人体胸部有限元建模及其在车辆碰撞中的损伤生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体胸部损伤在车辆交通事故中的发生非常普遍,研究表明在车辆交通事故造成的人员死亡中,有30%是由胸部损伤导致,而在所有车辆交通事故导致的乘员致命和严重伤害中胸部损伤位居第二,仅次于头部损伤。同时行人碰撞事故数据也表明,在行人碰撞事故尤其是行人与微型客车的碰撞事故中,经常被忽视的胸部和上腹部损伤也占据了较大的比例,其发生概率仅次于头部和下肢损伤,特别是在碰撞速度较高的严重事故中,行人胸部损伤发生的概率更为明显。因此,深入的了解人体胸部损伤生物力学对降低车辆碰撞事故中的人体胸部损伤风险具有重要的现实意义。人体胸部结构复杂,内部包含了心、肺、肝、脾、肾等重要内脏器官,而人体胸腔则起到保护这些重要器官的关键作用。在过去的几十年中,研究者们在胸部损伤生物力学领域做了大量的研究工作,但是在包括肋骨失效和胸部损伤准则等诸多问题上还有待进一步的研究。
     本文基于人体解剖学结构建立和验证了胸部有限元模型;进而利用开发的模型,选择三种基于von Mises应力和/或塑性应变的肋骨骨折失效模型,进行了不同载荷条件下的人体肋骨损伤分析;研究了胸部受到侧面冲击载荷时损伤评价准则的有效性;最后结合选取的失效模型和损伤评价准则将模型应用于行人与微型车碰撞中的胸部损伤分析和防护研究。
     文中建立了一个基于中等身材的中国男性人体解剖学结构的三维胸部有限元模型。模型描述了主要的胸部解剖学结构,包括人体胸椎、腰椎、肋骨、胸骨、肋间软骨、胸腹部器官和其他的软组织等等。整个模型由87000余个单元,63000余个节点组成。胸部骨骼和软组织的材料特性都来自于国内外文献资料。首先用肋骨三点弯曲实验对模型进行验证,对比分析了肋骨力-变形响应;然后借助肋骨前后方向加载结构实验验证了模型,比较分析的损伤参数包括准静态和动态加载条件下的肋骨力-变形响应、肋骨断裂位置、肋骨断裂时刻及该时刻的肋骨响应力;进而分别模拟胸部正面碰撞志愿者实验和尸体实验对模型进行了验证,主要分析参数是胸部力-变形响应;最后根据尸体实验对胸部模型进行了纯侧面碰撞和斜碰撞下的有效性验证,验证损伤参数包括碰撞力、胸部变形模式和力-变形响应。
     选取了三种分别基于von Mises应力和/或塑性应变分析的肋骨骨折失效模型:T1,T2和T3,将其运用到本文所建立并验证的人体胸部有限元模型中,模拟分析了实验中所记载不同载荷形式下的肋骨骨折,并对比研究了三个肋骨骨折失效模型与不同载荷形式下的损伤参数。模拟肋骨三点弯曲载荷中的肋骨力-变形响应发现,运用T3的模拟结果与实验数据吻合得较好;模拟肋骨前后方向加载实验,分析了肋骨力-变形响应、肋骨断裂时刻及该时刻的肋骨响应力,并对肋骨断裂位置截面进行了应力应变分析,运用T2的响应好于另外两种失效模型的结果;最后模拟了胸部正面碰撞块冲击载荷条件下的肋骨骨折,分析了不同碰撞速度下的肋骨骨折数及骨折位置的应力分布,运用T1所得到的肋骨骨折响应与实验结果更为接近。
     使用该胸部模型分析了人体胸部在侧面碰撞载荷下的损伤响应。首先进行了人体胸部在纯侧面碰撞和斜碰撞中不同碰撞角度下的碰撞块冲击仿真分析,得到了每个碰撞角度下的肋骨骨折数,以及与各个损伤评价准则相关的损伤参数响应峰值,包括碰撞力、胸部变形量、压缩比例、胸部侵入速度及脊柱加速度。基于肋骨骨折数和损伤评价准则的损伤响应,建立了相关性评价函数,对比分析了不同的损伤评价准则对胸部损伤预测和评价的有效性。
     最后,采用三个已有的微型车有限元模型和基于本文胸部模型所建立的行人模型,模拟分析了不同速度下行人与微型车发生碰撞时的胸部动力学响应和损伤参数,对比研究了不同的微型车前部结构和车辆碰撞速度对行人动力学响应和损伤参数的影响,这些损伤参数包括行人胸部碰撞速度、胸部变形量、基于TTI(Thorax Trauma Index)准则的胸部损伤等级(Abbreviated Injury Scale) AIS3+和AIS4+级损伤风险和肋骨骨折数。
     基于本文的研究可以得出如下结论:胸部有限元模型的仿真计算结果与实验验证数据吻合较好;在肋骨失效模型分析中,失效模型T1更适用于胸腔碰撞块冲击载荷分析;与其他的胸部损伤准则相比,TTI准则对人体受到侧面碰撞时的胸部损伤预测和评价最为有效;微型车与行人发生碰撞时会导致较高的行人胸部AIS3+和AIS4+级损伤风险,微型车前部结构和车辆碰撞速度对行人胸部损伤风险影响显著,在高速碰撞时,车辆前部结构对损伤风险的影响更大。
Human thoracic injury could be observed frequently in vehicle traffic accidents. It was reported that about30%of all the reported deaths in road traffic accidents were related with thoracic injuries. Thoracic injuries of the occupants ranked second in number of fatalities and serious injuries recorded in passenger vehicle collisions, only secondary to head injuries. Traffic accident data have also indicated that thoracic and upper abdominal injuries are frequently occurred in Minicar-pedestrian collisions, which was only lower than those of head and lower extremity injuries, especially in high speed accidents the incidence of the pedestrian thorax injuries is rather high. It is therefore necessary to have a good understanding of the thoracic injury mechanisms in order to reduce the injury risk in automobile accidents. The human thorax has an extremely complex structure that includes the most vital chest internal organs:the heart, lung, liver, spleen and kidney. The thorax rib-cage plays a key role of protect the organs from external attack. During the past several decades, many studies have been presented on human thoracic injury in vehicle collisions, but there is still long to get better understanding of thoracic injury biomechanics, such as rib fracture failure and injury criteria.
