AMPK信号通路在大鼠慢性糖皮质激素应激中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分糖皮质激素对培养大鼠皮层神经细胞AMPK信号通路的影响及机制
     目的:腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是机体重要的能量调节因子,在中枢神经系统有广泛分布。抑郁模型动物下丘脑AMPK磷酸化水平是降低的,而抑郁症患者和动物模型均存在糖皮质激素高表达。糖皮质激素作用是否会下调AMPK磷酸化?尚未见相关研究报道。本实验旨在通过给予大鼠和原代培养皮层细胞糖皮质激素暴露,研究该过程中AMPK的变化及其机制。
     方法:皮下注射连续21d给予大鼠皮质酮40mg/kg/d。分别给予原代培养皮层神经元,小胶质细胞和星形胶质细胞1μM地塞米松2h,48h或72h作用。通过Western Blot方法检测蛋白水平的变化。
     结果:慢性糖皮质激素暴露降低大鼠海马及前额皮层磷酸化AMPK(pAMPK)水平。给予地塞米松作用2h,48h,72h均不影响神经元和小胶质细胞的pAMPK水平。给予地塞米松作用2h,48h和72h降低星形胶质细胞pAMPK水平。给予皮质酮作用2h,48h和72h也降低星形胶质细胞pAMPK水平。给予星形胶质细胞地塞米松2h,48h和72h升高p(Thr32)FOXO3a水平。血清和糖皮质激素诱导蛋白激酶1(serum-and glucocorticoid-inducible kinase1,SGK1)抑制剂GSK650394可抑制地塞米松导致的星形胶质细胞pAMPK降低和p(Thr32)FOXO3a升高。但糖皮质激素受体(glucocorticoid receptor,GR)拮抗剂RU38486不能阻断地塞米松导致的星形胶质细胞pAMPK降低。而且给予GSK650394可逆转地塞米松导致的p(T32)FOXO3a升高和pAMPK下降。
     结论:地塞米松通过激活SGK1抑制FOXO3a转录活性,减少LKB1表达,选择性地抑制星形胶质细胞的pAMPK水平。
     第二部分AMPK对培养大鼠星形胶质细胞糖皮质激素受体表达的影响及机制
     目的:有研究表明慢性糖皮质激素暴露可降低动物大脑GR表达。给予糖皮质激素可抑制星形胶质细胞pAMPK。有报道,外周AMPK可以调节GR功能,但未见中枢神经系统的相关研究报道。本实验旨在研究地塞米松作用于原代培养皮层星形胶质细胞该过程中,AMPK信号通路介导糖皮质激素诱导的糖皮质激素受体表达下调中的作用及机制。
     方法:给予原代培养皮层星形胶质细胞1μM地塞米松作用2h,48h或72h;通过Western Blot方法检测各蛋白水平的变化。
     结果:给予地塞米松2h,48h或72h不影响神经元GR表达。给予地塞米松48h或72h降低小胶质细胞GR和iNOS表达。给予地塞米松48h或72h可降低星形胶质细胞GR,脑源性神经营养因子(Brain-Derived Neurotrophic Factor,BDNF)表达,增加诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)表达。给予皮质酮48h或72h可降低星形胶质细胞GR,BDNF表达。在星形胶质细胞,AMPK抑制剂compound C,Ara-A48h和72h均减少GR和BDNF的表达;给予AMPK激动剂AICAR,阿司匹林和二甲双胍可逆转地塞米松导致的GR和BDNF的表达下降;SGK1抑制剂GSK650394也可阻断或逆转地塞米松导致的GR和BDNF的表达下降。GR阻断剂RU38486不能阻断地塞米松的作用;AMPK激动剂AICAR,阿司匹林和二甲双胍均可逆转地塞米松导致的GR和BDNF表达变化;地塞米松暴露可以导致FOXO3a抑制性位点Thr32磷酸化水平升高;地塞米松暴露可以导致组蛋白去乙酰化酶5(Histone deacetylases5,HDAC5)位点S295和S498磷酸化水平升高,而且AICAR可以逆转该变化;
     HDAC5抑制剂SAHA和SB939均可以阻断和逆转地塞米松导致的GR和BDNF下降;SGK1抑制剂可以阻断和逆转地塞米松导致GR和BDNF变化。
     结论:地塞米松通过抑制AMPK对HDAC5的磷酸化,增加HDAC5活性,从而降低星形胶质细胞GR的表达。
     第三部分AMPK激动剂二甲双胍对慢性糖皮质激素暴露所致大鼠抑郁样行为的作用及机制
     目的:AMPK激动剂阿司匹林,白藜芦醇有一定的抗抑郁作用。很多抗糖尿病药物也可缓解抑郁症状。但是,上述作用机制并不明确。抗糖尿病药物二甲双胍是AMPK激动剂,少见其抗抑郁报道。本实验旨在通过慢性糖皮质激素暴露大鼠,探讨二甲双胍对慢性糖皮质激素暴露导致大鼠抑郁样行为及GR表达下降的影响和作用机制。
     方法:给予大鼠连续21d皮下注射皮质酮40mg/kg/d,第15d开始,同时给予300mg/kg/d二甲双胍或氟西汀10mg/kg/d连续14d;采用强迫游泳评估大鼠抑郁样行为;采用高架十字迷宫评估大鼠焦虑样行为;采用高尔基染色方法检测树突棘密度;采用Western Blot方法检测大鼠脑区蛋白水平的变化。
