风翼助航船舶主动力装置特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源匮乏与环境亟待保护双重因素,加速了风能在大型远洋船舶上的应用研究进程。本课题系风翼助航船舶的应用基础研究,采用仿真和风洞试验等方法,以7.6万吨风翼助航目标船为研究对象,对风翼作用力、船舶阻力、主机动力学与运动学特性,以及风翼应用技术对策进行了研究。
     首先,通过理论计算,分析了目标船舶在不同风速、不同航速时的船舶阻力;采用船模试验方法分析了目标船使用风翼助航系统所引起的船舶漂角对船舶阻力的影响,并计算了船舶舵角对船舶阻力的增益。分别利用CFD软件仿真和风洞试验等方法计算了不同风速时的风翼助推力,并进行了风翼作用力能效分析。结果表明:船体迎风角在100°左右时最适宜使用风翼助航装置,船体迎风角太大或太小时均不能取得最大的助推力;风翼助航节能效果可达10%以上。
     其次,从动力学角度对风翼-柴油机混合动力船舶主机主要运动部件的载荷规律进行了研究。利用Pro/Engineer等软件建立了目标船MAN B&W5S60MC主机的ADAMS虚拟样机,并利用虚拟样机计算了风翼助推力变化所引起的主机变负荷、变转速和同时变负荷变转速三种动态工况下主机主要运动部件的载荷变化规律。结果表明:使用风翼助航系统时,风翼助推力的变化会导致船舶主机工况发生变化,此时主机曲轴的载荷规律变得更加复杂(尤其是5#主轴颈);主机负荷对主机各主要运动部件的载荷规律基本无影响,而主机转速对主机各主要运动部件的载荷规律影响较大。WDS使用风翼助推系统时,采用主机定转速而自动调节主机负荷控制方式对主机各主要运动部件的冲击力最小;如果采用主机定负荷而自动调节主机转速控制方式,则需尽量控制主机转速平稳变化,防止主机转速变化速率过大而引起主机连杆、曲轴等主要运动部件的载荷波动。
     再次,从运动学角度研究了7.6万载重吨风翼-柴油机混合动力船舶推进系统特性。采用Matlab/Simulink软件对风翼-柴油机混合动力船舶主推进系统进行了仿真计算,分析了风翼助推力的各种扰动对船舶主机功率、扭矩和转速等输出特性的影响。建立了船、机、桨、翼的数学模型,搭建了主机定转速、主机定油门刻度和船舶定航速等不同航行模式的船舶主推进系统模型,并采用不同形状的干扰波模拟复杂多变的风翼助推力,对三种不同的航行模式下的船机桨翼模型进行了仿真。根据仿真结果分析了不同航行模式下,风翼助推力各扰动波形对船舶主机转速、主机每循环耗油量、主机扭矩、主机功率、船舶航速和船舶阻力等各特性参数的影响。
     最后,提出了“可行、安全、节能”的风翼助航典型船舶选型原则;分析了风翼-柴油机混合动力船舶应用的制约因素,并有针对性地提出了改善船舶主推进系统性能的相关措施和风翼-柴油机混合动力船舶的新型调速控制策略。
As a consequence of energy shortage and environmental protection, the research process of wind energy utilization on large ocean-going vessels is in going on at a greatly accelerated pace. In this thesis, the fundamental study for application on wing-assisted vessel has been studied. By using method of simulation and wind tunnel, the driving force of wind and resistance of ship, as well as the dynamics and kinematics of marine main engine and the technical countermeasure of application have been studied.
     Firstly, based on the theoretical calculation, the resistance of project ship with different wind and ship speed has been analyzed; The influence of yawing to the resistance of project ship, which is equipped with wing-sail assisted system, has been analyzed utilizing the ship model experiment, the resistance gain induced by the steering angle has been calculated. By using the CFD simulation software and wind tunnel experiment, the wing-sail assisted driving force with different wind speed has been calculated, and the energy efficiency has been analyzed. The result shows that the wing-sail assisted device is most suitably used at a wind angle of100°, the maximum wing-sail assisted driving force can be achieved at a wind angle neither too large nor too small; More than10%of fuel reduction could be achieved.