     In this study, an FE thorax model was developed and validated based on the human anatomical data. The thorax FE model was then used for analysis of rib fracture in different loading conditions and it was also used to analyze the effectiveness of the rib failure models and the thoracic injury assessment criteria, according to the three selected rib fracture failure models. Finally thoracic injury prevention in Minicar-to-pedestrian impacts was analyzed by using the FE model in combination with the selected failure models and injury assessment criteria.
     A new3D finite element thoracic model was developed based on the anatomical structure of a real Chinese human body of average size. The main structures of the model include thoracic and lumbar vertebrae and intervertebral discs, ribs, a sternum, costal cartilages, internal organs and other soft tissues. The entire model consisted of more than87,000elements and63,000nodes. The material properties of the thoracic model were defined based on the biomechanical data from literature. For the purpose of the model validation, the force-displacement responses of rib from simulations were compared with the test results of three-point bending tests; The isolated rib anterior-posterior loading structural tests were reconstructed by the FE model, and the calculated results were compared with experimental data in terms of the rib force-displacement responses, rib fracture locations, rib fracture timing and the resultant forces under static and dynamic loading conditions. In addition, using the volunteer tests and cadaver tests, the entire thorax force-displacement responses were simulated in frontal impactor loading, and the thorax model was also validated against the human thorax impactor loading tests in both pure lateral and oblique impacts by comparing the impact force, chest deformation mode, and the force-displacement responses.
     Three selected rib failure models of T1, T2, and T3based on either von Mises stress and/or plastic failure strain were utilized in the current study, in order to simulate and analyze the rib fractures under various loading conditions by using the thorax FE model. According to the failure models and the loading conditions, the simulated injury data were compared and analyzed. The results from simulations indicated that the rib fracture responses obtained using failure model T3exhibit the best agreement with the three-point bending experimental data; the rib fracture responses using failure model T2demonstrate the best agreement between the simulations and the isolated rib anterior-posterior loading structural tests in terms of both force magnitude and time of rib fracture occurrence. The cross sectional stress&strain at the fracture location were analyzed as well and the relationship between the Number of Rib Fracture (NRF) and impact speed obtained from the simulations using failure model T1exhibited the best agreement with the observations in the thorax frontal impactor loading tests.
     The current thorax model was used to analyze human thorax injury responses in side impact. For this purpose, the thorax impacts were simulated in pure lateral and oblique impactor loading conditions at a range of different impact angles. The calculated NRF and the injury parameters related to the thoracic injury assessment criteria were obtained from simulations, including the impact force, chest deflection, compression, deflection rate and spine acceleration. A correlation evaluation function between NRF and the injury criteria was built up for a comparative analysis of effectiveness in prediction and assessment of thorax injuries.
     Finally the FE model was used to study the human thorax dynamic and injury responses in pedestrian impacting by Minicars with different frontal structures at different impact velocities. The influences of Minicar frontal structures and vehicle impact velocities on pedestrian dynamic response were analyzed in terms of the chest impact velocity, chest deflection, both chest AIS3+(Abbreviated Injury Scale-AIS) and AIS4+injury risks based on injury criterion of Thorax Trauma Index (TTI), and the NRF.
     Based on the present study the conclusions can be drawn as follows. The results of validation simulations fit well with those of previous tests recorded in literature. Rib fracture failure model T1is the most appropriate for the thoracic responses analysis in impactor loading. The TTI criterion has the best effectiveness in prediction and assessment of thorax injuries according to the evaluation analysis. The pedestrian would suffer high AIS3+and AIS4+thoracic injury risk when impacting a Minicar. The frontal structure of Minicar and the vehicle impact velocity has significant influence on pedestrian dynamic responses and thoracic injury, and the frontal structure of Minicar has a greater effect on pedestrian thoracic injury risk than vehicle impact velocity.
引文
[1]王正国.新世纪道路交通事故的发生趋势[J].中华创伤杂志,2002,18(6):325-328.
    [2]黄思兴,张先国,孔斌,等.1110例汽车驾驶员及乘员交通伤特点分析[J].中国法医学杂志,2010,25(3):187-189.
    [3]Blincoe L J, Seay A, Zaloshnja E, et al. The Economic Impact of Motor Vehicle Crashes,2000, US Department of Transportation, National Highway Traffic Safety Administration Washington, DC,2002.
    [4]NHTSA.2012 Motor Vehicle Crashes:Overview, Washington, DC:US Department of Transportation,2013.
    [5]http://www.iihs.org/iihs/topics/t/general-statistics/fatalityfacts/overview-of-fat ality-facts,'General statistics'2013.
    [6]http://www.worldbank.org/transport/roads/safety.htm,'World Bank Group (2011) Road Safety'2011.
    [7]公安部交通管理局.中华人民共和国道路交通事故统计年报(2012年度)[M].无锡,2013.
    [8]Nirula R, Pintar F A. Identification of vehicle components associated with severe thoracic injury in motor vehicle crashes:A CIREN and NASS analysis[J]. Accident Analysis and Prevention,2008,40:137-141.
    [9]Shin J, Untaroiu C, Lessley D, et al. Thoracic Response to Shoulder Belt Loading:Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs[C].2009:2009-01-0384.
    [10]Stapp J P. Human Exposure to Linear Decelerations, Part 2:The Forward Facing Position and the Development of a Crash Harness, Wright-Patterson Air Force Base, Ohio:Aero Medical Laboratory, Wright Air Development Center,1951.
    [11]Forman J, Lessley D, Shaw C G, et al. Thoracic Response of Belted PMHS, the Hybrid Ⅲ, and the THOR-NT Mid-Sized Male Surrogates in Low Speed, Frontal Crashes[J]. Stapp Car Crash Journal,2006,50:191-215.
