零压流Euler方程的Riemann问题及激波反射问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了两方面内容:其一为相对论Euler方程组中delta波及真空解问题,另一个为多方气体的平面激波正规反射问题.
     在第二章,我们首先介绍了关于双曲型守恒律方程组的一些基本概念,继而分别对一维和二维双曲守恒律方程组的一般理论做了简要的介绍,为后两章的讨论作了准备.
     第三章研究了相对论Euler方程组.我们首先用特征线方法分两种情况讨论了零压流相对论Euler方程组的Riemann问题,得到它的解有两种情况:一种出现了delta激波;另一种含有真空.之后我们分别对等温流和多方气体详细研究了当压力消失时,相对论Euler方程组中能量守恒和动量守恒方程组的Riemann解中delta激波和真空状态的形成.当压力消失时,只有两种情况发生:一种为包含两个激波的Riemann解,趋于零压流相对论Euler方程组的一个delta激波解,介于两个激波之间的中间状态的密度趋于一个形成这个delta激波的加权δ-测度;另一种为包含两个疏散波的Riemann解,趋于零压流相对论Euler方程组的包含两个接触间断的解,其中介于这两个接触间断之间的中间状态是一个真空状态.这些结果说明零压流相对论Euler方程组的Riemann解中delta激波的出现源于一种集中现象,而其中的真空状态则源于消失压力极限过程中的气穴现象;这二者在相对论流体力学中都具有重要的物理意义.
     在第四章,我们研究了多方气体平面激波的正规反射问题.利用广义特征分析方法,通过力学关系的代数方程,得到了多方气体平面激波出现正规反射的一个修正了的临界条件,它可以表示为关于临界入射角的一个关系式.此外,我们发现这个临界角要比角α_0=arcot(1/1-μ~2ρ0/ρ1(1-ρ0/ρ1))~(1/2)小.正规反射中一个重要且很有意义的问题是跨声激波(反射激波后对应的去流是亚声的)到超声激波(反射激波后相应的去流是超声的)的转变.我们得到了去流为声速的条件,它是跨声激波向超声激波转换的临界条件.
We are concerned with delta shocks and vacuum solutions to the relativistic Euler equations and the regular reflection problem of a planar shock for polytropic gases.
     In chapter 2, we give some fundamental notations and concepts for the hyperbolic conservation laws, and introduce some general theories for one dimensional and two dimensional hyperbolic conservation laws respectively, which will be useful to the following contents.
     The relativistic Euler equations are considered in chapter 3. Using the method of characteristic analysis, we solve the Riemann problem to pressureless relativistic Euler equations firstly. We present two kinds of solutions: the one includes delta shocks; the other involves vacuum states. The formation of delta shocks and vacuum states in the Riemann solutions to the relativistic Euler system of conservation laws of energy and momentum in special relativity for isothermal gases and polytropic gases are identified and analyzed in detail subsequently, as the pressure vanishes. Two cases occur as the pressure vanishes: the one is the Riemann solution involving two shocks, which tends to a delta shock solution to pressureless relativistic Euler equations, and the intermediate density between the two shocks tends to a weightedδ- measure that forms the delta shock; the other one is the Riemann solution involving two rarefaction waves, which tends to a two contact-discontinuity solution to pressureless relativistic Euler equations, whose intermediate state between the two contact discontinuities is a vacuum state. These results show that the delta shocks for pressureless relativistic Euler equations result from a phenomenon of concentration, while the vacuum states result from a phenomenon of cavitation in the process of vanishing pressure limit; both are fundamental and physical in fluid dynamics.
     In chapter 4, we study the regular reflection problem of a planar shock for polytropic gases. Utilizing the method of generalized characteristic analysis and algebraic equations of mechanical relations, we obtain a refined criterion for regular reflection of a planar shock for polytropic gas. which is the representation of critical angle of incidence. Furthermore, we give a result that the critical angle, is less than . A fundamental and significative issue in regular reflection is transition from transonic shock (the relative outflow behind the reflected shock wave is subsonic) to supersonic shock (the relative outflow behind the reflected shock wave is supersonic). We obtain a condition for sonic outflow, which is the criterion of transition from transonic shock to supersonic shock.
引文
[1] A.M. Anile, Relativistic Fluids and Magneto-Fluids, Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press 1989.
    