     结果:慢性皮质酮暴露大鼠出现抑郁样行为增加和体重增长下降,焦虑样行为无变化;海马和前额皮层的树突棘密度降低;海马和前额皮层pAMPK,GR,BDNF表达减少。给予14d二甲双胍或氟西汀,除对体重增长减少无作用外,均可以逆转慢性皮质酮暴露导致的上述其他变化。
     结论:二甲双胍可改善慢性皮质酮暴露导致的大鼠抑郁样行为,海马和前额皮层树突棘密度降低及pAMPK,GR和BDNF表达减少。该作用可能是通过激活AMPK介导GR表达实现的。
Part Ⅰ Effects of glucocorticoids on AMPK signaling pathway incultured rat cortical cell
     Aims: AMP-activated protein kinase (AMPK) is an important energy metabolismmodulating factor, which is also widely distributed in the CNS. The phosphorylationlevel of AMPK in hypothalamus of depression-model animals is lower than thecontrol ones, while glucocorticoid (GC) levels are increased in both depressionpatients and animal models. Is the decreased phosphorylation of AMPK induced bythe chronic surge of GC? There is still no report on this question. Our recent researchfocused on the GC induced AMPK phosphorylation changes and its mediatingmechanisms in vivo and in vitro.
     Methods: Administration of Corticosterone on rat at the dosage of40mg/kg/d for21days through s.c. injection. Primary cultures of cerebral cortical neurons, microgliaand astrocytes were treated with1μM dexamethasone for2h,48h or72h. TheAMPK signal modifications were determined with Western blot.
     Results: The AMPK phosphorylation levels in rat hippocampus and prefrontal cortex(PFC) declined in the group treated with chronically administered corticosterone.Dexamethasone treatments for2h,48h and72h had no effects on thephosphorylation of AMPK in primarily cultured neurons and microglia, while in theastrocytes, the AMPK phosphorylation levels were decreased significantly.Dexamethasone treatments could also increase the inhibitory phosphorylation level ofFOXO3a on the Thr32site. All the phosphorylation level changes could be preventedwith a serum-and glucocorticoid-inducible kinase1(SGK1) inhibitor GSK650394.
     While GSK650394could attenuate the effects of dexamethasone on astrocytes,
     RU38486, a glucocorticoid receptor (GR) inhibitor, did not influence thedexamethasone effects.
     Conclusion: Dexamethasone inhibits the transcriptional activity of FOXO3a viaSGK1, leading to the reduced phosphorylation level and activity of AMPK inastrocytes.