    [12]Viano D C, King A I, Melvin J W, et al. Injury Biomechanics Research:An Essential Element in the Prevention of Trauma[J]. Journal of Biomechanics, 1989,22(5):403-417.
    [13]Nahum A M, Melvin J. Accidental Injury:Biomechanics and Prevention, Second Edition[M]. New York:Springer-Verlag Inc.,2002.
    [14]Chapon A,'Thorax and Upper Abdomen:Anatomy, Injuries and Possible Mechanisms of Injury', in The Biomechanics of Impact Trauma (Amsterdam: Elsevier Science Publishers,1984).
    [15]Yamada H. Strength of biological materials[M]. Baltimore:The Williams& Wilkins Company,1970.
    [16]Granik G, Stein I. Human Ribs:Static Testing as a Promising Medical Application[J]. Journal of Biomechanics,1973,6(3):237-240.
    [17]Schultz A B, Benson D R, Hirsch C. Force-Deformation Properties of Human Ribs[J]. Journal of Biomechanics,1974,7:303-309.
    [18]Yoganandan N, Pintar F A. Biomechanics of human thoracic ribs[J]. Journal of Biomechanical Engineering,1998,120(1):100-104.
    [19]Moore K L, Dalley A F. Clinically Oriented Anatomy,4th Edition[M]. Baltimore:Lippincott Williams & Wilkins,1999.
    [20]Jonsson A, Clemedson C J, Sundqvist A B, et al. Dynamic Factors Influencing the Production of lung Injury in Rabbits Subjected to Blunt chest Wall Impact[J]. Aviation Space and Environmental Medicine,1979,50(4):325-337.
    [21]Fung Y C, Yen R T, Tao Z L, et al. A Hypothesis on the Mechanism of Trauma of Lung tissue Subjected to Impact Load[J]. Journal of Biomechanical Engineering,1988,110:50-56.
    [22]Yen R T, Fung Y C, Liu S Q. Trauma of Lung Due to Impact Load[J]. Journal of Biomechanics,1988,21(9):745-753.
    [23]Zeng Y J, Yager D, Fung Y C. Measurement of the Mechanical Properties of the Human Lung Tissue[J]. Journal of Biomechanical Engineering,1987,109: 169-174.
    [24]Yen M R T. Mechanical Properties of Human Heart, Lung and Aorta for Highway Safety Research, Final Report of Research Project,1999.
    [25]Fung Y C. Biomechanics:Mechanical Properties of Living Tissues, Second Edition[M]. New York:Springer-Verlag,1984.
    [26]Deng Y-C, Kong W, Ho H, Development of a finite element human thorax model for impact injury studies[C].//SAE World Congress, Detroit, Michigan, United States,1999.
    [27]Fung Y C, Tong P, Patitucci P. Stress and Strain in the Lung[J]. ASCE Journal of the Engineering Mechanics Division,1978,104(1):201-223.
    [28]Vawter D L. A Finite Element Model for Macroscopic Deformation of the Lung[J]. Journal of Biomechanical Engineering,1980,101(1):1-7.
    [29]Greendyke R M. Traumatic Rupture of the Aorta:Special Reference to Automobile Accidents[J]. Journal of the American Medical Association,1966, 195:527-530.
    [30]Ochsner M G, Champion H R, Chambers R J, et al. Pelvic Fracture as an Indicator of Increased Risk of Thoracic Aortic Rupture[J]. Journal of Trauma, 1989,29:1376-1379.
    [31]Newman R J, Rastogi S. Rupture of the Thoracic Aorta and its Relationship to Road Traffic Accident Characteristics[J]. Injury,1984,15(5):296-299.
    [32]Creasy J D, Chiles C, Routh W D, et al. Overview of Traumatic Injury of the Thoracic Aorta[J]. Radiographic,1997,17(1):27-45.
    [33]Viano D C. Biomechanics of Non-penetrating Aortic Trauma:A Review[J]. Stapp Car Crash Journal,1983,27:109-114.
    [34]Mohan D, Melvin J. Failure Properties of Passive Human Aortic Tissue Uniaxial Tension Tests[J]. Journal of Biomechanics,1982,15(11):887-902.
    [35]Mohan D, Melvin J. Failure Properties of Passive Human Aortic Tissue Ⅱ-Biaxial Tension Tests[J]. Journal of Biomechanics,1983,16(1):31-44.
    [36]States J D. The Abbreviated and the Comprehensive Research Injury Scales[J]. Stapp Car Crash Journal,1969,13:282-294.
    [37]The Abbreviated Injury Scale 2005-Update 2008[M]. ed. by T. A. Gennarelli, E. Wodzin and I. L. BarringtonAssociation for the Advancement of Automotive Medicine Press,2008.
    [38]Baker S P, O'Neill B, Naddon W, et al. The Injury Severity Score:A Method for Describing Patients with Multiple Injuries an Evaluating Emergency Care[J]. Journal of Trauma,1974,14:187-196.
    [39]Stapp J P,'Voluntary Human Tolerance Levels', in Impact Injury and Crash Protection, ed. by E. S. Gurdjian, W. A. Lang, L. M. Patrick and L. M. Thomas (Springfield, IL, US:Charles C. Thomas,1970), pp.308-349.
    [40]Eiband A M. Human Tolerance to Rapidly Applied Acceleration, in A Survey of the Literature Washington, D.C, US:National Aeronautics and Space Administration,1959.
    [41]Patrick L M, Kroell C K, Mertz H J. Forces of the Human Body in Simulated Crashes[J]. Stapp Car Crash Journal,1965,9:237-260.
    [42]Gadd C W, Patrick L M. System Versus Laboratory Impact Tests for Estimating Injury Hazard, SAE Technical Paper,1968.
    [43]Neathery R F, Kroell C K, Mertz H J. Prediction of Thoracic Injury from Dummy Response[J]. Stapp Car Crash Journal,1975,19:295-316.
    [44]Patrick L M, Mertz H J, Kroell C K. Cadaver knee, chest and head impact loads[J]. Stapp Car Crash Journal,1967,11:168-182.
    [45]Kroell C K, Schneider D C, Nahum A M. Impact Tolerance and Response of the Human Thorax[J]. Stapp Car Crash Journal,1971,15:84-134.