    [2] A.爱因斯坦等,相对论原理(狭义相对论和广义相对论经典论文集),科学出版社,1980.
    
    [3] Ben-Dor G., I.I.Glass, J.Fluid Mech.,92, 1979, 459-496.
    
    [4] Ben-Dor G., I.I.Glass, Ibid., 96, Part 4, 1980, 735-756.
    
    [5] Ben-Dor G. Shock wave reflection phenonmina, Springer-Verlag: New York, 1991.
    
    [6] W. Bleakney, A.H.Taub, Interaction of shock waves, Rev. of Modern Phys., 21 (1949), 584-605.
    
    [7] J.M.Burgers, A mathematical model illustrating the theory of turbulence, Advances in AppliedMechanics, 1(1948),171-199.
    
    [8] S. Canic, B.L. Keyfitz, E.H. Kim Free boundary problems for the unsteady transonic smalldisturbance equation: Transonic regular reflection, Meth. Appl. Anal. 7 (2000), 313-335; Afree boundary problems for a quasilinear degenerate, elliptic equation: regular reflection of weakshocks, Comm. Pure Appl. Math., 55 (2002), 71-92.
    
    [9] T.Chang, G.Q.Chen, Diffraction of -planar shock along compressive corner, Acta.Math.Sci,6(3) (1986), 241-257.
    
    [10] T.Chang and G.Q.Chen, Some fundamental concepts about system of two spatial dimensionalconservation laws, Acta Math. Sci, 6 (1986),463-474.
    
    [11] T. Chang, G. Chen and S. Yang. On the Riemann problem for 2-D compressible Euler equationsI. Interaction of shocks and rarefaction waves, Discrete and Continuous Dynamical Systems, 4 (1995), 555-584.
    
    [12] T. Chang, L. Hsiao, The Riernann Problem and Interaction of Waves in Gas Dynamics, in: Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 41, Longman Scientific and Technical, Essex, Englang, 1989.
    
    [13] Guiqiang Chen, Remarks on spherically symmetric solution of the compressible Euler equation,Proceedings of the Royal Society of Edinburgh, 127 (1997), 243-259.
    
    [14] G.Q. Chen, M. Feldman, Global solutions of shock reflection by large-angle wedges for potentialflow, Annals of Mathematics, 0 (2006), 1-108.
    
    [15] G.Q.Chen and H.Frid, Existence and asymptotic behavior of measure-valued solutiions fordegenerate conservation laws, J. Diff. Equations, 127 (1996), 197-224.
    
    [16] G.Q. Chen, P. LeFloch, Existence theory for the relativistic Euler equations, in preparation,2005.
    
    [17] Guiqiang Cheng, Dening Li and Dechun Tan, Structure of Riemann solution for 2-dimmensional scalar conservation laws, J. Differentional Equations, 127(1)(1996).124-147.
    
    [18] G.Q. Chen, Y.C. Li, Relativistic Euler equations for isentropic fluids: Stability of Riemann??solutions with large oscillation, Z. angew. Math. Phys. 55 (2004). 903-926.
    
    [19] G.Q. Chen, Y.C. Li, Stability of Riemann solutions with large oscillation for the relativistic Eukr equations, J. Differential Equations 202 (2004), 332-353.
    
    [20] G.Q. Chen, H.L. Liu, Formation of Delta-Shocks and Vacuum States in the Vanishing Pressure Limit of Solutions to the Isentropic Eider Equations. SIAM J. Mathematical Analysis, 34 (2003), 925-938.
    
    [21] G.Q. Chen, H.L. Liu, Concentration and Camtation in the Vanishing Pressure Limit of Solutionsto the Euler Equations for Nonisentropic Fluids, Phys. D., 189 (2004), No. 1-2, 141 165.
    
