and free-form machining[J]. Annals of CIRP, 1992,41:437- 440.
    [51] Mackay D, Shiu W Y, Ma K C. Illustrated handbook of physical-chemical properties and environmental fate for organic compounds[M], Cheslsea, MI, Lewis Publishers, 1992.
    [52]Miller J S.Determination of polycyclic aromatic hydrocarbons by spectrofluorimetry[J].Analytica Chemica Acta,1999,388 (1-2):27-34.
    [53]刘淑琴,王鹏.环境中的多环芳烃与致癌性[J].山东师大学报(自然科学版),1995,10(4):435-440.
    [54]赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响[J].海洋环境科学,1998,17(2):68-72.
    [55]许姗姗,刘文新,陶澍.全国多环芳烃年排放量估算[J].农业环境科学学报,2005,24(3):476-479
    [56]Lipiatou E,Saliot A.Hydrocarbon contamination of the Rhone Delta and western Mediterranean[J].Marine Pollution Bulletin,1991,22:291-304.
    [57]Simpson C D,Mosi A A,Cullen W R,et al.Composition and distribution of polycyclic aromatic hydrocarbons in surficial marine sediments from Kitimat Harbour,Canada[J].Science of the Total Environment,1996,181:265-278.
    [58]Supaogi B,Murray F.A field experiment of the physical and chemical effects of two oils on mangroves[J].Environment Toxicology and Chemistry,1999,42(2):211-229.
    [59]Connell D W,Wu R S S,Richardson B J,et al.Occurrence of persistent organic contaminants and rlated substances in Hong Kong marine areas:an overview[J].Marine Pollution Bulletin,1998,36(5):376-384.
    [60]Hong H,Xu L,Zhang L,et al.Environmental fate and chemistry of organic pollutants in the sediments of Xiamen and Victoria Harbours[J].Marine Pollution Bulletin,1995,31:229-236.
    [61]Brown G,Maher W.The occurrence,distribution and sources of polycyclic aromatic hydrocarbons in the sediments of the Georges River estuary Australia[J].Organic Geochemistry,1992,18:657-668.
    [62]Kagan J,Wang T P,Benight A S,et al.The phototoxicity of nitro polycyclic aromatic hydrocarbons of environmental importance[J].Chemosphere,1990,20:453-466.
    [63]Ren L,Zeiler L F,Dixon D G,et al.Photoinduced effects of polycyclic aromatic hydrocarbons on Brassica napus (Canola) during germination and early seedling development[J].Ecotoxicology and Environmental Safety,1996,33:73-80.
    [64]Ke L,Wang W Q,Wong T W Y,et al.Removal of pyrene from contaminated sediments by mangrove microcosms[J].Chemosphere,2003,51:25-34.
    [65]Reiley K A,Banks M K,Schwab A P.Dissipation ofpolycyclic aromatic hydrocarbons in the rhizosphere[J].Journal of Environmental Quality,1996,25:212-219.
    [66]陆志强,郑文教,马丽等.不同浓度萘和芘处理对红树植物秋茄胚轴萌发和幼苗生长的影响[J].厦门大学学报(自然科学版),2005,44(4):580-583.
    [67]孙娟,郑文教,赵胡.萘胁迫对白骨壤种苗萌生及抗氧化作用的影响[J].2005,44(3):433-436.
    [68]Gaspare L,Machiwa J F,Mdachi S J M,et al.Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dares Salaam,Tanzania[J].Environmental Pollution,2009,157:24-34.
    [69]Mostafa A R,WadeT L,Sweet S T.Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area,Gulf of Aden,Yemen[J].Journal of Marine System,2009 (in press).
    [70]Chen J L,Wong Y S,Tam N F Y.Static and dynamic sorption of phenanthrene in mangrove sediment slurry[J].Journal of Hazardous Materials,2009 (in press).
    [71 ]Maskaoui K,Zhou J L,Hong H S,et al.Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea,China[J].Environmental Pollution,2002,118:109-122.
    [72]Zhou J L,Hong H,Zhang Z,et al.Multiphase distribution of organic micropollutants in Xiamen Harbour,China[J].Water Research,2000,31 :2132-2150.
    [73]Lu Z Q,Zheng W J,Ma L.Bioconcentration ofpolycyclic aromatic hydrocarbons in roots of three mangrove species in Jiulong River Estuary[J].Journal of Environmental Sciences,2005,17(2):285-289.
    [74]Ke L,Yu K S H,Wong Y S,et al.Spatial and vertical distribution of PAHs in mangrove sediments [J].Science of the Total Environment,2005,340:177-187.
    [75]Hughes J B,Beckles D M,Chandra S D,Ward C H.Utilization of bioremediation processes for the treatment of PAH-contaminated sediments[J].Journal Industrial Microbiology and Biotechnology,1997,18:152-60.
    [76]Hong Y W,Yuan D X,Lin Q M,et al.Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem[J].Marine Pollution Bulletin,2008,56:1400-1405.
    [77]崔玉霞,金洪钧.微生物降解多环芳烃有机污染物分子遗传学研究进展[J].环境污染治理技术与设备,2001,2(6):16-23.
    [78]Yu S H,Ke L,Wong Y S,et al.Degradation of polycyclic aromatic hydrocarbons (PAHs) by a bacterial consortium enriched from mangrove sediments[J].Environment International,2005,31:149-154.
    [79]Tian Y,Luo Y R,Zheng T L,et al.Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen,China[J].Marine Pollution Bulletin,2008,56,1184-1191.