    [46]Kroell C K, Schneider D C, Nahum A M. Impact tolerance and response of the human thorax II[J]. Stapp Car Crash Journal,1974,18:383-457.
    [47]Neathery R F. Analysis of Chest Impact Response Data and Scaled Performance Recommendations[J]. Stapp Car Crash Journal,1974,18: 459-493.
    [48]Viano D C, Lau I V. A Viscous Tolerance Criterion for Soft Tissue Injury Assessment[J]. Journal of Biomechanics,1988,21:387-399.
    [49]Viano D C, Lau I V, Asbury C, et al. Biomechanics of the Human Chest, Abdomen, and Pelvis in Lateral Impact[J]. Accident Analysis and Prevention, 1989,21(6):553-574.
    [50]Viano D C. Biomechanical Responses and Injuries in Blunt Lateral Impact[J]. Stapp Car Crash Journal,1989,26:113-142.
    [51]Mertz H J, Prasad P, Irwin A L. Injury Risk Curves for Children and Adults in Frontal and Rear Collisions[J]. Stapp Car Crash Journal,1997,41:13-30.
    [52]Kroell C K, Pope M E, Viano D C, et al. Interrelationship of velocity and chest compression in blunt thoracic impact to swine[J]. Stapp Car Crash Journal, 1981,25:549-579.
    [53]Lau I V, Viano D C. Influence of Impact Velocity on the Severity of Non-Penetrating Hepatic Injury[J]. Journal of Trauma,1981,21:115-123.
    [54]Lau I V, Viano D C. Thoracic Impact:A Viscous Tolerance Criterion[C].1985:
    [55]Lau I V, Viano D C. The viscous criterion-Bases and applications of an injury severity index for soft tissues[J]. Stapp Car Crash Journal,1986,30:123-142.
    [56]Ridella S A, Viano D C. Determining Tolerance to Compression and Viscous Injury in Frontal and Lateral Impacts[J]. Stapp Car Crash Journal,1990,34: 349-356.
    [57]Eppinger R H, Marcus J H, Morgan R M. Development of Dummy and Injury Index for NHTSA's Thoracic Side Impact Protection Research Program[J]. SAE Technical Paper,1984:Paper No.840885.
    [58]Morgan R M, Marcus J H, Eppinger R H. Side Impact-The Biofidelity of NHTSA's Proposed ATD and Efficacy of TTI[J]. Stapp Car Crash Journal, 1986,30:27-40.
    [59]Viano D C. Evaluation of the SID dummy and TTI injury criterion for side impact testing[J]. Stapp Car Crash Journal,1987,31:143-159.
    [60]Mate P I, Popp L E. Third Generation of Automotive Test Dummies[J]. Stapp Car Crash Journal,1970,14:329-340.
    [61]Beckman D L, Palmer M F. Response of the Primate Thorax to Experimental Impact[J]. Stapp Car Crash Journal,1969,13:270-281.
    [62]Nahum A M, Gadd C W, Schneider D C, et al. Deflection of the Human Thorax under Sternal Impact[J]. Stapp Car Crash Journal,1970,14:797-807.
    [63]Stalnaker R L, McElhaney J H, Roberts V L, et al., Human Torso Response to Blunt Trauma[C].//Human Impact Response:measurement and Simulation. Proceedings of the Symposium on Human Impact Response, Warrendale, United States, W. F. King and H. J. Mertz,1973.
    [64]Nahum A M, Schneider D C, Kroell C K. Cadaver Skeletal Response to Blunt Thoracic Impact[J]. Stapp Car Crash Journal,1975,19:259-293.
    [65]Schreck R M, Viano D C. New Experimental Approaches Leading to Model Synthesis[J]. Stapp Car Crash Journal,1973,17:437-450.
    [66]Nusholtz G S, Melvin J W, Lux P. The influence of impact energy and direction on thoracic response[J]. Stapp Car Crash Journal,1983,27:69-94.
    [67]Stalnaker R L, Tarriere C, Fayon A, et al. Modification of Part 572 Dummy for Lateral Impact According to Biomechanical data[J]. Stapp Car Crash Journal, 1979,23:843-872.
    [68]Tarriere C, Walfisch G, Fayon A, Synthesis of Human Tolerances Obtained From Lateral Impact Simulation[C].//International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paris, France,1979.
    [69]Melvin J W, Robbins D H, Stalnaker R L, Side Impact Response and Injury[C]. //6th International Technical Conference on Experimental Safety Vehicle, 1976.
    [70]Eppinger R H, Augustyn K, Robbins D H. Development of a promising universal thoracic trauma prediction methodology [J]. Stapp Car Crash Journal, 1978,22:211-268.
    [71]Eppinger R H, Morgan R M, Marcus J H, Side Impact Data Analysis[C].//9th International Technical Conference on Experimental Safety Vehicle,1982.
    [72]Marcus J H, Morgan R M, Eppinger R H, et al. Human response to and injury from lateral impact[J]. Stapp Car Crash Journal,1983,27:419-432.
    [73]Cavanaugh J M, Huang Y, Wasko R J, et al., SID Response Data in a Side Impact Sled Test Series[C].//International Congress & Exposition, Detroit, Michigan, US,1992.
    [74]Pintar F A, Yoganandan N, Hines M H, et al. Chestband Analysis of Human Tolerance to Side Impact[J]. Stapp Car Crash Journal,1997,41:63-74.
    [75]Robbins D H, Lehman R J, Prediction of Thoracic Injuries as a Function of Occupant Kinematics [C].//7th International Technical Conference on Experimental Safety Vehicle, Paris, France,1979.
    [76]Cesari D, Ramet M, Bloch J. Influence of Arm Position on Thoracic Injuries in Side Impact[J]. Stapp Car Crash Journal,1981,25:271-297.
    [77]Chung J, Cavanaugh J M, King A I, et al. Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts[J]. Stapp Car Crash Journal,1999,43:39-54.
    [78]Fayon A, Tarriere C, Walfisch G, et al. Thorax of 3-Point Belt Wearers during a Crash (Experiments with Cadavers)[J]. Stapp Car Crash Journal,1975,19: 195-223.