    [22] J. Chen, Conserbation laws for the relativistic p-system, Commun. Partial Diff. Eas., 20 (1995), 1605-1646.
    
    [23] S. X. Chen, Linear approximation of shock reflection at a wedge, with large, angle , Comm. Partial Diff. Eqs., 21 (1996), 1103-1118.
    
    [24] S.X.Chen, A singular multi-dimensioned piston problem in compressible flow, J. Diff. Equations,189 (2003), 292-317.
    
    [25] S.X. Chen, Z.J. Wang and Y.Q. Zhang, Global existence of shock front solutions to the axially symmetric piston problem for compressible fluids, J. Hyper. Diff. Equations, 1(1) (2004). 51-84.
    
    [26] E.Conway and J.Smoler, Global solution of the Caucliy problem for quasilinear first order equations in several variables, Comm. Pure Appl. Math., XIX (1966). 95-105.
    
    [27] R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, New York: Wiley 1948.
    
    [28] R.Courant and D.Hilbert, Methods of Mathematical Physics, Vol.2, Wiley-Interscience, New York.
    
    [29] C. M. Dafermos, Hyperbolic conservation laws in Continuum Physics, Springer, New York, 1999.
    
    [30] Weinan E, Yu. G. Rykov and Ya. G. Sinai, Generalized variational principles, global weaksolutions and behavior with randon initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Phys. Math, 177(1996), 349-380.
    
    [31] A. Forester, P. Le Floch, Multivalued solutions to some nonlinear and nonstrictly hyperbolic systems, Japan J. Indust. Appl. Math., 9 (1992), 1-23.
    
    [32] J.Guckenheimer, Shocks and rarefactions in two space dimensions, Arch. Rat. Mech. Anal., 59(1988), 281-291.
    
    [33] E. Harabetian, it Diffraction of a weak shock by a wedge, Comm. Pure Appl. Math.. 40 (1987) 849-863
    
    [34]黄飞敏,杨小舟,一类双曲守恒律方程组的二维问题,应用数学学报,21(2)(1998),193-204.
    
    [35] E. Hopf. The partial differential equation u_t + nu_x = μu_(xx) Comm. Pure Appl. Math.,3(1950),201-230.
    
    [36] D. Hoff and J. Smoller, Solutions in the large for certain nonlinear parabolic systems, AnalyseNon Lineaire, 2(1985), 213-235.
    
    [37] D. Hoff and J. Smoller, Global existence for systems of parabolic conservation laws in severalspace, variables, J. Differential Equations, 68(1987), 210-220.
    
    [38] L.Hsiao. T.Luo and T.Yang, Global BV solutions of compressible Euler equatons with sphericalsymmetry and damping, J. Diff. Equations, 146 (1998), 277-298.
    
    [39] C.H. Hsu, S.S. Lin, T. Makino, On the relativistic Euler equation, Methods Appl. Anal. 8(2001) 159-207.
    
    [40] C.H. Hsu, S.S. Lin, T. Makino, On spherically symmetric solutions of the relativistic Eulerequation, J. Differential Equations 201 (2004) 1-24.
    
    [41] J.K. Hunter, Transverse diffraction of nonlinear waves and singular rays, SIAM J. Appl.Math., 48 (1988) 1-37.
    
    [42] J.K. Hunter, J.B. Keller, Weak shock diffraction, Wave Motion, 6 (1984) 79-89.
    
    [43] M. Johnson, C. McKee, Relativistic hydrodynamics in one dimension, Phys. Rev. D, 3, no. 4(1971) 858-863.
    
    [44] K.T.Joseph, A Riemann problem shose viscosity solutions contain delta-measures, AsymptoticAnalysis, 7 (1993),105-120.
    
    [45] J.B. Keller, A.A. Blank, Diffraction and reflection of pulses by wedges and corners, Comm.Pure. Appl. Math., 4 (1951) 75-94.
    