    [80]Tam N F Y,Guo C L,Yau W Y,et al.Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hongkong[J].Marine Pollution Bulletin,2002,45:316-324.
    [81]Cemiglia C E.Biodegradation of polycyclic aromatic hydrocarbons[J].Biodegradation,1992,3:351-368.
    [82]Wilson S C,Jones K C.Bioremediation of soils contaminated with polynuclear aromatic hydrocarbons(PAHs):A review[J].Environmental Pollution,1993,88:229-249.
    [83] Simonich S L, Hites R A. Vegetation-Atmosphere Partitioning of Polycyclic Aromatic Hydrocarbons[J]. Environmental Science and Technology, 1994,28(5): 939-943.
    [84] Ockenden W A, Steinnes E, Parker C, et al. Observations on persistent organic pollutants in plants: implications for their use as passive air samplers and for POP cycling[J].Environmental Science and Technology, 1998, 32(18): 2721-2726.
    [85] Wild E, Dent J, Barber J L, et al. A novel analytical approach for visualizing and tracking organic chemicals in plants[J]. Environmental Science and Technology, 2004, 38: 4195-4199.
    [86] Guddal E. Isolation of polynuclear aromatic hydrocarbons from roots of chrysnthemun vulgare barnh[J]. Acta Chemica Scandinavica, 1959, 13(4): 834-835.
    [87] Ryan J A, Bell R M, Davidson J M, et al. Plant uptake of non-ionic organic chemicals from soils[J]. Chemosphere, 1988, 17: 2299-2323.
    [88] Wild S R, Jones K C. Polynuclear aromatic hydrocarbons uptake by carrots grown in sludge amended soil[J]. Journal of Environmental Quality, 1992,21: 217-225.
    [89] Simonich S L, Hites R A. Organic pollutant accumulation in vegetation[J]. Environmental Science and Technology, 1995,29:2905-2914.
    [90] Su Y H, Zhu Y G. Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution[J]. Environmental Pollution, 2008,155:359-365.
    [91] Migaszewski Z, Galuszka A, Crock JG,et al. Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G.and Pleurozium schreberi (Brid.) Mitt, from Poland and Alaska[J]. 2009, 43: 1464-1473.
    [92] Kipopoulou A M, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J]. Environmental Pollution, 1999,106,369-380.
    [93] Simonich S L, Hites R A. Organic pollutant accumulation in vegetation[J]. Environmental Science and Technology, 1995, 29: 2905-2914.
    [94] Wild E, Dent J, Thomas G O, et al. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots[J]. Environmental Science and Technology, 2005, 39:3695-3707.
    [95] OConnor G A. Organic compounds in sludge-amended soils and their potential for uptake by crop plants[J]. Science of the Total Environment, 1996, 185: 71-81.
    [96] Wild S R, Jones K C. The significance of polynuclear aromatic hydrocarbons applied to agricultural soils in sewage sludges in the U.K[J]. Waste Management and Research, 1994,12:49-59.
    [97] Collins C, Fryer M, Grossso A. Plant uptake of non-ionic organic chemicals[J].Environmental Science and Technology, 2006,40,45-52.
    [98] Wild S R, Jones K C. Organic chemicals entering agricultural soils in sewage sludge:screening for their potential to transfer to crop plants and livestock[J]. Science of the Total Environment,1992,119:85-119.
    [99]Simonich S L,Hites R A.Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere[J].Nature,1994,370:49-51.
    [100]Edwards N T.Polycyclic aromatic hydrocarbons(PAHs) in the terestrial environment-a review[J].Journal of Environmental Quality,1983,12:427-441.
    [101]Jones K C,Statford J A,Tidridge P,et al.Polycyclic aromatic hydrocarbons in agricultural soil:long-term changes in profile distribution[J].Environmental Pollution,1989,56:337-351.
    [102]Tolls J,McLachlan M S.Partitioning ofsemivolatile organic compounds between air and lolium multiforum (welsh ray grass)[J].Environmental Science and Technology,1994,28:159-166.
    [103]Hauk H,Umlauf C,McLachlan M S.Uptake of gaseous DDE in spruce needles[J].Environmental Science and Technology,1994,28:2372-2379.
    [104]Kylin H,Sjodin A.Accumulation of airborne hexachlorocyclohexanes and DDT in pine needles[J].Environmental Science and Technology,2003,37:2350-2355.
    [105]Wild E,Dent J,Thomas G O,et al.Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:further studies utilizing two-photon excitation microscopy[J].Environmental Science and Technology,2006,40:907-916.
    [106]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [107]Riederer M.Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system:discussion of a fugacity-based model[J].Environmental Science and Technology,1990,24:829-837.
    [108]McLachlan M S,Welsch-Pausch K,Tolls J.Field validation of model of the uptake of gaseous SOC in Lolium Multiflorum (rye grass)[J].Environmental Science and Technology,1995,29:1998-2004.
    [109]Barber J L,Kurt P B,Thomas G O,et al.Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J].Environmental Science and Technology,2002,36:4282-4287.
    [110]李元跃.几种红树植物叶的解剖学研究[D].厦门:厦门大学,2006.
    [111]Ke L,Wong T W Y,Wong A H Y,et al Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings[J].Chemosphere,2003,52:1581-1591.
    [112]Tam N F Y,Wong Y S.Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons[J].Marine Pollution Bulltion,2008,57(6-12):716-26.
    [113]Saim N,Dean J R,Abdullah M P,et al.Extraction of PAHs from contaminated soil using soxhlet extraction,microwave-assisted extraction,supercritical fluid extraction and accelerated solvent extraction[J].Journal of Chromatography A,1997,791 :361-366.