    [79]Robbins D H, Melvin J W, Stalnaker R L. Prediction of thoracic impact injuries[J]. Stapp Car Crash Journal,1976,20:699-729.
    [80]Kallieris D, Riedl H. Re-analysis of sled test data. Official deliverable of HUMOS-2 Report No.3UOH-040817-E1-DB.,2004.
    [81]Backaitis S H, St-Laurent A. Chest deflection characteristics of volunteers and Hybrid III dummies[J]. Stapp Car Crash Journal,1986,30:157-166.
    [82]Kent R, Lessley D, Sherwood C. Thoracic Response to Dynamic, Non-Impact Loading from a Hub, Distributed Belt, Diagonal Belt, and Double Diagonal Belts[J]. Stapp Car Crash Journal,2004,48:495-519.
    [83]Horsch J D, Schneider D C, Kroell C K, et al. Response of belt restrained subjects in simulated lateral impact[J]. Stapp Car Crash Journal,1979,23: 71-103.
    [84]McHenry R R. Analysis of the dynamic of automobile passenger restraint systems[J]. Stapp Car Crash Journal,1963,7:207-249.
    [85]Lobdell T E, Kroell C K, Schneider D C, et al. Human Impact Response Measurement and Simulation[M]. ed. by W. F. King and H. J. Mertz, Impact Response of the Human ThoraxPlenum Press,1973.
    [86]Viano D C. Evaluation of Biomechanical Response and Potential Injury from Thoracic Impact[J]. Aviation, Space, and Environmental Medicine,1978,49(1 Pt.2):125-135.
    [87]Viano D C. Evaluation of the Benefit of Energy-Absorbing Material in Side Impact Protection:Part Ⅰ[J]. Stapp Car Crash Journal,1987,31:185-203.
    [88]Viano D C. Evaluation of the Benefit of Energy-Absorbing Material in Side Impact Protection:Part Ⅱ[J]. Stapp Car Crash Journal,1987,31:205-224.
    [89]Cheng H, Obergefell L, Rizer A. Generator of Body (GEBOD) Manual, Wright-Patterson Air Force Base, Ohio,1994.
    [90]LSTC. LS-DYNA Keyword User's Manual, Version 971, Livermore Software Technology Corporation,2007.
    [91]McConville J T, Churchill T D, Kaleps I, et al. Anthropometric Relationships of Body and Body Segment Moments of Inertia, Wright-Patterson Air Force Base, Ohio:Air Force Aerospace Medical Research Laboratory,1980.
    [92]Roberts S B, Chen P H. Elastostatic Analysis of the Human Thoracic Skeleton[J]. Journal of Biomechanics,1970,3(6):527-545.
    [93]Andriacchi T, Schultz A, Belytschko T, et al. A Model for Studies of Mechanical Interactions Between the Human Spine and Rib Cage[J]. Journal of Biomechanics,1974,7(6):497-507.
    [94]Sundaram S H, Feng C C. Finite Element Analysis of the Human Thorax[J]. Journal of Biomechanics,1977,10:505-516.
    [95]Plank G R, Eppinger R H, Computed Dynamic Response of the Human Thorax From a Finite Element Model[C].//12th International Technical Conference on Experimental Safety Vehicle,1989.
    [96]Huang Y, King A I, Cavanaugh J M. Finite Element Modeling of Gross Motion of Human Cadavers in Side Impact[J]. Stapp Car Crash Journal,1994,38: 35-54.
    [97]Wang H-c K. Development of a side impact finite element human thoracic model[D]; Wayne State University,1995.
    [98]Yang K H, Hu J, White N A, et al. Development of Numerical Models for Injury Biomechanics Research:A Review of 50 Years of Publications in the Stapp Car Crash Conference[J]. Stapp Car Crash Journal,2006,50:429-490.
    [99]Lizee E, Robin S, Song E, et al. Development of a 3D Finite Element Model of the Human Body[J]. Stapp Car Crash Journal,1998,42:115-138.
    [100]Plank G R, Kleinberger M, Eppinger R H. Analytical Investigation of Driver Thoracic Response to Out of Position Airbag Deployment[J]. Stapp Car Crash Journal,1998,42:317-329.
    [101]Shah C S, Yang K H, Hardy W, et al. Development of a computer model to predict aortic rupture due to impact loading[J]. Stapp Car Crash Journal,2001, 45:161-182.
    [102]Iwamoto M, Miki K, Mohammad M, et al. Development of a Finite Element Model of the Human Shoulder[J]. Stapp Car Crash Journal,2000,44:281-297.
    [103]Iwamoto M, Miki K, Yang K H. Development of a Finite Element Model of the Human Shoulder to Investigate the Mechanical Responses and Injuries in Side Impact[J]. JSME International Journal Series C,2001,44:1072-1081.
    [104]Ruan J, El-Jawahri R, Chai L, et al. Prediction and Analysis of Human Thoracic Impact Responses and Injuries in Cadaver Impacts Using a Full Human Body Finite Element Model[J]. Stapp Car Crash Journal,2003,47: 299-321.
    [105]TASS. MADYMO Theory Manual Release 7.2, TNO Automotive Safety Solutions,2010.
    [106]Happee R, Hoofman M, Van den Kroonenberg A J, et al. A Mathematical Human Body Model for Frontal and Rearward Seated Automotive Impact Loading[J]. Stapp Car Crash Journal,1998,42:75-88.
    [107]TNO Automotive. MADYMO Human Body Models Manual, Version 7.4.1., TASS B.V., RijswijkThe Netherlands,2012.
    [108]Iwamoto M, Kisanuki Y, Watanabe I, et al. Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction[C].2002:31-42.
    [109]Iwamoto M, Nakahira Y, Tamura A, et al. Development of Advanced Human Models in THUMS[C].2007:47-56.
    [110]Shigeta K, Kitagawa Y, Yasuki T. Development of next generation human FE model capable of organ injury prediction[C].2009:Paper No.09-0111.