    [46] S.N.Kruzkov, Order quasilinear equations with several independent variables, Math. USSRSb., 10 (1970), 271-243.
    
    [47]朗道,栗弗席茨,连续介质力学,北京:人民教育出版社, 1978.
    
    [48] P.D.Lax, Hyperbolic system of conservation laws E, Comm. Pure Appl. Math. 10 (1957),537-566.
    
    [49] P.D.Lax, Hyperblic systems of conservation laws and the mathematical theory of shock waves,SIAM, Philadelphia, (1973).
    
    [50] L.E.Levine, The expansion of a wedge of gas into a vacuum, Math. Proc. Cambridge Philos.Soc, 64 (1968), 1151-1163.
    
    [51]李大潜,秦铁虎,物理学与偏微分方程,北京:高等教育出版社, (1997).
    
    [52] J.Q. Li, Note on the compressible Euler equations with zero temperature, Applied Math. Letters14 (2001) 519-523.
    
    [53] J.Q. Li, T. Zhang, S. Yang, The two-dimensional Riemann problem in gas dynamics, in: Pitman Monographs and Surveys in Pure and Applied Mathematics 98, Longman, Scientific and Technical, Harlow, 1998.
    
    [54] J. Li, S. Yang and T. Zhang, The two-dimensional Riernann problem in gas dynamics, LongmanScientific and Technical, (1998).
    
    [55] J.Q. Li, Y. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Eulerequations,to appear in Arch. Rational Mech. Anal.
    
    [56] Tatsian Li and Wancheng Sheng, The general Riemann problem for the linearized system of two-dimensional isentropic flow in gas dynamics, Journal of Mathematical Analysis and??Applications,276(2)(2002),598-610.
    
    [57]李维新,一维不定常流与冲击波,国防工业出版社, (2003).
    
    [58] Y.C. Li. Global Entropy Solutions to the Relativistic Euler Equations. Hyperbolic Problems: Theory. Numerics and Applications, Osaka, 2004 (ISBN 4-946552-22-7), Yokohama Publishers,Pub. April , 2006 165-172.
    
    [59] Y.C. Li, D.M. Feng, Z.J. Wang, Global entropy solutions to the relativistic Euler equations for a class of large initial data. Z. angew. Math. Phys. 56 (2005) 239-253.
    
    [60] Y.C. Li, Q. Shi, Global existence of the entropy solutions to the isentropic relativistic Euler equations, Comm. Pure Appl. Anal. 4 (2005) 763-778.
    
    [61] Y.C. Li, L.B. Wang, Global stability of solutions with discontinuous initial data containing vacuum states for the relativistic Euler equations, Chinese Ann. Math. Ser. B 26 (2005). no. 4, 491-510.
    
    [62] Y.C.Li, A.Wang, Global Entropy solutions of the Cauchy Problem for the Nonhornogeneous Relativistic Euler Equations, Chin. Ann. Math. 27B: 5 (2006) 473-494.
    
    [63] Y.C.Li, Y. Geng, Non-relativistic Global Limits of Entropy Solutions to the Isentropic RelativisticEuler Equations, Z. angew. Math. Phys. 57 ( 6 ) (2006) 960-983.
    
    [64] Y. C. Li, X. Ren, Non-relativistic Global Limits of Entropy Solutions to the Relativistic Euler Equations with gamma- law, Comm. Pure Appl. Anal. 5 (2006) 963-979.
    
    [65] E. P. T. Liang, Relativistic simple waves: Shock damping and entropy production, Astrophys. J. 211 (1977) 361-376.
    
    [66] A. Lichnerowicz, Relativistic Hydrodynamics and Megnetohydro-dynamics, New York. Benjamin (1967).
    
    [67] M. J. Lighthill, The diffraction of a blast Ⅰ, Proc. Roy. Soc. London, 198A (1949) 454-470.
    
    [68] M. J. Lighthill, The diffraction of a blast Ⅱ, Proc. Roy. Soc. London, 200A (1950) 554-565.
    