    [114] Larry T T. Supercritical fluid extraction[M]. Awiley interscience Publication, John Wiley and Sons Incorporation, 1996.
    [115] Chester T L, Pinkston J D, Raynie D E. Supercritical fluid chromatography and extraction[J]. Analytical Chemistry, 1992,64: 153-170.
    [1]陈国珍,黄贤智,许金钩等.荧光分析法[M].北京:北京科学出版社,1990:309.
    [2]柯以侃,董慧茹.分析化学手册.第二版.第三分册,光谱分析[M].北京:化学工业出版社,1998.
    [3]许金钩,王尊本等.荧光分析法[M].北京:北京科学出版社,2006:213-220.
    [4]Tomingas R,Voltmer G,Bednarik H.Direct fluorimetric analysis of aromatic polycyclic hydrocarbons on thin-layer chromatograms[J].Science of the Total Environment,1977,7:261-267.
    [5]Swanson D,Morris C,Hedgecoke J R,et al.A rapid analytical procedure for the analysis of benzo[a]pyrene in environmental samples[J].Trends Fluorescence,1978,1:22-27.
    [6]Vilchez J L,del Olmo M,Avidad R,et al.Determination of polycyclic aromatic hydrocarbon residues in water by synchronous solid-phase spectrofluorimetry[J].Analyst,1994,119:1211-1214.
    [7]Capitan-Vallvey L F,del Olmo M,Avidad R,et al.Close overlapping discrimination of polycyclic aromatic hydrocarbons by synchronous scanning at variable-angle solid-phase spectrofluorimetry[J].Analtica ChimicaActa,1995,302(2-3):193-200.
    [8]Naval(?)n A,Blanc R,Vilchez J L.Determination of 1-naphthylacetic acid in commercial formulations and natural waters by solid-phase spectrofluorimetry[J].Microchimica Acta,1997,126 (1-2):33-38.
    [9]Vilchez J L,Rohand J,Naval(?)n Mont(?)n A,et al.Determination of warfarin at trace-levels in water by solid-phase spectrofluorimetry[J].Fresenius' Journal of Analytical Chemistry,1996,354(4):470-473.
    [10]Vilchez J L,Torres-Bustos D,Blanc R,et al.Determination of bentazone in waters by solid-phase spectrofluorimetry[J].Journal of AOAC International,1996,79(2):567-570.
    [11]Vilchez J L,Capit(?)n-Vallvey L F,Rohanda J,et al.Determination of benomyl residues in waters by solids phase spectrofluorimetry[J].Analyst,1995,120:1609-1611.
    [12]Vilchez J L,Naval(?)n A.Determination of (1,1'-biphenyl)-2-ol residues in waters by solid phase spectrofluorimetry[J].Fresenius' Journal of Analytical Chemistry,1993,345(11):716-719.
    [13]Compa(?) R,Granados M,Leal C,et al.Solid-phase extraction and spectrofluorimetric determination of triphenyltin in environmental samples[J].Analtica Chimica Acta,1993,283(1):272-279.
    [14]Vilchez J L,Avidad R,Rohand J,et al.Determination of morestan residues in waters by solid phase spectrofluorimetry[J].Analtica Chimica Acta,1993,282:445-449.
    [15]虞光泉.TTA-TROP协同萃取—固体荧光光度法测定水中微量铀[J].铀矿冶,1985(3):59-62.
    [16]林毓华,辛仁轩.固体荧光法测定高纯氧化钍中微量铀[J].分析仪器,1997,(2):37-39.
    [17]文世荪.固体荧光法分析环境中微量铀[J].安徽预防医学杂志,1999,5(2):162-163.
    [18]王菊英,陈群.固体荧光法测铀的操作技术及体会[J].江苏预防医学,2000,11(3):67-68.
    [19]林清赞,许金钩,徐秀伟.国产滤纸应用于固体表面荧光法测定的可行性考察[J].分析化学,1989,6.
    [20]林清赞,郭如斌,许金钩.滤纸基质荧光分析法测定铝的研究[J].冶金分析,1991,4.
    [21]刘名扬,王凤荣.滤纸基质荧光光度法测定银粉中微量铟[J].陕西化工,2000,29(2):45-46.
    [22]刘光东,刘立明,宋功武.蛋白质固体表面荧光分析法研究[J].分析科学学报,2005(1): 33-35.
    [23]焦建,张俊峰,周莹等.双核铜(Ⅰ)—膦配合物:Cu_2(u-Cl)_2(PPh_3)_3的合成及固体荧光光谱的研究[J].云南师范大学报,2003,(23):72-74.
    [24]解宏智,董川,刘长松等.五种四环类抗生素的固体表面荧光法的研究[J].高等学校化学学报,1996,17(8):1216-1218.
    [25]尚晓虹,董川,刘长松.中草药有效成分橙皮甙的固体表面延迟荧光法研究[J].分析科学学报,1999,15(3):191-193.
    [26]尚晓虹,董川,刘长松.固体表面延迟荧光法测定中草药中有效成分柚皮甙[J].分析试验室,2000,19(5):24-26.
    [27]牛承岗,董川,晋卫军等.芦丁、丹皮酚固体表面延迟荧光分析法[J].分析化学研究简报,2000,28(1):35-37.
    [28]刘长松,董川,冯小花等.7种喹诺酮类药物固体表面室温磷光或延迟荧光分析法研究[J].武汉大学学报(自然科学版),2000,46(6):649-654.