    [111]Robin S. Human Model for Safety-A Joint Effort towards the Development of Refined Human-like Car Occupant Models[C].2001:Paper No.01-0297.
    [112]Thollon L, Arnoux P J, Kayvantash K, et al. Human Injury Evaluation using HUMOS RADIOSS Finite Element Model[C].2002:369-371.
    [113]杨济匡,姚剑锋.人体颈部动力学响应分析有限元模型的建立和验证[J].湖南大学学报(自然科学版),2003,30(4):40-46.
    [114]Yang J, Xu W, Dietmar O. Brain Injury Biomechanics in Real World Vehicle Accident Using Mathematical Models[J]. Chinese Journal of Mechanical Engineering,2008,32:81-86.
    [115]杨济匡,肖志,万鑫铭.使用人体颈部有限元模型研究汽车后碰撞中的颈部损伤[J].汽车工程,2007,29(6):457-461.
    [116]Wang F, Xiao Z, Wan X, et al. FE Modeling of the Human Neck Responses in Low-Speed Car Collisions[C].//C. T. Lim and J. C. H. Goh. Springer,2010:513-516.
    [117]王方,肖志,万鑫铭,等.汽车低速碰撞中的人体颈部有限元模型验证[J].汽车安全与节能学报,2010,1(3):214-218.
    [118]许伟,杨济匡.用于交通伤评估的头部有限元模型的虚拟实验验证[J].汽车工程,2008,30(2):151-155.
    [119]杨济匡,许伟,万鑫铭.研究汽车碰撞中头颈部动态响应的有限元模型的建立和验证[J].湖南大学学报(自然科学版),2005,32(2):6-12.
    [120]Han Y, Yang J, Mizuno K. Virtual Reconstruction of Long Bone Fracture in Car-to-pedestrian Collisions Using Multi-body System and Finite Element Method[J]. Chinese Journal of Mechanical Engineering,2011,24(6): 1045-1055.
    [121]Han Y, Yang J, Mizuno K, et al. Effects of Vehicle Impact Velocity, Vehicle Front-End Shapes on Pedestrian Injury Risk[J]. Traffic Injury Prevention,2012, 13(5):507-518.
    [122]Yang J, Wang F, Li G. Finite Element Analysis of Thorax Responses under Quasi-Static and Dynamic Loading[M]. ed. by Adam Wittek, Karol Miller and Poul M. F. Nielsen, Computational Biomechanics for MedicineSpringer New York,2013.
    [123]Mordaka J, Meijer R, Rooij L v, et al. Validation of a Finite Element Human Model for Prediction of Rib Fractures[C].2007:2007-01-1161.
    [124]Kimpara H, Lee J B, Yang K H, et al. Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female[J]. Stapp Car Crash Journal,2005,49:251-269.
    [125]Zhao J, Narwani G. Development of A Human Body Finite Element Element Model for Restraint System R&D Application[C].2005:Paper No.05-0399.
    [126]Ito O, Dokko Y, Ohashi K, Development of Adult and Elderly FE Thorax Skeletal Models[C].//SAE World Congress, Detroit, Michigan, United States, 2009.
    [127]Belytschko T, Lin J I, Tsay C-S. Explicit Algorithms for the Nonlinear Dynamics of Shells[J]. Computer Methods in Applied Mechanics and Engineering,1984,42(2):225-251.
    [128]Belytschko T, Bindeman L P. Assumed Strain Stabilization of the Eight Node Hexahedral Element[J]. Computer Methods in Applied Mechanics and Engineering,1993,105(2):225-260.
    [129]Augenstein J, Bowen J, Perdeck E, et al., Injury Patterns in Near-Side Collisions[C].//SAE World Congress, Detroit, Michigan, United States,2000.
    [130]Moore K L, Dalley A F, Agur A M R. Clinically Oriented Anatomy,7th Edition[M]. Philadelphia:Lippincott Williams & Wilkins,2013.
    [131]Ruan J S, E1-Jawahri R, Barbat S, et al. Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model[J]. Stapp Car Crash Journal,2005,49:343-366.
    [132]Stein I D, Granik G, Mechanical Testing of Human Ribs:Effects of Strain Rate, Race and Age[C].//25th Conference on Engineering in Medicine and Biology, Bal Harbour,1972.
    [133]Stein I D, Granik G. Rib Structure and Bending Strength:An Autopsy Study[J]. Calcified Tissue Research,1976,20(1):61-73.
    [134]Sacreste J, Brun-Cassan F, Fayon A, et al. Proposal for a Thorax Tolerance Level in Side Impacts Based on 62 Tests Performed with Cadavers Having Known Bone Condition[J]. Stapp Car Crash Journal,1982,26:155-171.
    [135]Kallieris D, Schonpflug M, Yang J, et al. Injury mechanisms database. Official deliverable of HUMOS-2 Report No.3ESI-030901-E1-DB.,2004.
    [136]Mayeur O, Chaari F, Delille R, et al., A New Method to Determine Rib Geometry for Personalised FEM of the Thorax[C].//International Research Council on the Biomechanics of Injury conference (IRCOBI), Hanover, Germany,2010.
    [137]Stitzel J D, Cormier J M, Barretta J T, et al. Defining Regional Variation in the Material Properties of Human Rib Cortical Bone and Its Effect on Fracture Prediction[J]. Stapp Car Crash Journal,2003,47:243-265.
    [138]Cormier J M, Stitzel J D, Duma S M, et al. Regional Variation in the Structural Response and Geometrical Proceedings of Human Ribs[C].2005:153-170.
    [139]Kemper A R, McNally C, Kennedy E A, et al. Material Properties of Human Rib Cortical Bone from Dynamic Tension Coupon Testing[J]. Stapp Car Crash Journal,2005,49:199-230.
    [140]Kemper A R, McNally C, Pullins C A, et al. The Biomechanics of Human Ribs: Material and Structural Properties from Dynamic Tension and Bending Tests[J]. Stapp Car Crash Journal,2007,51:235-273.