     Part Ⅱ Effects of AMPK on the expression of glucocorticoidreceptor in cultured cortical astrocyte
     Aims: It has been reported that chronic administration of GC on rat can reduce theglucocorticoids receptor (GR) expression in the brain, and that GC also inhibits theactivity of AMPK in astrocytes. Investigations have shown that AMPK modulates thefunction of GR, but related study in CNS is still lacking. Our recent research aimed atthe mechanism via which AMPK regulates GR expression in primarily culturedcortical astrocyte exposed to dexamethasone.
     Methods: After treatments with dexamethasone for2h,48h or72h, the indicationswere detected by Western blot.
     Results: Exposure to dexamethasone for2h,48h and72h did not influence the GRlevel in cortical neuron, while had inhibitory effects on the GR and iNOS expressionin primarily cultured microglia. On the primary culture of cortical astrocyte, the sametreatment could drastically reduce the expression level of GR and BDNF, andstimulate the expression of iNOS. Interestingly, administration of AMPK inhibitors,compound C and Ara-A, could imitate the dexamethasone-induced alterations, while
     AMPK activators, AICAR, aspirin and metformin, showed inverting effects ondexamethasone-induced changes in cortical astrocyte. SGK1inhibitor GSK65394alsofeatured preventive and reversing effect on the dexamethasone effect in astrocytewhile the GR inhibitor RU38486failed to. Dexamethasone exposure drasticallyincreased the inhibitory phosphorylation of FOXO3a and decreased the AMPKphosphorylation sites on histone deacetylases5(HDAC5) Ser259and Ser498, whichcould both be restored with AICAR. In addition, HDAC5inhibitors SAHA andSB939, and SGK1specific inhibitor GSK, could attenuate and invert thedexamethasone-induced GR and BDNF decrease in cortical astrocytes.
     Conclusion: Dexamethasone reduces the expressions of GR and BDNF in astrocytethrough APMK and HDAC5pathway.
     Part Ⅲ Effects of AMPK agonist metformin ondepression-behaviors induced by chronic glucocorticoid exposure
     Aims: AMPK activators, such as aspirin and resveratrol, play certain antidepressanteffects, whose underlying mechanisms are not clear yet. Many anti-diabetics emergeantidepressant effect in the treatment of diabetes. The anti-diabetics metformin is anAMPK activator, however there is no report about its antidepressant studies inAnimals. In this study, we aim to identify the effects of metformin administration onchanges of behaviors and the expression of GR in hippocampus and prefrontal cortexinduced by chronic corticosterone exposure in rats.
     Methods: Administration of300mg/kg metformin or10mg/kg fluoxetine daily for14d after21-d repeated40mg/kg/d corticosterone-injections in rats. Identified depression-like behaviors of rats by forced swimming test; Identified anxiety-likebehaviors of rats by elevated plus maze test. To identify the density of dendritic spinesGolgi staining was used. Western Blot was used to detect the expression of proteins inhippocampus and prefrontal cortex.
     Results: Compared with vehicle group, depression-like behaviors was increased andbody weight gain was slowed in corticosterone exposed groups, furthermore, dendriticspine density and expression of pAMPK, GR and BDNF in hippocampus andprefrontal cortex were all decreased in21-day repeated corticosterone exposed rats,but anxiety-like behaviors was not affected. Excitingly, metformin or fluoxetineadministration attenuated the changes above induced by repeated corticosteroneinjection, except for the weight gain loss.
     Conclusion: Metformin can improve alterations in depression-like behaviors anddecline of GR, BDNF expression in hippocampus and prefrontal cortex induced bychronic corticosterone exposure in rats.
引文
1. Hellsten, J., et al., Electroconvulsive seizures increase hippocampalneurogenesis after chronic corticosterone treatment. Eur J Neurosci,2002.16(2): p.283-90.
    2. Johnson, S.A., N.M. Fournier, and L.E. Kalynchuk, Effect of different doses ofcorticosterone on depression-like behavior and HPA axis responses to a novelstressor. Behav Brain Res,2006.168(2): p.280-8.
    3. Sapolsky, R.M., L.C. Krey, and B.S. McEwen, Prolonged glucocorticoidexposure reduces hippocampal neuron number: implications for aging. JNeurosci,1985.5(5): p.1222-7.