     Secondly, load pattern of main moving parts of Wing-Diesel-Ship main engine has been studied from a visual angle of dynamics. The ADAMS virtual prototype of project ship engine MAN B&W5S60MC has been established using the software Pro/Engineer and the load pattern of main moving component at variable load, speed and load-speed conditions due to the changes of wing-sail assisted driving force have been calculated by this virtual prototype. The result shows that when using the wing-sail assisted system, the variation of the wing-sail assisted driving force will lead to the variation of the working condition of the main engine, the load pattern of the crankshaft will become more complex (especially the5#main journal); The influence of the main engine load to the load pattern of main moving parts is tiny, but the influence of the main engine revolution speed is large. When using wing-sail assisted system, the impact on main moving parts is smallest at variable load control mode. The variation of main engine speed should be kept stable in order to avoid load fluctuation of main moving parts caused by excessive changing rate of main engine speed when using variable speed control mode.
     Thirdly, the propulsion system characteristic of76,000DWT Wing-Diesel-Ship has been studied from visual angle of kinematics. Simulation computation of WDS main propulsion system has been carried out using software Matlab/Simulink, the influence of various wing-sail assisted driving force disturbance to main engine power, torque, and speed output characteristics has been analyzed. According to established ship-engine-propeller-wing mathematical model, the propulsion system model on constant engine speed, constant fuel pump index and constant ship speed sail mode have been established respectively. The ship-engine-propeller-wing model on different sail mode, by utilizing interference wave of different shapes to simulate complex wind thrust, has been simulated. The influence of various wing-sail assisted driving force disturbance waveform to main engine characteristic parameters like rotation speed, cycle fuel consumption, torque, power, navigational speed and resistance has been analyzed according to the simulation result.
     Finally, the selection principle "feasible, safe, energy-saving" of ship which applies to Wing-Diesel-Ship has been discussed. Several restricted factors of Wing-Diesel-Ship have been analyzed. The related measures which improve the ship propulsion system performance and a new strategy of Wing-Diesel-Ship speed regulating control have been put forward.
引文
[1]交通运输部.交通运输“十二五”发展规划[R].北京:交通运输部,2011.
    [2]张九辰.从动力到能源:中国科学院能源研究的兴起[J].自然科学史研究,2010,29(2):166-176.
    [3]李元奎,张英俊,孙培廷,等.船舶典型远洋航线上风力资源时空分布特征[J].大连海事大学学报,2010,36(2):39-40.
    [4]Curry M..Yacht Racing:The Aerodynamics of Sails and Racing Tactics,New York,Holt,1925.
    [5]Wellicome, J.F.Some comments on the relative merits of various wind propulsion devices[J]. Journal of Wind Engineering and Industrial Aerodynamics,1985,20(1-3):111-142.
    [6]Burgin N, Wilson P A. Influence of cable forces on the efficiency of kite devices as a means of alternative propulsion[J].Journal of Wind Engineering and Industrial Aerodynamics,1985,20(1-3):349-367.
    [7]张仁颐.风帆助航节能船经济可行性探讨[J].船舶工程,1984,(5):32.39-45.
    [8]施瑞华.风帆助航实船推进性能分析[J].船舶工程,1986,(3):18-23.
    [9]张仁颐.中国沿海风帆助航节能的潜力[J].船舶工程,1993,(6):4-8.
    [10]陈顺怀.冯恩德.风帆助航船帆性能及节能效果的预报方法[J].武汉交通科技大学学报,1996,20(3):344-348.
    [11]廖铭声.圆弧型风帆的阻力研究与计算[J].船舶工程,1997,(06):13-18.
    [12]Fujiwara T.,Ueno M.,Nimura T. Estimation of wind forces and moments acting on ships[J]Journal of the Society of Naval Architects of Japan,1998,183:77-90.