    [69] W.B.Lindquist, Scalar Riemann problem in two spatial dimensions; piecewise smoothness of solutions and its breakdown, SIAM J.Math. Ana., 17(1986), 1178-1197.
    
    [70] T.P.Liu, Admissible solutions of hyperbolic conservation laws, Memoris Amer. Math. Soc, 240(1981).
    
    [71] E. Mach , Uber den verlauf von funkenwellenin der ebene und im raurne, Sitzungsber. Akad. Wiss., Wien 78, 1878, 819-838.
    
    [72] A.G.Mackie, Two-dimensional quasi-stationary flows in gas dynamics, Proc. Cambridge Philos.Soc, 68 (1968),1099-1108.
    
    [73] A.J.Majda, compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sciences. 53, Springer-Verlag.
    
    [74] T. Makino, S. Ukai, Local smooth solutions of the relativistic Euler equation, J. Math. Kyoto Univ. 35 (1995) 105-114.
    
    [75] T. Makino, S. Ukai, Local smooth solutions of the relativistic Euler equation, Ⅱ, Kodai Math. J. 18 (1995) 365-375.
    
    [76] C. Misner, D. Sharp, Relativistic equations for adiabatic. spherically symmetric gravitationalcollapse, Phys. Rev. 26 (1964) 571-576.
    
    [77] K. Mizohata, Global solutions to the relativistic Euler equation with spherical symmetry, JapanJ. Indust. Appl. Math. 14 (1997) 125-157.
    
    [78] C.S.Morawetz, Potential thoery for regular and Mach reflection of a shock at a wedge, Comm.Pure Appl. Math. 47, 1994, 593-624.
    
    [79] J. von Neumann, Oblique reflection of shocks, Navy Department, Bureau of Ordance, ExplosiveResearch Report, No.12, 1943.
    
    [80] J. von Neumann, Collect Works, Vol.5, Pergamon Press: New York, 1963.
    
    [81] T.Nishida and J. Smoller, A class of convergent finite-difference schemes for certain nonlinearparabolic systems, Comm. Pure Appl. Math., 36(1983), 785-808.
    
    [82] Oleinik O., Discontinuous solutons of nonlinear differential equatons, Usp. Mat. Nauk.(N.S.),12,(1957), 3-73; English transl. in Amer. Math. Soc. Transl., Ser.2, 26, 95-172.
    
    [83] J.R. Oppenheimer, J.R. Snyder, On continued gravitational contraction, Phys. Rev. 56 (1939)455-459.
    
    [84] J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores, Phys. Rev. 55 (1939) 374-381.
    
    [85] V. Pant, On I. symmetry breaking under pertubation and Ⅱ. Relatibistic fluid dynamics, Ph.K.Thesis, Univ. of Michigan, 1996.
    
    [86] V. Pant, Global entropy solutions for isentropic relatibistic fluid dynamics, Comm. PartialDiff. Eqs. 21 (1996) 1609-1641.
    
    [87] B.Riemarm, Gesammdltte Werke, 149(1896).
    
    [88] D. Serre, Shock reflection in gas dynamics, Handbook of Mathematical Fluid Dynamics, Vol.4, 39-122, Eds: S. Friedlander and D. Serre, Elsevier: North-Holland, 2007.
    
    [89] D. Serre, Systems of conservation laws I: Hyperbolicity, Entropy, Shock waves; Ⅱ: Geometricstructures, Oscillations, and Mixed problems, Cambridge Univ. Press, Cambridge, 2000.
    
    [90]单鹏,多维气体动力学基础,北京:北京航空航天大学出版社, (2004).
    
    [91] Wancheng Sheng, Two-Dimensional Riemann Problem for Scalar Conservation Laws, J. DifferentialEquations, 183(2002),239-261.
    
    [92] W.C. Sheng, T. Zhang, The Riemann problem for the transportation equations in gas dynamics,Memoirs of the American Mathematical Society, Vol. 137, Num. 654, 1999.
    