    [29]晋卫军,陈素娥,樊艳平等.吡哌酸的固体表面-延迟荧光法研究[J].高等学校化学报,1995,16(3):363-367.
    [30]Bortolato S A,Arancibia J A,Escandar G M.A novel application of nylon membranes to the luminescent determination of benzo[a]pyrene at ultra trace levels in water samples[J].Analytica Chimica Acta,2008,613:218-227.
    [31]Saim N,Dean J R,Abdullah M P,et al.Extraction ofpolycyclic aromatic hydrocarbons from contaminated soil using Soxhlet extraction,pressurised and atmospheric microwave-assisted extraction,supercritical fluid extraction and accelerated solvent extraction[J].Journal of Chromatography A,1997,791 :361-366.
    [32]Simonich S L,Hites R A.Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J].Environmental Science and Technology,1994,28:939-943.
    [33]李耀群.同步和导数—同步荧光法研究与植物叶片活体叶绿素荧光光谱初探[D].厦门:厦门大学,1991.
    [34]Jassoon S,Schechter I.In situ fluorimetric determination of pesticides on vegetables[J].Analytica Chimica Acta,2000,405:9-15.
    [35]高学晟,姜霞,区自清.多环芳烃在土壤中的行为[J].应用生态学报,2002,13(4):501-504.
    [36]王萍,朱亚先,张勇.滤纸固体基质表面荧光法测定痕量蒽、芘[J].光谱实验室,2006,23(3):587-589.
    [37]王雅琴,左谦,焦杏春等.北京大学及周边地区非取暖期植物叶片中的多环芳烃[J].环境科学,2004,25(4):23-27.
    [38]Tolls J,McLachlan M S.Partitioning of semivolatile organic compounds between air and lolium multiforum (welsh ray grass)[J].Environmental Science and Technology,1994,28:159-166.
    [39]Hauk H,Umlauf C,McLachlan M S.Uptake of gaseous DDE in spruce needles[J].Environmental Science and Technology,1994,28:2372-2379.
    [40]Smith K E C,Thomas G O,Jones K C.Seasonal and species differences in the air--pasture transfer of PAHs[J].Environmental Science and Technology,2001,35:2156-2165.
    [41]Komp P,McLachlan M S.The kinetics and reversibility of the partitioning of polychlorinated biphenyls between air and ryegrass[J].Science of the Total Environment,2000,250(1):63-71.
    [42]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [43]McLachlan M S,Welsch-Pausch K,Tolls J.Field validation of model of the uptake of gaseous SOC in Lolium Multiflorum (rye grass)[J].Environmental Science and Technology,1995,29:1998-2004.
    [44]Riederer M.Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system:discussion of a fugacity-based model[J].Environmental Science and Technology,1990,24:829-837.
    [45]Barber J L,Kurt P B,Thomas G O,et al.Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J].Environmental Science and Technology,2002,36:4282-4287.
    [46]李元跃.几种红树植物叶的解剖学研究[D].厦门:厦门大学,2006.
    [47]Wang P,Du K Z,Zhu Y X,et al.A novel analytical approach for investigation of anthracene adsorption onto mangrove leaves[J].Talanta,2008,76(5):1177-1182.
    [48]Wild E,Dent J,Thomas G O,et al.Visualising the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:Further studies utilising two-photon excitation microscopy[J].Environmental Science and Technology,2006,40:907-916.
    [1]陈力,陈坚.光纤化学传感器测定有机污染物的研究进展[J].化学传感器,1998,18(1):49-54.
    [2]陈国珍,黄贤智,许金钩等.荧光分析法[M].北京:北京科学出版社,1990.
    [3]Eroglu A E,Voikan M,Ataman O Y.Fiber optic sensors using novel substrates for hydrogen sulfide determination by solid surface fluorescence[J].Talanta,2000,53(11):89-101.
    [4]Ahmad M,Narayanaswamy R.Optical fibre Al(Ⅲ) sensor based on solid surface fluorescence measurement.Sensors and Actuators B,2002,81:259-266.
    [5]Reyes J F G,Barrales P O,Diaz A M.Development of a solid surface fluorescence-based sensing system for aluminium monitoring in drinking water[J].Talanta,2005,65:1203-1208.
    [6]Patra D,Mishra A K.A novel disposable sensor head for a fiber optic spectrofluorimeter[J].Instrumentation Science and Technology,2002,30( 1):31-4 1.
    [7]http://www.varianinc.com/cgi-bin/nav?products/spectr/fluoro/atworks/app06&cid=KIOOON OHFIH.
    [8]Hassoon S,Schechter I.In situ fluorimetric determination of pesticides on vegetables[J].Analytica Chimica Acta,2000,405:9-15.
    [9]许金钩,王尊本等.荧光分析法[M].北京:北京科学出版社,2006,137.
    [10]蔡宗群,鹿贞彬,朱亚先等.同步荧光法同时测定水溶解态的蒽和芘[J].分析试验室,2006,25(4):61-64.
    [11]牛军峰.部分典型有机污染物在环境界面的光化学行为[D].大连:大连理工大学,2002.
    [12]Ke L,Wong T W Y,Wong Y S,et al.Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill[J].Marine pollution Bulletin,2002,45:339-347.
    [13]肖翔.溶解态混合组分蒽和芘的光降解及表面活性剂对蒽或芘光降解的影响[D].厦门:厦门大学,2009.
    [14]李元跃.几种红树植物叶的解剖学研究[D].厦门:厦门大学,2006.