    [13]Fujiwara Toshifumi,Hirata Koichi, Ueno Michio,et al.On aerodynamic characteristics of a hybrid-sail with square soft sail[C].Proceedings of the International Offshore and Polar Engineering Conference.Honolulu:International Society of Offshore and Polar Engineers,2003:2576-2583.
    [14]Fujiwara Toshifumi, Kitamura Fumitoshi, Ueno Michio,et al.Hybrid-sail-hull and sail-sail interaction effects for an ocean-going sailing ship[C].Proceedings of the Fourteenth (2004) International Offshore and Polar Engineering Conference. Toulon, France. International Society of Offshore and Polar Engineers,2004:351-358.
    [15]Fujiwara T., Hearn GE, Kitamura F.. et al.Steady sailing performance of a hybrid-sail assisted bulk carrier[J]. Journal of Marine Science and Technology,2005,10(3):131-146.
    [16]Toshifumi Fujiwara, Grant E. Hearn, Fumitoshi Kitamura,et al.Sail-sail and sail-hull interaction effects of hybrid-sail assisted bulk carrier[J]. Journal of Marine Science and Technology,2005,10(2):82-95.
    [17]Horiuchi, Kotaro, Kanai Norihiko, Uemori Singo.Foldable kite sail "Manta" for small slender boats[C]. Oceans '04 MTS/IEEE Techno-Ocean'04,2004,2:1014-1016.
    [18]Hamer Mick. Winging it[J].New Scientist.2005.185(2488):44-47.
    [19]Houska Boris, Diehl Moritz.Optimal control of towing kites[C].Proceedings of the 45th IEEE Conference on Decision and Control,2006:2693-2697.
    [20]宋协法,付道军.辅助风帆对船舶航行性能影响的理论研究[J].青岛海洋大学学报,2002,32(3):391-396.
    [21]Naaijen P, Koster V.,Dallinga R.P. On the power savings by an auxiliary kite propulsion system[J].International Shipbuilding Progress,2006,53(4):255-279.
    [22]Podgaets Aleksandr Romanovich. The economic and sustainable utilisation of wind power in the cargo shipping industry Source[J].HSB International,2006,55(3):38-40.
    [23]Aleksandr Romanovich Podgaets,Wubbo Johannes Ockels. Comparison of Two Mathematical Models of the Kite for Laddermill Sail Simulation[C].Proceedings of the World Congress on Engineering and Computer Science 2007,2007:850-854.
    [24]Amini Hamid, Rad, Manucher. A Fundamental Theory of Sailing and its Application to the Design and Velocity Prediction of A Rigid Airfoil Sail Craft[J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University.2006,27(2):133-141.
    [25]Naaijen Peter, Shi Wei, Kherian Jean-Gregoire.Assessing the fuel saving by using auxiliary wind propulsion from traction kites. Royal Institution of Naval Architects-Ship Design and Operation for Environmental Sustainability-Papers,2010:27-37.
    [26]Schlaak M. Kreutzer R.,Elsner R..Simulating possible savings of the skysalls-system on interna-tional merchant ship fleets[J].International journal of maritime engineering,2009,151(4):25-37.
    [27]黄朝明.风帆助航船舶的实验研究[D]:硕士学位论文.大连:大连海事大学,2008.
    [28]胡文蓉,祖洪彪,丁祖荣,等.风帆在梯度风中空气动力性能的数值研究[J].上海交通大学学报,2008,42(11):1900-1903.
    [29]孟维明,赵俊豪,黄连忠.风帆助航节能船的应用前景[J].船舶,2009,(4):1-3.
    [30]陈鲁愚,陈顺怀,严新平.大型远洋风帆助航船舶节能效率分析[J].船海工程,2010,(6):121-123.
    [31]Chen Luyu, Chen Shunhuai, Wang Yigong. Analysis on sail selection and energy conservation of a Panamax bulk carrier[C].2010 International Conference on Advances in Energy Engineering (ICAEE 2010),2010:182-185.
    [32]徐立,王亦工,孙忠玉,等.巴拿马型风帆助航散货船稳性及桅杆结构安全分析[J].船海工程.,2010,(6):141-144.