    4. Siuciak, J.A., et al., Antidepressant-like effect of brain-derived neurotrophicfactor (BDNF). Pharmacol Biochem Behav,1997.56(1): p.131-7.
    5. Huang, T.L., C.T. Lee, and Y.L. Liu, Serum brain-derived neurotrophic factorlevels in patients with major depression: effects of antidepressants. J PsychiatrRes,2008.42(7): p.521-5.
    6. Sarchiapone, M., et al., Association of polymorphism (Val66Met) ofbrain-derived neurotrophic factor with suicide attempts in depressed patients.Neuropsychobiology,2008.57(3): p.139-45.
    7. Quesseveur, G., et al., BDNF overexpression in mouse hippocampal astrocytespromotes local neurogenesis and elicits anxiolytic-like activities. TranslPsychiatry,2013.3: p. e253.
    8. Liu, R.J., et al., Brain-derived neurotrophic factor Val66Met allele impairsbasal and ketamine-stimulated synaptogenesis in prefrontal cortex. BiolPsychiatry,2012.71(11): p.996-1005.
    9. Coryell, W., et al., HPA-axis hyperactivity and mortality in psychoticdepressive disorder: preliminary findings. Psychoneuroendocrinology,2008.33(5): p.654-8.
    10. O'Keane, V., T. Frodl, and T.G. Dinan, A review of Atypical depression inrelation to the course of depression and changes in HPA axis organization.Psychoneuroendocrinology,2012.37(10): p.1589-99.
    11. Braquehais, M.D., et al., Hypothalamic-pituitary-adrenal axis dysfunction as aneurobiological correlate of emotion dysregulation in adolescent suicide.World J Pediatr,2012.8(3): p.197-206.
    12. Matsuda, A., et al., Glucocorticoid sensitivity depends on expression levels ofglucocorticoid receptors in canine neoplastic mast cells. Vet ImmunolImmunopathol,2011.144(3-4): p.321-8.
    13. Kronenberg, G., et al., Reduced hippocampal neurogenesis in the GR(+/-)genetic mouse model of depression. Eur Arch Psychiatry Clin Neurosci,2009.259(8): p.499-504.
    14. Molteni, R., et al., Depression-prone mice with reduced glucocorticoidreceptor expression display an altered stress-dependent regulation ofbrain-derived neurotrophic factor and activity-regulatedcytoskeleton-associated protein. J Psychopharmacol,2010.24(4): p.595-603.
    15. Nader, N., et al., AMPK regulates metabolic actions of glucocorticoids byphosphorylating the glucocorticoid receptor through p38MAPK. MolEndocrinol,2010.24(9): p.1748-64.
    16. Iio, W., et al., Anorexic behavior and elevation of hypothalamic malonyl-CoAin socially defeated rats. Biochem Biophys Res Commun,2012.421(2): p.301-4.
    17. Iyo, A.H., et al., Chronic corticosterone administration down-regulatesmetabotropic glutamate receptor5protein expression in the rat hippocampus.Neuroscience,2010.169(4): p.1567-74.
    18. Unemura, K., et al., Glucocorticoids decrease astrocyte numbers by reducingglucocorticoid receptor expression in vitro and in vivo. J Pharmacol Sci,2012.119(1): p.30-9.
    19. Lutzner, N., et al., FOXO3is a glucocorticoid receptor target and regulatesLKB1and its own expression based on cellular AMP levels via a positiveautoregulatory loop. PLoS One,2012.7(7): p. e42166.
    20. Slezak, M., et al., Astrocytes are a neural target of morphine action viaglucocorticoid receptor-dependent signaling. Glia,2013.61(4): p.623-35.
    21. Wang, Y., et al., Acetylsalicylic acid as an augmentation agent in fluoxetinetreatment resistant depressive rats. Neurosci Lett,2011.499(2): p.74-9.
    22. Mendlewicz, J., et al., Shortened onset of action of antidepressants in majordepression using acetylsalicylic acid augmentation: a pilot open-label study.Int Clin Psychopharmacol,2006.21(4): p.227-31.
    23. Brunello, N., et al., Acetylsalicylic acid accelerates the antidepressant effect offluoxetine in the chronic escape deficit model of depression. Int ClinPsychopharmacol,2006.21(4): p.219-25.
