汽车零部件可靠性评估的小样本方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验样本容量的选择在科学研究及产品开发中占有十分重要的地位。随着机械设备系统越来越复杂,功能要求越来越多样,人们对产品的可靠性要求也不断提高。验证高可靠性产品往往需要试验大量样品,这既耗费大量时间又增加研制成本。为解决这个问题,本文开展了汽车零部件可靠性评估的小样本方法研究,主要工作及结论如下:
     (1)引入继承因子来利用验前信息,推导了带继承因子的二项分布、指数分布可靠度置信下限。研究结果表明:可靠度随继承因子增大而增大,但评估结果介于历史可靠度和现场试验可靠度之间。二项分布验后分布密度对验前分布超参数较敏感,特别当代表验前失效次数的b值较大时会出现验后密度为负值的不合理现象,建议当b≤3时使用Beta验前分布。
     (2)以试验时间为纽带建立可靠度与试验应力之间的关系。根据这个关系可以通过改变试验应力来改变设计可靠度。结果表明:对于有替换定时截尾情形,当截尾时间延长至原来的k倍后,如果保持可靠度和置信度不变,指数分布所需样本数减至原来的1 /k,Weibull分布所需样本数减至原来的1 /km(m为Weibull分布形状参数);延长的时间可以通过加速寿命技术来缩短。算例表明,指数分布平均寿命延长至原来的1.784倍后,可靠度从0.9增至0.9427,相当于保持可靠度为0.9时试验样本从6减至1,减幅达83%;Weibull分布特征寿命延长至原来的1.72倍后,可靠度从0.9增至0.99,相当于保持可靠度为0.9861时试验样本从6减至1。对于高可靠度产品,样品数减幅将更大。
     (3)通过对可靠性影响因素研究,建立了生产过程中关键特征的联合分布密度函数来推导产品寿命与关键特征的函数关系。根据关键特征分布密度函数及其与产品寿命的关系推导寿命的分布密度函数,并由寿命分布密度函数建立可靠度函数。最后通过调查一个工厂某种产品的历史质量状况(过程能力指数)来初步确定该类产品的历史可靠性。根据历史可靠度Rd,实际测试样本量可减少为为原来的100(1-Rd)%。
Determination of testing sample size is occupied a critical position in the scientific study and product development. With the mechanical system and function getting more and more complicated, the reliability requirement of product is also getting strict. It needs lots of samples to verify the reliability requirement, which may consume much time and raise product cost. To solve this problem, the reliability assessment methods with small sample size have been studied in this paper. Main contents are as following.
     (1) By introducing inherited factor, the lower limit formula of reliability is derived on binominal distribution and exponential distribution. Reliability grows with the growing of inherited factor, and last results of reliability evaluation are between prior-test reliability and testing reliability. The density of the binomial distribution is sensitive to parameters of prior-test distribution. Especially, when parameterb which represents failure times is too large, the post-test density is sometimes negative or larger than 1, which is obviously unreasonable. So, b≤3 is suggested when using prior-test Beta distribution.
     (2) In order to building a relationship between testing stress level and reliability, duty time is used as an intermediate variable which is like a belt. For time-fixed replaceable cesser test, if the the cesser-time is extended tok times of original one, the required sample size of exponential distribution will become 1 /kof it, and Weibull distribution will be 1 /km. The calculation shows that when average life is extended to 1.784 times of requirement, the reliability of exponential distribution will increase from 0.9 to 0.9427, which means the testing sample size decreases from 6 to 1, and the decrease rate is 83%. For Weibull distribution, when character lifeηis extended to 1.72 times, the reliability will grow from 0.9 to 0.99, which means the sample size decrease from 6 to 1 still with reliability 0.9861. Especially for products with high reliability, the decrease of sample size will be larger.
     (3) The influencing factors of reliability are researched in this paper. The jointed probability density function of critical characteristics and the life function of critical characteristics are built for deriving the probability density function of life. According to the life probability density function, the reliability function is built to calculate the historical reliability of the products with the same category. By investigating the quality history (process capability index), the historical reliability Rd can be calculated for reducing the testing sample size, and the testing sample size can decrease by 100Rd%.
引文
[1]张洪才等,基于小子样机械零件全寿命试验数据的处理方法,机械科学与技术,2003, 22(6):942~944.
    [2]陆山,杨剑秋,基于小子样最差和最好试验结果的寿命分散系数法,2006, 25(1):99~101.
    [3]李强,冯元生,疲劳寿命小子样可靠性试验评估方法研究,中国机械工程,1996, 7(3):93~95.
    [4]张金槐,蔡洪,Bayes小子样理论的应用研究-回顾与展望,飞行器测控技术,1998,17(1):1~4.
    [5]宋笔锋,冯元生,贝叶斯估计与极小子样可靠性试验的一种策略,西北工业大学学报,1993, 11(3):288~292.
    [6]郑铁军,张居仁,可靠性工程中的小子样方法,空军工程学报,1996,16(1):56~63.