    [33]Xu Li; Chen Lu-yu. Analysis on energy conservation efficiency for ocean-going sail-assisted bulk carrier[C].2010 International Conference on Mechanic Automation and Control Engineering.2010: 4062-4065.
    [34]Davidson K.,Sehiff L..Turning and Course Keep in Ships[J].SNAME Transactions,1964:23-40.
    [35]Hirano M.,Takashina J.,Takaishi K. et al. Ship turning trajectory in regular waves[C].Transactions of West-Japan Society of Naval Architects,1980:17-31.
    [36]MAN. Basic Principles of Ship Propulsion,2009.
    [37]Minami Y.,Nimura T.,Fujiwara T.,et al, M.Investigation into Underwater Fin Arrangement Effect on Steady Sailing Characteristics of a Sail Assisted Ship, Proc. Int. Society of Offshore and Polar Eng, ISOPE,2003:318-325.
    [38]汪仲山.风帆船机桨联合计算机控制系统试验研究[J].武汉理工大学学报,1989,13(4):11-16.
    [39]陆志强.机桨设计工况的最优选择[J].船舶工程,1991,(2):18-20
    [40]DUBE JP.,GOYAL MR..Digital Computer Simulation of a Diesel Fuel Injection[J].Journal of the Institution of Engineers.Mechanical Engineering Division,1970,50:132-140.
    [41]Pronk C.Selection and Simulation of Marine Propulsion Control Systems[J].International Shipbuilding Progress,1972,19(218):342-348.
    [42]Mizushima Kazuhiro,Nagai Masashi.Asada Tadataka.Some Analyses of Diesel Engine Performance by means of Computer Simulation[C]. Marine Engineering Society in Japan.1973:35-46.
    [43]He Wei.Logistic simulation model for wind-diesel systems[C].American Society of Mechanical Engineers.Advanced Energy Systems Division,1993.30:419-424.
    [44]He Wei.Simulation module for wind-diesel systems with multiple units[C].IEE Conference Publication,1993(385):171-176.
    [45]Kyrtatos N.P.,Theodossopoulos P..Theotokatos G,et al. Simulation of the Overall ship propulsion plant for performance prediction and control[C].Marpower 99 Conference.Newcastle-upon-Tyne, UK,1999.
    [46]Kyrtatos N.P.,Theotokatos G., Xiros N.I..A Virtual Experiment Tool for Marine Diesel Engine Power Plant Analysis[C].10th International Congress of the International Maritime Association of the Mediterranean, Crete, Greece,2002.13-17.
    [47]杜德基,睦刚,丁英奇.船舶柴油机推进装置的计算机辅助建模[J].上海交通大学学报,1982,(3):103-120.
    [48]龚金科,刘孟祥,刘湘玲.用simlink实现柴油机的建模与仿真[J].湖南大学学报,2002,29(4):38-41.
    [49]李文长,赵长禄,孙业保,等.基于MATLAB/simlink及RTW的柴油机稳态建模与仿真[J].北京理工大学学报,2004,24(4):315-319.
    [50]李文长,赵长禄,张付军,等.基于MATLAB/simlink及RTW的柴油机瞬态建模与仿真[J].北京理工大学学报,2004,24(7):579-582.
    [51]李彦强,朱从乔,黄次浩.柴油机数字电子调速器技术综述[J].海军工程大学学报.2000,,(4):31-35.
    [52]吴民桥,朱丛乔,潜伟建.等.柴油机数字式电子调速器的技术现状和发展趋势[J].中外船舶科技,2001,(4):20-25.
    [53]Woodward Governor Company, SPEED CONTROS-8271,1951.
    [54]H.Peter. The electronic governing of diesel engines for the agricultural industry. SAE Paper.860146
    [55]机械电子部第70研究所情报室.美国BARBER COLMAN公司电子调速器,1990.
    [56]邵家骧译.调速器技术(1)[C].中国造船学会轮机学术委员会,1981.