    [15]Wang P,Du K Z,Zhu Y X,et al.A novel analytical approach for investigation of anthracene adsorption onto mangrove leaves[J].Talanta,2008,76(5):1177-1182.
    [16]Ryan J A,Bell R M,Davidson J Met al.Plant uptake of non-ionic organic chemicals from soils[J].Chemosphere,1988,17:2299-2323.
    [17]Wild S R,Jones K C.The significance of polynuclear aromatic hydrocarbons applied to agricultural soils in sewage sludges in the U.K[J].Waste Management and Research,1994,12:49-59.
    [18]Edwards N T.Polycyclic aromatic hydrocarbons(PAHs) in the terestrial environment-a review[J].Journal of Environmental Quality,1983,12:427-441.
    [19]Jones K C,Statford J A,Tidridge P,et al.Polycyclic aromatic hydrocarbons in agricultural soil:long-term changes in profile distribution[J].Environmental Pollution,1989,56:337-351.
    [20]Komp P,McLachlan M S.The kinetics and reversibility of the partitioning of polychlorinated biphenyls between air and ryegrass[J].Science of the Total Environment,2000,250(1):63-71.
    [21]Simonich S L,Hites R A,et al.Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J].Environmental Science and Technology,1994,28,939-943.
    [22]Nikolaou K,Masclet P,Mouvier G.Sources and chemical reactivity of poly- nuclear aromatic hydrocarbons in the atmosphere-a critical review[J].Science of the Total Environment,1984,32 (2):103-132.
    [23]Huang X D,Dixon D G,Greenberg B M.Impact of UV radiation and photo- modification on the toxicity of PAHs to the higher plant Lemna gibba(Duckweed)[J].Environmental Toxicology and Chemistry,1993,12(6):1067-1077.
    [24l王德高.多环芳烃和多溴代联苯醚的光化学行为[D].大连:大连理工大学,2002.
    [25]Wang D G,Chen J W,Xu Z,et al.Disapperance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine[Pinua thunbergii]needles under irradiation of sunlight:volatilization and photolysis[J].Atmospheric Environment,2005,39:4583-4591.
    [26]Korfmacher W A,Wehry E L,Mamantov G,et al.Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor adsorbed on coal fly ash[J].Environmental Science and Technology,1980,14(9):1094-1097.
    [27]Robert A Y,Arlene A G,Wehry E L,et al.Photochemical transformation of pyrene and benzo[a]pryene vapor depositedon eight coal stack ashes[J].Environmental Science and Technology,1986,20(1):86-90.
    [28]Reza D,Keith J E,Michael E S.Photodecomposition of anthracene on dry surface:products and mechanism[J].Journal of Photochemistry and Photobiology A:Chemistry,1995,86(123):231-239.
    [29]黄国兰,庄源益,戴树桂.颗粒物上多环芳烃的光转化作用[J].南开大学学报(自然科学版),1997,30(1):98-101.
    [30]潘相敏,陈立敏,成玉等.气溶胶中多环芳烃的光降解研究[J].复旦学报(自然科学版),1999,38(1):119-122.
    [31]Wild E,Dent J,Thomas G O,et al.Visualising the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:Further studies utilising two-photon excitation microscopy[J].Environmental Science and Technology,2006,40:907-916.
    [32]Hwang H M,Wade T L,Sericano J L.concentrations and source characterization of polycuclic aromatic hydrocarbons in pine needles from Korea,Mexico,and United States.Atmospheric aerosols[J].Atmospheric Environment,2003,37:2259-2267.
    [33]Keymeulen K,Gorgenyi M,Heberger K,et al.Benzene,toluene,ethyl benzene and xylenes in ambient air and Pinus sylvestris L needles:a comparative study between Belgium,Hungary and Latvia[J].Atmospheric Environment,2001,35:6327-6335.
    [34]牛军峰.部分典型有机污染物在环境界面的光化学行为[D]大连:大连理工大学,2002.
    [35]Niu J F,Chen J,Henkelmann B,et al.Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce (Picea abiea (L.) Karst.) needles under sunlight irradiation[J].Environmental Pollution,2003,123(1):39-45.
    [36]许震.大气中部分有机污染物的化学和光化学转化研究[D].大连:大连理工大学,2004.
    [37]Wild E,Dent J,Thomas G O,et al.Real-time visualization and quantification of PAH photodegradation on and within plant leaves[J].Environmental Science and Technology, 2005,39(1): 268-273.
    [38] Mackay D, Shiu W Y, Ma K C. Illustrated handbook of physical-chemical properties and environmental fate for organic compounds[M], Cheslsea, MI, Lewis Publishers, 1992.
    [39] Fioressi S, Arce R. Excited states and intermediate species of Benzo[e]pyrene photolyzed in solution and adsorbed on surfaces[J], Journal of Physical Chemistry A, 2003, 107:5968-5975.
    [40] Reyes C A, Medina M, Crespo-Hernandez C, et al. Photochemistry of pyrene on unactivated and activated silica surfaces[J]. Environmental Science and Technology, 2000,34: 415-421.
    [41] Worrall D R, Williams S L, Wilkinson F. Electron transfer reactions of anthracene adsorbed on silica gel[J]. Journal of Physical Chemistry B, 1997, 101:4709-4716.
    [42] Fioressi S, Arce R. The effect of physical and chemical properties of the surface on the photochemistry and spectroscopy of adsorbed benzo[eJpyrene[J]. Polycyclic Aromatic Compounds, 1999, 14:285-294.