    24. Berk, M., et al., Aspirin: a review of its neurobiological properties andtherapeutic potential for mental illness. BMC Med,2013.11(1): p.74.
    25. Carlson, C.L. and W.W. Winder, Liver AMP-activated protein kinase andacetyl-CoA carboxylase during and after exercise. J Appl Physiol,1999.86(2):p.669-74.
    26. Rethorst, C.D. and M.H. Trivedi, Evidence-based recommendations for theprescription of exercise for major depressive disorder. J Psychiatr Pract,2013.19(3): p.204-12.
    27. Pereira, D.S., et al., Effects of physical exercise on plasma levels ofbrain-derived neurotrophic factor and depressive symptoms in elderly women-a randomized clinical trial. Arch Phys Med Rehabil,2013.
    28. Stanton, R. and P. Reaburn, Exercise and the treatment of depression: A reviewof the exercise program variables. J Sci Med Sport,2013.
    29. Dasgupta, B. and J. Milbrandt, Resveratrol stimulates AMP kinase activity inneurons. Proc Natl Acad Sci U S A,2007.104(17): p.7217-22.
    30. Park, C.E., et al., Resveratrol stimulates glucose transport in C2C12myotubesby activating AMP-activated protein kinase. Exp Mol Med,2007.39(2): p.222-9.
    31. Yu, Y., et al., Antidepressant-like effect of trans-resveratrol in chronic stressmodel: Behavioral and neurochemical evidences. J Psychiatr Res,2013.47(3):p.315-22.
    32. Xu, Y., et al., Antidepressant-like effect of trans-resveratrol: Involvement ofserotonin and noradrenaline system. Eur Neuropsychopharmacol,2010.20(6):p.405-13.
    33. Sepanjnia, K., et al., Pioglitazone adjunctive therapy for moderate-to-severemajor depressive disorder: randomized double-blind placebo-controlled trial.Neuropsychopharmacology,2012.37(9): p.2093-100.
    34. Musi, N., et al., Metformin increases AMP-activated protein kinase activity inskeletal muscle of subjects with type2diabetes. Diabetes,2002.51(7): p.2074-81.
    35. Huang, G.J. and J. Herbert, Serotonin modulates the suppressive effects ofcorticosterone on proliferating progenitor cells in the dentate gyrus of thehippocampus in the adult rat. Neuropsychopharmacology,2005.30(2): p.231-41.
    36. Kalynchuk, L.E., et al., Corticosterone increases depression-like behavior,with some effects on predator odor-induced defensive behavior, in male andfemale rats. Behav Neurosci,2004.118(6): p.1365-77.
    37. Fonseca, E.A., et al., Metformin reduces the stimulatory effect of obesity on invivo Walker-256tumor development and increases the area of tumor necrosis.Life Sci,2011.88(19-20): p.846-52.
    38. Kravchuk, E., et al., The effect of metformin on the myocardial tolerance toischemia-reperfusion injury in the rat model of diabetes mellitus type II. ExpDiabetes Res,2011.2011: p.907496.
    39. Wang, Y., et al., Downregulation of osteopontin is associated with fluoxetineamelioration of monocrotaline-induced pulmonary inflammation and vascularremodelling. Clin Exp Pharmacol Physiol,2011.38(6): p.365-72.
    40. Pellow, S. and S.E. File, Anxiolytic and anxiogenic drug effects on exploratoryactivity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol
    Biochem Behav,1986.24(3): p.525-9.
    1. Nemeroff, C.B., The corticotropin-releasing factor (CRF) hypothesis ofdepression: new findings and new directions. Mol Psychiatry,1996.1(4): p.336-42.
    2. Pariante, C.M. and A.H. Miller, Glucocorticoid receptors in major depression:relevance to pathophysiology and treatment. Biol Psychiatry,2001.49(5): p.391-404.
    3. Smith, R.W., et al., Prevalence of hypothalamic-pituitary-adrenal axissuppression in children treated for asthma with inhaled corticosteroid.Paediatr Child Health,2012.17(5): p. e34-9.