    [141]Mroz K, Bostrom O, Pipkorn B, et al., Comparison of Hybrid III and Human Body Models in Evaluating Thoracic Response for Various Seat Belt and Airbag Loading Conditions[C].//International Research Council on the Biomechanics of Injury conference (IRCOBI), Hanover, Germany,2010.
    [142]Viano D C. Biomechanics of Bone and Tissue:A Review of Material Properties and Failure Characteristics[J]. SAE Technical Paper,1986:33-63.
    [143]Mow V C, Ratcliffe A,'Structure and Function of Articular Cartilage and Meniscus', in Basic Orthopaedic Biomechanics, ed. by V. C. Mow and W. C. Hayes (New York:Raven Press,1991), pp.143-198.
    [144]Miller K. Constitutive modelling of abdominal organs [J]. Journal of Biomechanics,2000,33:367-373.
    [145]Schmitt K-U, Snedeker J G. Analysis of the Biomechanical Response of Kidneys Under Blunt Impact[J]. Traffic Injury Prevention,2006,7:171-181.
    [146]Leroy A, Payan Y, Voirin D, et al. Finite Element Model of the Liver for Computer-assisted Hepatic Tumor Ablation[C].2001:
    [147]Gao Z, Lister K, Desai J P. Constitutive Modeling of Liver Tissue:Experiment and Theory[J]. Annals of Biomedical Engineering,2010,38(2):505-516.
    [148]Holmes M H. Finite deformation of soft tissue:analysis of a mixture model in uni-axial compression[J]. Journal of Biomechanical Engineering,1986,108(4): 372-381.
    [149]Shao Y, Zou D, Li Z, et al. Blunt Liver Injury with Intact Ribs under Impacts on the Abdomen:A Biomechanical Investigation[J]. PLoS ONE,2013,8(1): e52366.
    [150]Li Z, Kindig M W, Kerrigan J R, et al. Rib fractures under anterior-posterior dynamic loads:Experimental and finite-element study[J]. Journal of Biomechanics,2010,43:228-234.
    [151]Li Z, Kindig M W, Subit D, et al. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction[J]. Medical Engineering & Physics,2010,32:998-1008.
    [152]Patrick L M. Impact Force-Deflection of the Human Thorax[J]. Stapp Car Crash Journal,1981,25:471-496.
    [153]Charpail E, Trosseille X, Petit P, et al. Characterization of PMHS Ribs:A New Test Methodology [J]. Stapp Car Crash Journal,2005,49:183-198.
    [154]Dios E d P d, Kindig M, Arregui-Dalmases C, et al. Structural response and strain patterns of isolated ribs under lateral loading[J]. International Journal of Crashworthiness,2011,16(2):169-180.
    [155]Kindig M, Lau A G, Kent R W. Biomechanical Response of Ribs Under Quasistatic Frontal Loading[J]. Traffic Injury Prevention,2011,12(4): 377-387.
    [156]Zhou Q, Rouhana S W, Melvin J W. Age effects on thoracic injury tolerance[J]. Stapp Car Crash Journal,1996,40:133-144.
    [157]Kimpara H, Iwamoto M, Miki K, et al., Biomechanical Properties of the Male and Female Chest Subjected to Frontal and Lateral Impacts[C].//International Research Council on the Biomechanics of Injury conference (IRCOBI), Lisbon, Portugal,2003.
    [158]Kemper A R, Kennedy E A, McNally C, et al. Reducing Chest Injuries in Automobile Collisions:Rib Fracture Timing and Implications for Thoracic Injury Criteria[J]. Annals of Biomedical Engineering,2011,39(8):2141-2151.
    [159]刘利,陈海斌,乐中耀,等.侧碰假人颈部标定系统的实验研究[J].医用生物力学,2011,26(2):173-180.
    [160]蔡志华,兰凤崇,陈吉清,等.基于汽车碰撞损伤的人体胸部有限元模型构建与验证[J].医用生物力学,2013,28(1):36-43.
    [161]Vezin P, Verriest J P, Development of a Set of Numerical Human Mdels for Safety[C].//International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington D.C, United States,2005.
    [162]Hu J, Rupp J D, Reed M P. Focusing on Vulnerable Populations in Crashes: Recent Advances in Finite Element Human Models for Injury Biomechanics Research[J]. Journal of Automotive Safety and Energy,2012,3(4):295-307.
    [163]Kuppa S, Eppinger R H, McKoy F, et al. Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)[J]. Stapp Car Crash Journal,2003,47:189-210.
    [164]Samaha R R, Elliott D S. NHTSA Side Impact Research:Motivation for Upgraded Test Procedures[C].2003:Paper No.492.
    [165]Gibson T, Fildes B, Deery H, et al. Improved side impact protection:a review of injury patterns, injury tolerance and dummy measurement capabilities[M]. 2001.
    [166]Subit D, Duprey S, Lau S, et al. Response of the Human Torso to Lateral and Oblique Constant-Velocity Impacts[J]. Annals of Advances in Automotive Medicine,2010,54:27-40.
    [167]Stalnaker R L, RobertS V L, McElhaney J H. Side Impact Tolerance to Blunt Trauma[J]. Stapp Car Crash Journal,1973,17:377-408.
    [168]Talantikite Y, Bouquet R, Ramet M, et al., Human Thorax Behaviour for Side Impact. Influence of Impact Masses and Velocities[C].//International Technical Conference on the Enhanced Safety of Vehicles (ES V), Washington, D.C. United States,1998.
    [169]Yoganandan N, Pintar F A, Gennarelli T A, et al. Chest Deflections and Injuries in Oblique Lateral Impacts[J]. Traffic Injury Prevention,2008,9(2): 162-167.
    [170]Yoganandan N, Pintar F A. Deflections from two types of Human Surrogates in Oblique Side Impacts[J]. Annals of Advances in Automotive Medicine,2008, 52:301-314.
    [171]Yoganandan N, Pintar F A, Humm J R, et al., Analytical and Experimental Data of Chest Deflections and Injuries in Side Impacts[C].//International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington D.C, United States,2011.
    [172]Shaw J M, Herriott R G, McFadden J D, et al. Oblique and lateral impact response of the PMHS thorax[J]. Stapp Car Crash Journal,2006,50:147-167.