    [57]Bode D.Governor Control System Offers Locomotive Fuel Savings[J].DGTW,1983,15(9):10-12.
    [58]Bode D.Electronic Governor Offers Several Advantages[J].DGTW,1984,16(4):28-30.
    [59]Jaliwala S.A.,Day E.,Stah1 W.H..Diesel Engine Governing with Load Feedback [R].New York: ASME,1992.
    [60]Maurizio Abate, Norberto Doslo.Use of Fuzzy Logic for Engine Idle Speed Control[R].USA: SAE900594.
    [61]GHOLT, BSc.AMIEE.Recent Development of Electronic Governors[R].The Institution of Diesel and Gas Turbine Engine Transaction,1986.
    [62]Garvey D.C.. Precision Speed Control Systems with Throttle Disturbance Forces[R].New York: ASME.1981.
    [63]段军.机车柴油机数字式电子调速系统智能PID控制理论和技术的研究[D]:博十学位论文.大连:大连理工大学,2000.
    [64]朱红平,李润求.基于Matlab的PID参数最优化设计[J].兵工自动化,2004,,23(01):39-40.
    [65]郭辉,宋大为,丘爱华,等.自适应PID算法在数字式电子调速系统中的应用[J].上海工程技术大学学报.2007.21(02):126-129.
    [66]向守兵,张文贵.基于积分分离式PID控制的柴油发电机组调速器优化设计[J].制造业自动化,2010,32(5):20-22.
    [67]Maurizio Abate,Norberto Doslo.Use of fuzzy logic for engine idle speed control[C].SAE Special Publications.USA,1990(819):8p 900594.
    [68]Matsumoto Hisashi,Morita Shigeyuki,Takiyama Takeshi. Application of Fuzzy Control to Internal Combustion Engines[J].JSME International Journal, Series B:Fluids and Thermal Engineering,1994,37 (1):159-164.
    [69]李连杰,朱从乔,陈松林.柴油机调速系统的模糊控制[J].兵工自动化,,2006,25(12):63-64.
    [70]陈增海.柴油机的模糊-PID控制[J].仪器仪表用户,2006,13(2):107-109.
    [71]Xu Xiao-gang,Chen Xue-hui,Zheng Sheng-guo.Research on fuzzy PID control to electronic speed regulator.Proc.Of SPIE,2007,6794:1-6.
    [72]Xiao-Gang Duan.Han-Xiong Li,Hua Deng.A Simple Tuning Method for Fuzzy PID Control[C]. IEEE,2008:1-5.
    [73]Ko Chia-Nan,Wu Chia-Ju.A PSO-tuning method for design of fuzzy PID controllers[J].Journal of Vibration and Control,2008,14(3):375-395.
    [74]Mohan B.M., Sinha A., Analytical Structure and Stability Analysis of a Fuzzy PID Controller[J]. Applied Soft Computing,2008,8(1):749-758.
    [75]Yau-Tarng Juang,Yun-Tien Chang.Chih-Peng Huang. Design of fuzzy PID controllers using modified triangular membership functions[J].Information Sciences,2008,(178):1325-1333.
    [76]孙立晶.基于模糊-PID控制的柴油机调速系统的仿真研究[C].第16届全国大功率柴油机学术年会论文集.南宁,2009:102-104.
    [77]韦志康,王涛,黄大明,等.柴油机瞬时转速测试系统的开发[J].农机化研究,2007(2):219-221.
    [78]邱爱华,刘佳彬,李过房,等DECS-I柴油机集成电子控制系统的设计[J].柴油机,2006,28(3):8-11.
    [79]张桂臣,任光.主机数字调速器的研究与实现[J].中国航海,2008,31(2):117-121.
    [80]宋恩哲,姚崇,孙军,等.大功率柴油机全电式调速器设计与试验研究[J].船舶工程,,2010,32(5):33-36.
    [81]Norcontrol Automation.Digital Governor System DGS-8800e for MAN B & W MC Enginies. Instruction Manual.1995.