    [93] W.C. Sheng, T. Zhang, A Cartoon for the Climbing Ramp Problem of a Shock and von Neumann Paradox, Arch. Rational Mech. Anal. 84(2), 2007, 243-255.
    
    [94]是长春,相对论流体力学,北京:高等教育出版社,(1997).
    
    [95] R.Smith, The Riemann problem in gas dynamics, Trans. Amer. Math. Soc. 249(1979).
    
    [96] J. Smoller, Shock Waves and Reaction Diffusion Equations, Berlin, Heidelberg, New York:Springer 1983.
    
    [97] J. Smoller, B. Temple, Global solution of the relativistic Euler equations, Comm. Math. Phys.156 (1993) 67-99.
    
    [98] R.S. Srivastava, On the starting point of curvature for reflected diffracted shock wave (subsonic and sonic cases), Shock Wave, DOI: 10.1007/s00193-003-0202-5, 2003.
    
    [99] R.S. Srivastava, Starting point of curvature for reflected diffracted shock wave, AIAA J 33, 1995, 2230-2231.
    
    [100] D.Tan and T.Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ): four-J cases, J.Differential Equations, 111(1994). 203-254.
    
    [101] D.Tan and T.Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws(Ⅱ): initial data consists of some rarefaction, J. Differential Equations, 111 (1994) ,255-283.
    
    [102] A.H. Taub, Relativistic Rankine-Hugoniot Equations, Phys. Rev. 74 (1948) 328-334.
    
    [103] K. Thompson, The special relativistic shock tube, J. Fluid Mech. 171 (1986) 365-375.
    
    [104] K. S. Thome, Relativistic shocks: the Taub adiabatic, Astrophys. J. 179 (1973) 897-907.
    
    [105] R. Tolman, J.R. Snyder, Relativity, Thermodynamics and Cosmology , Oxford: Oxford UniversityPress 1934.
    
    [106]童秉纲,孔祥言,邓国华,多维气体动力学基础,北京:高等教育出版社, (1990).
    
    [107] D.Wagner, The Riemann problem in two space dimensions for a singe conservation laws,SIAM J. Math. Anal., 14(1983), 534-559.
    
    [108] Z.J.Wang, Local existence of the shock front solution to the axi-symmetrical piston problemin compressible flow, 20(4) (2004), 589-604.
    
    [109] S. Weinberg, Gravitation and Cosmology: Principles and Spplications of the General, Theoryof Relativity, Wiley: New York, 1972.
    
    [110]S.温伯格,引力论和宇宙论-广义相对论的原理和应用,科学出版社, 1980.
    
    [111] H.Yang, Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics,J. Math. Anal, and Appl., 260(2001), 18-35.
    
    [112] H.Zhang and W.Sheng, Guckenheimer structure of solution of Riemann problem, with fourpieces of constants in two space dimensions for scalar conservation laws. Journal of ShanghaiUniversity, 4 (2006), 26-28.
    
    [113]应隆安,腾振寰,双曲守恒律方程及其差分方法,科学出版社,北京,(1991).
    
    [114] P.Zhang and T.Zhang, Generalized characteristic analysis and Guckenheimer structure, J. Differentional Equations, 152(2)(1999), 109-430.
    
    [115] T.Zhang and Y.Zheng, Two dimensional Riemann problem for a single conservation laws, Trans. Amer. Math. Soc, 312(1989),589-619.
    
    [116] T.Zhang and Y.Zheng, Conjecture on structure of solution of Riemann problem for 2-D gas dynamic systems, SIAM. J.Math.Anal, 3(1990), 493-630.
    
    [117] Y. Zheng, Regular reflection for the pressure gradient equation, Acta Mathematicae ApplicataeSinica Vol. 22 (2006), No. 2, pp. 177-210 (English series).
    
    [118] Y.X.Zheng, Systems of conservation laws two-dimensional Riemaim problems with 143 illustrations,Birkhauser Boston, (2001).