    [43] Daisey J M, Lewandowski C G, Zorz M. A photoreactor for investigations of the degradation of particle-bound polycyclic aromatic hydrocarbons under simulated atmospheric conditions[J]. Environmental Science and Technology, 1982, 16: 857-861.
    [44]Betowski L D, Enlow M, Riddick L. The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment[J]. Computers and Chemistry, 2002, 26: 371-377.
    [45] Pankasem S, Thomas J K. Reflectance spectroscopic studies of the cation radical and the triplet of pyrene on alumina[J]. Journal of Physical Chemistry, 1991, 95: 6990-6996.
    [46] Fatiadi A J. Effects of temperature and of ultraviolet radiation on pyrene absorbed on garden soil[J]. Environmental Science and Technology, 1967, 1:570-572.
    [47] He J A, Hu Y Z, Jiang L J. Photochemistry of phycobiliproteins: first observation of reactive oxygen species generated from phycobiliproteins on photosensitization[J]. Journal of the American Chemical Society, 1996, 118: 8957-8958.
    [48] He Y Y, Hader D P. Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaenasp[J]. Journal of Photochemistry and Photobiology B: Biology,2002, 66: 73-80.
    [49] Mackemess S A H, Jordan B R, Thomas B. Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV B: 280-320 nm) in green and etiolated buds of pea (Pisum sativum L.)[J]. Journal of Photochemistry and Photobiology B: Biology,1999,48: 180-188.
    [50] Mallakin A, Dixon D G, Bruce M G. Pathway of anthracene modification under simulated solar radiation[J]. Chemosphere, 2000, 40(12): 1435-1441.
    [51] Feilberg A, Nielsen T. Photodegradation of nitro-PAHs in viscous organic media used as models of organic aerosols[J]. Environmental Science and Technology, 2001, 35(1): 108-113.
    [52] Schuler F, Schmid P, Schlatter C. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in cuticular waxes of laurel cherry (prunus laurocerasus)[J]. Chemosphere,1998,36(1):21-34.
    [53]杨桂朋,高先池,戚佳琳等.海水中二苯并噻吩的光化学氧化的动力学研究[J].青岛海洋大学学报,1999,29(3):500-506.
    [54]Ehrhardt M,Weber R R.Formation of low molecular weight carbonyl compounds by sensitized photochemical decomposition of aliphatie hydrocarbons in seawater[J].Fresenius' Journal of Analytical Chemistry,1991,339:772-776.
    [55[ Low G K C,Batley G E,Brockbank C I.Solvent-induced photodegradation as a source or error in the analysis of polycyclic aromatic hydrocarbons[J].Journal of Chromatography A.1987,392:199-210
    [56]幕俊泽.水溶解态蒽和芘的光降解及环糊精的影响[D].厦门:厦门大学,2004.
    [57]卢昌义,林良牧,汪和海.红树植物叶片中脂肪酸组成及其资源价值[J].厦门大学学报(自然科学版),1997,36(3):454-459.
    [58]Sigman M E,Chevis E A,Brown A,et al.Enhanced photoreactivity of acenaphthylene in water:a product and mechanism study[J].Journal of Photochemistry and Photobiology A-Chemistry,1996,93:149-155.
    [59]Low G K C,Batley G B,Brockbank C I.Solvent-induced photodegradation as a source of error in the analysis of polycyclic aromatic hydrocarbons[J].Journal of Chromatography,1987,392:199-210.
    [1]崔泽实,郭德伦.荧光显微镜的功能配置及应用要点[J].2004,17(9):4-6.
    [2]叶昶,陈春英,陈真等.荧光显微技术直接观测C_(60)(C(COOH)_2)_2与活细胞的相互作用[J].科学通报,2006,5 l(4):394-398.
    [3]张秀省,黄勇,蔡连捷.利用荧光显微镜观察油菜花粉粒的萌发[J].生物学通报,2002,37(10):44-45.
    [4]刘琳莉,强胜,宋小玲等.用荧光显微镜技术观察药用野生稻(Oryza officinalis Wall)和转基因水稻的不亲和性[J].中国农业科学,2004,37(4):469-472.
    [5]陈天明,王苏生,俞信等.高灵敏度荧光显微镜及其在细胞光敏效应研究中的应用[J].光电工程,1994,21(6):20-25.
    [6]Tan B L,Sarafis V,Beattie G A C,et al.Localization and movement of mineral oil in plants by fluorescence and confocal microscopy[J].Journal of Experimental Botany,2005,56:2755-2763.
    [7]Schwarz F P,Waslk S P.Fluorescence measurements of benzene,naphthalene,anthracene, pyrene, fluoranthene, and benzo[e]pyrene in water[J]. Analytical Chemistry, 1976, 48:524-528.
    [8] Burken J G, Schnoor J L. Uptake and metabolism of atrazine by poplar trees[J].Environmental Science and Technology, 1997, 31: 1399-1406.
    [9] Wild E, Dent J, Thomas G O, et al. Real time visualization and quantification of PAH photodegradation on and within plant leaves[J]. Environmental Science and Technology,2005, 39: 268-273.
    [10] Ke L, Wong T W Y, Wong Y S, et al. Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill[J]. Marine Pollution Bulletin, 2002, 45: 339-347.
    [11] Niu J F, Chen J, Martens D, et al. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce (Picea abies (L.) Karst) needles under sunlight[J]. Environmental Pollution, 2003,123: 39-45.