    [82]MTU Electronic Engine Governor R082 Submaine Version. Description No.E530391/00E.1988.
    [83]Wilson R..Electronic Governor Compensate for Lord Conditions [J].DPNAm.1985,(10):18-19.
    [84]朱子义.德国海茵茨曼两种新系列E100/E200数字式电子调速器[J].柴油机,1994,(4):29-33.
    [85]New engine governor/actuator line introduce[J].Diesel Progress Engine&Drvies.1992,58(1):8
    [86]纪铁辉.电子调速器的系统结构调试与维修[J].国外内燃机,1995,(3):47-53.
    [87]Osenga, Mike.New Pickup Powered electronic governor[J].Diesel progress North American, 1984,(9):20-22.
    [88]H.Y.Isaac Du.Simulation of flexible rotating crankshaft with Flexible engine block and hydrodynamic bearings for a V6 engine.SAE paper 1999,01-1752.
    [89]T.Aoyama,M.Inagaki,A.Kawamoto,et al.Analysis of main bearing force and cylinder block vibration related to engine air borne noise[J].Technical Notes JSAE Review,2000,(21):404-406.
    [90]Ilya Piraner,Christine Pflueger,Oliver Bouthier.Cummins Crankshaft and Bearing Analysis Process[C].2002 North American MDI User Conference,2002.
    [91]Omidreza Ebrat, Zissimos P.Mourelatos, Kexin Hu, Nickolas Vlahopoulos.An Elastohydrodynamic Coupling of a Rotating Crankshaftand a Flexible Engine Block[J], Transactions of the ASME.2004, 126:233-241.
    [92]Ahmad A S.Mahaveer P K.Danamic modeling of automotive engine crankshafts[J]. Mechanism& Machine Theory,1994,29(7)295-335.
    [93]休斯敦,刘又午.多体系统动力学[M].天津:天津大学出版社,1987.
    [94]郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析[J].铁道机车车辆,2003,23 (1):86-89.
    [95]郝志勇,林琼,段秀兵.曲轴系统动力学特性的数字化仿真与试验研究[J].内燃机工程,2006,27(1):38-40.
    [96]刘少俊,陈华清,陈新传,等.基于虚拟样机技术的柴油机曲轴-连杆-活塞机构运动学及动力学仿真分析[J].船舶工程,2006,28(3):10-13.
    [97]冯国胜,张幽彤,张玉中.柴油机曲轴静动特性的三维有限元分析[J].内燃机工程,2003,(2):74-77.
    [98]王勇,杨洋.基于有限元分析和动力学仿真的曲轴疲劳寿命计算[J].船电技术,2009,(6):28-30.
    [99]袁红良Holtrop法与船型阻力估算[J].船舶,2003,10(5):13-17.
    [100]陆冬青.船舶倒车停船运动仿真研究[J].舰船科学技术,2007,29(4):110-113.
    [101]盛振邦,刘应中.船舶原理(上册)[M].上海:上海交通大学出版社,2003.
    [102]王一鸣,周国平.实船航速测试数据的风力影响修正方法探讨[J].造船技术.1992,(5):25-29.
    [103]李干洛,罗淮龙,谭政生,等.节能船型设计[M].北京:国防工业出版社,1990.
    [104]孙培廷,李斌.船舶柴油机[M].大连:大连海事大学出版社,2002.
    [105]冯兵兵,钱作勤,林文武.基于ADAMS的柴油机曲轴仿真分析[J].船海工程,2008,37(5):61-64.
    [106]赵赛,郝志勇.柴油机曲轴系扭转振动的有限元模型研究[J].车辆与动力技术,2000,(4):27-31.
    [107]李殿璞.船舶运动与建模[M].哈尔滨:哈尔滨工程大学出版社,1999.
    [108]郭永丽,吴健,温步瀛,等.变速风力机的建模与仿真[J].福建电力与电工,2008,28(3):1-5.
    [109]丁连生,丁洪祥,姜耀华,等.柴油机电子调速系统设计及其Matlab仿真[J].船海工程,2008,(1):38-41.