    4. Flandreau, E.I., et al., Chronic overexpression of corticotropin-releasing factorfrom the central amygdala produces HPA axis hyperactivity and behavioralanxiety associated with gene-expression changes in the hippocampus andparaventricular nucleus of the hypothalamus. Psychoneuroendocrinology,2012.37(1): p.27-38.
    5. Young, E.A., et al., Loss of glucocorticoid fast feedback in depression. ArchGen Psychiatry,1991.48(8): p.693-9.
    6. Holsboer, F., The corticosteroid receptor hypothesis of depression.Neuropsychopharmacology,2000.23(5): p.477-501.
    7. Pariante, C.M., Depression, stress and the adrenal axis. J Neuroendocrinol,2003.15(8): p.811-2.
    8. Whittle, S., et al., Pituitary volume mediates the relationship between pubertaltiming and depressive symptoms during adolescence.Psychoneuroendocrinology,2012.37(7): p.881-91.
    9. Kessing, L.V., I.S. Willer, and U. Knorr, Volume of the adrenal and pituitaryglands in depression. Psychoneuroendocrinology,2011.36(1): p.19-27.
    10. Pariante, C.M., et al., Pituitary volume in psychosis. Br J Psychiatry,2004.185: p.5-10.
    11. Garner, B., et al., Pituitary volume predicts future transition to psychosis inindividuals at ultra-high risk of developing psychosis. Biol Psychiatry,2005.58(5): p.417-23.
    12. Furay, A.R., A.E. Bruestle, and J.P. Herman, The role of the forebrainglucocorticoid receptor in acute and chronic stress. Endocrinology,2008.149(11): p.5482-90.
    13. Binder, E.B., et al., HPA-axis regulation at in-patient admission is associatedwith antidepressant therapy outcome in male but not in female depressedpatients. Psychoneuroendocrinology,2009.34(1): p.99-109.
    14. Oberlander, T.F., et al., Hypothalamic-pituitary-adrenal (HPA) axis function in3-month old infants with prenatal selective serotonin reuptake inhibitor (SSRI)antidepressant exposure. Early Hum Dev,2008.84(10): p.689-97.
    15. De Kloet, E.R., et al., Brain corticosteroid receptor balance in health anddisease. Endocr Rev,1998.19(3): p.269-301.
    16. Funder, J.W., Glucocorticoid receptors. J Steroid Biochem Mol Biol,1992.43(5): p.389-94.
    17. Roberts, A.J. and L.D. Keith, Sensitivity of the circadian rhythm of kainicacid-induced convulsion susceptibility to manipulations of corticosteronelevels and mineralocorticoid receptor binding. Neuropharmacology,1994.33(9): p.1087-93.
    18. Odermatt, A. and C. Gumy, Glucocorticoid and mineralocorticoid action: whyshould we consider influences by environmental chemicals? BiochemPharmacol,2008.76(10): p.1184-93.
    19. Mayer, J.L., et al., Brief treatment with the glucocorticoid receptor antagonistmifepristone normalises the corticosterone-induced reduction of adulthippocampal neurogenesis. J Neuroendocrinol,2006.18(8): p.629-31.
    20. Young, A.H., et al., Improvements in neurocognitive function and moodfollowing adjunctive treatment with mifepristone (RU-486) in bipolar disorder.Neuropsychopharmacology,2004.29(8): p.1538-45.
    21. DeBattista, C., et al., Mifepristone versus placebo in the treatment of psychosisin patients with psychotic major depression. Biol Psychiatry,2006.60(12): p.1343-9.
    22. Flores, B.H., et al., Clinical and biological effects of mifepristone treatmentfor psychotic depression. Neuropsychopharmacology,2006.31(3): p.628-36.
    23. Dowlati, Y., et al., A meta-analysis of cytokines in major depression. BiolPsychiatry,2010.67(5): p.446-57.
    24. Liu, Y., R.C. Ho, and A. Mak, Interleukin (IL)-6, tumour necrosis factor alpha(TNF-alpha) and soluble interleukin-2receptors (sIL-2R) are elevated inpatients with major depressive disorder: a meta-analysis and meta-regression.J Affect Disord,2012.139(3): p.230-9.