    [12] Wang D G, Chen J W, Xu Z, et al. Disapperance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine[Pinua thunbergii] needles under irradiation of sunlight: volatilization and photolysis[J].Atmospheric Environment, 2005,39:4583-4591.
    [13] Simonich S L, Hites R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environmental Science and Technology, 1994,28: 939-943.
    [14] http://www.hudong.com/wiki/%E7%BB%B4%E7%AE%A1%E6%9D%9F.
    [15] Xu S Y, Chen Y X, Wu W X, et al. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation[J]. Science of the Total Environment, 2006, 363:206-215.
    [16] Wild E, Dent J, Thomas G O, et al. The use of two-photon excitation microscopy and autofluorescence for visualizing the fate and behavior of semi-volatile organic chemicals within living vegetation[J]. Environmental Toxicology and Chemistry, 2007,26:2486-2493.
    [17] Riederer M. Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model[J]. Environmental Science and Technology, 1990, 24: 829-837.
    [18] Barber J L, Kurt P B, Thomas G O, et al. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J]. Environmental Science and Technology, 2002, 36:4282-4287.
    
    [19]李元跃.几种红树植物叶的解剖学研究[D].厦门:厦门大学.2006.
    
    [20] Wild E, Dent J, Thomas G O, et al. Direct observation of organic contaminant uptake,storage, and metabolism within plant roots[J]. Environmental Science and Technology, 2005,39: 3695-3702.
    [21] Sasekumar A. Mangrove fisheries and connections. ASEAN Australia Marine Science Project, 1993.
    [22] Lu Z Q, Zheng W J, Ma L. Bioconcentration of polycyclic aromatic hydrocarbons in roots of three mangrove species in Jiulong River Estuary[J]. Journal of Environmental Sciences, 2005,17(2): 285-289.
    [23]张军.典型红树林湿地中多环芳烃的含量、来源和迁移研究[D].厦门:厦门大学,2006.
    [24]陈桂珠.研究保护和开发利用红树林生态系统[J].生态科学,1991,1:116-119.
    [25]Wang P,Zhu Y X,Lu H L,Zhang Y.Visualizing localizations and movement of anthracene in Kandelia candel (L.) Druce leaves by fluorescence microscopy[J].Journal of CoastalResearch.(已录用)
    [1]国凤利.应用于生命科学研究的新工具—双光子激发显微镜[J].生命科学,1999,11:133-134.
    [2]Paddock S W.Confocal laser scanning microscopy[J].Biotechniques,1999,27(5):992-6,998-1002,1004.
    [3]王萍,朱亚先,张勇.双光子激光共焦扫描显微技术在环境化学中的应用及展望[J].分析化学,2008,36(10):1447-1452.
    [4]G(o|¨)ppert-Mayer M.(?)ber Elementarakte mit zwei Quantensprüngen[J].Annalen der Physik,1931,401(3):273-294.
    [5]So P T C,Dong C Y,Masters B R,et al.Two-photon excitation fluorescence microscopy[J].Annual Review of Biomedical Engineering,2000,2:399-429.
    [6]Kaiser W,Garrett C G B.Two-photon excitation in CaF_2 :Eu~(2+)[J].Physical Review Letters,1961,7:229-231.
    [7]Denk W,Stricker J H,Webb W W.Two-photon laser scanning fluorescence microscopy[J].Science,1990,248:73-76.
    [8]陈德强,夏安东,王克逸等.双光子激光扫描荧光显微镜及其应用[J].物理,2000,29(4):232-236.
    [9]徐慧,张春阳,马辉等.多光子技术及其应用研究进展[J].化学进展,2002,14(2):81-86.
    [10]徐慧,张春阳,马辉等.多光子技术及其应用研究进展[J].分析科学学报,2002,18(5):424-428.
    [11]Kasai H,Kishimoto T,Nemoto T,et al.Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization[J].Advanced Drug Delivery Reviews,2006,58:850-877.
    [12]Hornung M W,Cook P M,Flynn K M,et al.Use of laser-scanning multi-photon microscopy to describe the distribution of xenobiotic chemicals during fish early life stages[J].Aquatic Toxicology,2004,67(1):1-11.
    [13]Callahan M A,Slimak M W,Gabelc N W.Water-related environmental fate of 129 priority pollutants.Volume Ⅱ.EPA-440/4-79-029b,Washington DC:U S.Environmental Protection Agency,1979,49-57.
    [14]OckendenW A,Steinnes E,Parker C,et al.Obecrvations on persistent organic pollutants in plants:implications for their use as passive air samplers and for POP cycling [J].Environmental Science and Technology,1998,32(18):2721-2726.
    [15]Wild E,Dent J,Barber J L,et al.A novel analytical approach for visualising and tracking organic chemicals in plants[J].Environmental Science and Technology,2004,38,4195-4199.
    [16]Wild E,Dent J,Thomas G O,et al.Real time visualisation and quantification of PAH photodegradation on and within plant leaves[J].Environmental Science and Technology,2005,39:268-273.
    [17]Wild E,Dent J,Thomas G O,et al.Visualising the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:Further studies utilising two-photon excitation microscopy[J].Environmental Science and Technology,2006,40:907-916.
    [18]Wild E,Dent J,Thomas G O,et al.Direct observation of organic contaminant uptake,storage and metabolism within plant roots[J].Environmental Science and Technology,2005,39,3695-3702.
    [19]Wild E,Dent J,Thomas G O,et al.The use of two-photon excitation microscopy and autofluorescence for visualizing the fate and behavior of semi-volatile organic chemicals within living vegetation[J].Environmental Toxicology and Chemistry,2007,26(12):2486-2493.