    [173]Trosseille X, Baudrit P, Leport T, et al. Rib Cage Strain Pattern as a Function of Chest Loading Configuration[J]. Stapp Car Crash Journal,2008,52: 205-231.
    [174]Rhule H, Suntay B, Herriott R, et al. Response of PMHS to High-and Low-Speed Oblique and Lateral Pneumatic Ram Impacts[J]. Stapp Car Crash Journal,2011,55:281-315.
    [175]ISO/TR9790(E). Road vehicles-Anthropomorphic Side Impact Dummy-Lateral Impact Response Requirements to Assess the Biofidelity of the Dummy, ISO,1999.
    [176]Shimamura M, Ohhiashi H, Yamazaki M. The Effects of Occupant Age on Patterns of Rib Fractures to Belt-Restrained Drivers and Front Passengers in Frontal Crashes in Japan[J]. Stapp Car Crash Journal,2003,47:349-365.
    [177]Kent R. Frontal thoracic response to dynamic loading:the role of superficial tissues, viscera and the rib cage[J]. International Journal of Crash worthiness, 2008,13(3):289-300.
    [178]Deng Y-C. Design considerations for occupant protection in side impact-A modelling approach[J]. Stapp Car Crash Journal,1988,32:71-79.
    [179]King A I, Huang Y, Cananaugh J M, Protection of occupants against side impact[C].//International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paris,1991.
    [180]Hamilton M, Chen H, Guenther D. Adult to Child Scaling and Normalizing of Lateral Thoracic Impact Data[J]. Stapp Car Crash Journal,1986,30:143-156.
    [181]Chen H, Guenther D A. Computer Simulation and Evaluation of the Effect of Padding on the Thorax in the Lateral Impact[J]. Stapp Car Crash Journal,1988, 32:157-163.
    [182]Song E, Trosseille X, Baudrit P. Evaluation of Thoracic Deflection as an Injury Criterion for Side Impact Using a Finite Elements Thorax Model[J]. Stapp Car Crash Journal,2009,53:155-191.
    [183]蔡志华.行人在汽车碰撞事故中下肢损伤的有限元仿真研究[D];华南理工大学,2009.
    [184]郭春燕,陈坤.我国道路交通伤害流行病学研究进展[J].浙江预防医学,2006,18(8):59-63.
    [185]李莉,杨济匡,李伟强,等.汽车碰撞行人交通伤害特点分析[J].汽车工程,2005,27(1):44-46.
    [186]郭春燕,陈永维.车辆与道路因素对交通伤害发生的影响[J].现代预防医学,2007,34(12):2244-2246.
    [187]张永波,陆化普,刘强.我国道路交通安全形势与对策[J].长沙交通学院学报,2006,22(3):58-62.
    [188]龙海靖,李向荣.车辆一行人法规实施的重要性研究[J].天津汽车,2007,(3):30-32.
    [189]Isenberg R A, Chidester A B, Mavros S. Updated on the pedestrian Crash Data Study[C].1998:Paper Number:98-S6-O-05.
    [190]Yang J, Otte D, A Comparison Study on Vehicle Traffic Accident and Injuries of Vulnerable Road Users in China and Germany[C].//International Technical Conference on the Enhanced Safety of Vehicles (ESV), Lyon, France,2007.
    [191]Maki T, Kajzer J, Mizuno K, et al. Comparative Analysis of Vehicle-bicyclist and Vehicle-pedestrian Accidents in Japan[J]. Accident Analysis & Prevention, 2003,35(6):927-940.
    [192]Otte D. Severity and Mechanism of Head Impacts in Car to Pedestrian Accidents[C].1999:329-341.
    [193]Mizuno Y, Summary of IHRA Pedestrian Safety Working Group Activities-proposed Test Methods to Evaluate Pedestrian Protection Offered by Passenger Cars[C].//International Technical Conference on the Enhanced Safety of Vehicles (ESV), Washington D.C, United States,2005.
    [194]Han Y, Yang J, Nishimoto K, et al. Finite Element Analysis of Kinematic Behaviour and Injuries to Pedestrians in Vehicle Collisions[J]. International Journal of Crashworthiness,2012,17(2):141-152.
    [195]Chidester A B, Isenberg R A. Final Report-the Pedestrian Crash Data Study[C].2001:Paper No.01-0248.
    [196]Fildes B, Gabler H, Otte D, et al., Pedestrian Impact Injuries Using Real-World Crash Data and Harm[C].//International Research Council on the Biomechanics of Injury conference (IRCOBI), Graz, Austria,2004.
    [197]曹立波,廖洪波.人-车碰撞时行人头部撞击特点及其试验评价方法研究[J].客车技术,2007,(3):9-13.
    [198]方锐,谢书港,曾必强.基于行人小腿碰撞保护的乘用车前端设计[J].科技导报,2013,31(28-29):57-60.
    [199]GB/T24550.汽车对行人的碰撞保护,2009.
    [200]杨济匡,彭勇,许伟,等.颅脑创伤有限元模型的建立及验证[J].中国组织工程研究与临床康复,2009,13(52):10391-10396.
    [201]许伟,杨济匡.研究颅脑交通伤的有限元模型的建立及验证[J].生物医学工程学杂志,2008,25(3):556-561.
    [202]Peng Y, Han Y, Chen Y, et al. Assessment of the protective performance of hood using head FE model in car-to-pedestrian collisions [J]. International Journal of Crashworthiness,2012,17(4):415-423.
    [203]杨济匡,方海峰.人体下肢有限元动力学分析模型的建立和验证[J].湖南大学学报(自然科学版),2006,32(5):31-36.
    [204]Yang J. Review of injury biomechanics in car-pedestrian collisions[J]. International journal of vehicle safety,2005,1(1):100-117.
    [205]韩勇.车辆碰撞行人的动力学响应及胸部和下肢损伤机理研究[D];湖南大学,2011.
    [206]Teresinski G, Madro R. Knee Joint Injuries as a Reconstructive Factors in Car-to-pedestrian Accidents[J]. Forensic Science International,2001,124(1): 74-82.