    25. Pratt, W.B. and D.O. Toft, Steroid receptor interactions with heat shockprotein and immunophilin chaperones. Endocr Rev,1997.18(3): p.306-60.
    26. Bledsoe, R.K., et al., Crystal structure of the glucocorticoid receptor ligandbinding domain reveals a novel mode of receptor dimerization and coactivatorrecognition. Cell,2002.110(1): p.93-105.
    27. Savory, J.G., et al., Discrimination between NL1-and NL2-mediated nuclearlocalization of the glucocorticoid receptor. Mol Cell Biol,1999.19(2): p.1025-37.
    28. Sanchez, E.R., et al., Hormone-free mouse glucocorticoid receptorsoverexpressed in Chinese hamster ovary cells are localized to the nucleus andare associated with both hsp70and hsp90. J Biol Chem,1990.265(33): p.20123-30.
    29. McKay, L.I. and J.A. Cidlowski, Cross-talk between nuclear factor-kappa Band the steroid hormone receptors: mechanisms of mutual antagonism. MolEndocrinol,1998.12(1): p.45-56.
    30. Jonat, C., et al., Antitumor promotion and antiinflammation: down-modulationof AP-1(Fos/Jun) activity by glucocorticoid hormone. Cell,1990.62(6): p.1189-204.
    31. Focking, M., I. Holker, and T. Trapp, Chronic glucocorticoid receptoractivation impairs CREB transcriptional activity in clonal neurons. BiochemBiophys Res Commun,2003.304(4): p.720-3.
    32. De Bosscher, K. and G. Haegeman, Minireview: latest perspectives onantiinflammatory actions of glucocorticoids. Mol Endocrinol,2009.23(3): p.281-91.
    33. Zhou, J. and J.A. Cidlowski, The human glucocorticoid receptor: one gene,multiple proteins and diverse responses. Steroids,2005.70(5-7): p.407-17.
    34. Lu, Y., et al., Systemic inflammation, depression and obstructive pulmonaryfunction: a population-based study. Respir Res,2013.14(1): p.53.
    35. Nunes, S.O., et al., The shared role of oxidative stress and inflammation inmajor depressive disorder and nicotine dependence. Neurosci Biobehav Rev,2013.
    36. Makhija, K. and S. Karunakaran, The role of inflammatory cytokines on theaetiopathogenesis of depression. Aust N Z J Psychiatry,2013.
    37. Osborne, L.M. and C. Monk, Perinatal depression-The fourth inflammatorymorbidity of pregnancy?: Theory and literature review.Psychoneuroendocrinology,2013.
    38. Zhang, X., A.F. Clark, and T. Yorio, FK506-binding protein51regulatesnuclear transport of the glucocorticoid receptor beta and glucocorticoidresponsiveness. Invest Ophthalmol Vis Sci,2008.49(3): p.1037-47.
    39. Tatro, E.T., et al., Modulation of glucocorticoid receptor nuclear translocationin neurons by immunophilins FKBP51and FKBP52: implications for majordepressive disorder. Brain Res,2009.1286: p.1-12.
    40. Heitzer, M.D., et al., Glucocorticoid receptor physiology. Rev Endocr MetabDisord,2007.8(4): p.321-30.
    41. Echeverria, P.C. and D. Picard, Molecular chaperones, essential partners ofsteroid hormone receptors for activity and mobility. Biochim Biophys Acta,2010.1803(6): p.641-9.
    42. Hubler, T.R., et al., The FK506-binding immunophilin FKBP51istranscriptionally regulated by progestin and attenuates progestinresponsiveness. Endocrinology,2003.144(6): p.2380-7.
    43. Reynolds, P.D., et al., Glucocorticoid resistance in the squirrel monkey isassociated with overexpression of the immunophilin FKBP51. J ClinEndocrinol Metab,1999.84(2): p.663-9.
    44. Gallo, L.I., et al., Differential recruitment of tetratricorpeptide repeat domainimmunophilins to the mineralocorticoid receptor influences both heat-shockprotein90-dependent retrotransport and hormone-dependent transcriptionalactivity. Biochemistry,2007.46(49): p.14044-57.