    [20]Wild E,Jones K C.Seeing chemicals in environmental samples[J].Environmental Science and Technology,2007,1 :5934-5938.
    [21]Wu N Y,Huang H L,Zhang S Z,et al.Phenanthrene uptake by Medicago sativa L.under the influence of an arbuscular mycorrhizal fungus[J].Environmental Pollution,2009,157:613-1618.
    [22]Ke L,Wong T W Y,Wong A H Y,et al.Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings[J].Chemosphere,2003,52:1581-1591.
    [23]Ke L,Wang W Q,Wong T W Y,et al.Removal of pyrene from contaminated sediments by mangrove microcosms[J].Chemosphere,2003,5 1:25-34
    [24]Tam N F Y,Wong Y S.Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons[J].Marine Pollution Bulletin,2008,57(6-12):716-26.
    [25]Weissenfels W D,Klewer H J,Langhoff J.Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles:influence on biodegradability and toxicity[J].Applied Microbiology and Biotechnology,1992,36:689-696.
    [26]张军.典型红树林湿地中多环芳烃的含量、来源和迁移研究[D].厦门:厦门大学,2006.
    [27]陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布[D].厦门:厦门大学,2002.
    [28]Ying L,Yediler A,Qu Z Q,et al.Effects of a non-ionic surfactant (Tween-80) on the mineralization,metabolism and uptake of phenanthrene in wheat-solution-lava microcosm[J].Chemosphere,2001,45:67-75.
    [29]Henner P,Schiavon M,Druelle V,et al.Phytotoxicity of ancient gaswork soils.Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination[J].Organic Geochemistry,1999,30:275-284.
    [30]Oheim M,Beaurepaire E,Chaigneau E,et al.Two-photon microscopy in brain tissue:parameters influencing the imaging depth[J].Journal of Neuroscience Methods,2001,111:29-37.
    [31]Kipopoulou A M,Manoli E,Samara C.Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J].Environmental Pollution,1999,106:369-380.
    [32]Durako M J,Kenworthy W J,Fatemy S M R,et al.Assessment of the Kuwait crude oil on the photosynthesis and respiration of seagrasses of the Northern Gulf[J].Marine Pollution Bulletin,1993,27:223-227
    [33]Ralph P J,Burchett M D.Impact of petrochemicals on the photosynthesis of Halophila ovalis using chlorophyll fluorescence[J].Marine Pollution Bulletin,1998,36:429-436.
    [34]Yu S H,Ke L,Wong Y S,et al.Degradation of polycyclic aromatic hydrocarbons (PAHs) by a bacterial consortium enriched from mangrove sediments[J].Environment International,2005,31:149-154.
    [35]Luan T G,Yu K S H,Zhong Y,et al.Study ofmetabolites from the degradation ofpolycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments[J].Chemosphere,2006,65:2289-2296.
    [36]高彦征,朱利中,胡晨剑等.Tween80对植物吸收菲和芘的影响[J].环境科学学报,2004,24(4):713-718.
    [37]Chris C,Mike F,Albania G.Plant uptake of non-ionic organic chemicals[J].Environmental Science and Technology,2006,40:45-52.
    [38]Niu J F,Chen J,Martens D,et al.Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce (Picea abies (L.) Karst.) needles under sunlight[J].Environmental Pollution,2003,123:39-45.
    [39]Simonich S T,Hites R A.Organic pollutant accumulation in vegetation[J].Environmental Science and Technology,1995,29(1 2):2905-2913.
    [40]Yaws C L.Chemical properties handbook[M].New York:McGraw-Hill Book Co,1999,340-389.
    [41]Mackay D,Shiu W Y,Ma K C.Illustrated handbook of physical-chemical properties and environmental fate for organic compounds[M],Cheslsea,MI,Lewis Publishers,1992.
    [42]沈小明,王梅农,代静玉.不同浓度条件下玉米吸收菲的水培实验研究[J].农业环境科学学报,2006,25(5):1148-1152.
    [43]Simonich S T,Hites R A.Vegetation atmosphere partitioning of polycyclic aromatic hydrocarbons[J].Environmental Science and Technology,1994,28 (5):938-942.
    [44]Barber J L,Kurt P B,Thomas G O,et al.Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J].Environmental Science and Technology,2002,36:4282-4287.
    [45]沈菲,朱利中.钢铁工业区附近农田蔬菜PAHs的浓度水平及分布[J].环境科学,2007,28(3):669-672.
    [46]Tao Z,Hornbuckle K C.Uptake of polycyclic aromatic hydrocarbons (PAHs) by broad Leaves:analysis of kinetic limitations[J].Water,Air and Soil Pollution:Focus,2001,1(5-60):275-283.
    [47]Edwards N T.Uptake,translocation and metabolism of anthracene in bush bean (Phaseolus bulgaris L.)[J].Environmental Toxicology and Chemistry,1986,5:659-665.
    [48]李军,张干,祁士华等.广州麓湖大气多环芳烃的干湿沉降[J].湖泊科学,2003,15(3):193-199.
    [49]张树才,沈亚婷,王开颜等.北京东南郊大气中多环芳烃的沉降[J].2007,20(4):28-33.
    [50]郑康振,陈耿,郑杏雯等.人工红树林湿地系统净化污水研究进展[J].生态学杂志,2009,28(1):138-145.
    [51]郭玲玲,周毅,代静玉等.氮素形态及光照对高等植物体内多环芳烃动态的影响[J].江苏农业科学,2007,1:221-226.