    45. Periyasamy, S., et al., FKBP51and Cyp40are positive regulators ofandrogen-dependent prostate cancer cell growth and the targets of FK506andcyclosporin A. Oncogene,2010.29(11): p.1691-701.
    46. Ni, L., et al., FKBP51promotes assembly of the Hsp90chaperone complexand regulates androgen receptor signaling in prostate cancer cells. Mol CellBiol,2010.30(5): p.1243-53.
    47. Chrousos, G.P., et al., Glucocorticoid hormone resistance during primateevolution: receptor-mediated mechanisms. Proc Natl Acad Sci U S A,1982.79(6): p.2036-40.
    48. Denny, W.B., et al., Structure-function analysis of squirrel monkeyFK506-binding protein51, a potent inhibitor of glucocorticoid receptoractivity. Endocrinology,2005.146(7): p.3194-201.
    49. O'Leary, J.C.,3rd, et al., A new anti-depressive strategy for the elderly:ablation of FKBP5/FKBP51. PLoS One,2011.6(9): p. e24840.
    50. Binder, E.B., et al., Association of FKBP5polymorphisms and childhoodabuse with risk of posttraumatic stress disorder symptoms in adults. JAMA,2008.299(11): p.1291-305.
    51. Gillespie, C.F., et al., Risk and resilience: genetic and environmentalinfluences on development of the stress response. Depress Anxiety,2009.26(11): p.984-92.
    52. van Rossum, E.F., et al., Polymorphisms of the glucocorticoid receptor geneand major depression. Biol Psychiatry,2006.59(8): p.681-8.
    53. Ising, M., et al., Polymorphisms in the FKBP5gene region modulate recoveryfrom psychosocial stress in healthy controls. Eur J Neurosci,2008.28(2): p.389-98.
    54. Shibuya, N., et al., Association study between a functional polymorphism ofFK506-binding protein51(FKBP5) gene and personality traits in healthysubjects. Neurosci Lett,2010.485(3): p.194-7.
    55. Zobel, A., et al., DNA sequence variants of the FKBP5gene are associatedwith unipolar depression. Int J Neuropsychopharmacol,2010.13(5): p.649-60.
    56. Lang, F., F. Artunc, and V. Vallon, The physiological impact of the serum andglucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens,2009.18(5): p.439-48.
    57. Sato, H., et al., Large-scale analysis of glucocorticoid target genes in rathypothalamus. J Neurochem,2008.106(2): p.805-14.
    58. Sarabdjitsingh, R.A., et al., Disrupted corticosterone pulsatile patternsattenuate responsiveness to glucocorticoid signaling in rat brain.Endocrinology,2010.151(3): p.1177-86.
    59. Kalinichev, M., et al., Comparison between intraperitoneal and subcutaneousphencyclidine administration in Sprague-Dawley rats: a locomotor activityand gene induction study. Prog Neuropsychopharmacol Biol Psychiatry,2008.32(2): p.414-22.
    60. Sheng, H., et al., Corticotropin-releasing hormone stimulates SGK-1kinaseexpression in cultured hippocampal neurons via CRH-R1. Am J PhysiolEndocrinol Metab,2008.295(4): p. E938-46.
    61. Huguet, G., et al., Intracranial self-stimulation to the lateral hypothalamus, amemory improving treatment, results in hippocampal changes in geneexpression. Neuroscience,2009.162(2): p.359-74.
    62. Befort, K., et al., Mu-opioid receptor activation induces transcriptionalplasticity in the central extended amygdala. Eur J Neurosci,2008.27(11): p.2973-84.
    63. Robbins, M.J., et al., Differential expression of IEG mRNA in rat brainfollowing acute treatment with clozapine or haloperidol: a semi-quantitativeRT-PCR study. J Psychopharmacol,2008.22(5): p.536-42.
    64. Ma, Y.L., et al., SGK protein kinase facilitates the expression of long-termpotentiation in hippocampal neurons. Learn Mem,2006.13(2): p.114-8.