    [7]宋兆泓等,某涡轮盘小子样低周疲劳寿命估算,航空发动机,2002,3:18~20.
    [8] Wald A,Sequential Analysis,New York:John Wileys Sons,1947.
    [9] Efron B,Bootstrap Method,Ann,Statist,1979(7):1~36.
    [10] Efron B,The Jackknife the Bootstrap and other resampling plan,ohn Wiley,1982.
    [11] Hinkley D V,Improving the Jackknife with Speiod Reference to Correlation Estimation, Biometrika,1978(65):13~22.
    [12] Efron B,Stein C,The Jackknife Estimate of Variance,Ann,Statist,1981(9):586~596.
    [13] Rubin D,The Bayesian Bootstrap,Ann,Statist,1981(9).
    [14]郑国忠,随机加权法,应用数学学报,1987,10(2).
    [15]陈文华,李奇志,张为鄂,产品可靠性的Bootstrap区间估计方法,机械工程学报,2003,39(6):106~109.
    [16]连军,姚福生,林忠钦等,Bootstrap法在车身质量评定中的应用,中国机械工程,2003,14(4):347~349.
    [17]段晓君,王正明,小子样下的Bootstrap方法,弹道学报,2003,15(3):1~5.
    [18]冯蕴雯,黄玮,吕震宇等,极小子样试验的半经验评估方法,航空学报,2004,25(5):456~459.
    [19]黄玮,冯蕴雯,吕震宇,基于Bootstrap方法的小子样试验评估方法研究,机械科学与技术,2006,25(1):31~35.
    [20]田志友,田澎,王涣尘,基于Bootstrap抽样的多元过程能力指数估计,管理工程学报,2006,20(2):74~77.
    [21]金星,张明亮,陈景鹏等,有限样本数据夏产品可用度评定的Bootstrap方法,装备指挥技术学院学报,2006,17(3):104~107.
    [22]李洪双,吕震宇,小子样场合夏估算总体百分位值置信下限和可靠度置信下限的Bootstrap方法,航空学报,2006,27(5):789~794.
    [23]李洪双,吕震宇,估计疲劳寿命三参数P-S-N曲线的新方法,机械强度,2007,29(2):300~304.
    [24]张湘平,张金槐等,基于随机加权法的Bayes精度评定,国防科技大学学报,2001,23(3):98~102.
    [25]吴建国,黄丽琨,基于随机加权法的动态Bayes精度评估,经济数学,2007,24(1):65~68.
    [26]傅惠民,高镇同,最大标准差和最大变异系数方法,北京航空航天大学学报,1991(4):51~54.
    [27]傅惠民,高镇同,徐人平,总体百分位置信下限,北京航空航天大学学报,1990,3:1~8.
    [28]徐人平,新单侧容限系数及其应用分析,云南工业大学学报,1995,11(1):13~20.
    [29]林富甲,李祖钊,单侧容限对应实际存活率的预测,航空学报,1994,15(3):331~335.
    [30]傅惠民,二维单侧容限系数法,航空学报,1993,14(3):A166~A172.
    [31]蔡洪,张士峰,张金槐,Bayes试验分析与评估,长沙,国防科技大学出版社,2004.
    [32]张士峰,蔡洪,Bayes分析中的多源信息融合问题,系统仿真学报,2000(1).
    [33]张士峰,蔡洪,小子样条件下可靠性试验信息的融合方法,国防科技大学学报,2004.
    [34]宋保维,邵成,毛绍勇等,小子样鱼雷湖海试验环境因子折算方法研究,兵工学报,2007,28(5):565~567.
    [35]马栗梅,武小悦,刘琦,小子样装备可靠性试验中专家信息描述性综述,电子产品可靠性与环境试验,2007,25(2):62~66.
    [36]刘琦,武小悦,张金槐,小子样武器装备可靠性评定过程中专家信息的规范化描述,航空动力学报,2007,22(1):37~40.
    [37]刘炳章,丁同才,小子样验证高可靠性的可靠性评估方法及其应用,质量与可靠性,2004,1:19~22.
    [38]白永生,温亮,基于随机加权的Bayes方法在可靠性参数估计中的应用,计算机工程与应用,2007,43(8):229~233.
    [39]黄智刚,陈晓方,贝叶斯估值理论在小子样批次设备检测中的应用,电子学报,2006,34(12A):2530~2532.
    [40]赵炜霞,王瑞林,吕忠波,枪械产品小子样试验的可靠性评定,火炮发射与控制学报,2005,4:68~71.
    [41]李超,王金诺,羊海涛,高可靠性产品的等效试验技术及可靠性评估,机械科学与技术,2004,23(7):876~882.
    [42]刘晗,郭波,小子样产品可靠性Bayes评定中的相容性检验方法研究,机械设计与制造,2007,5:165~167.
    [43]张金魁,Bayes方法的稳健性检验,飞行器测控学报,1996(6).
    [44]唐雪梅,张金槐,邵凤昌,武器装备小子样试验分析与评估,国防工业出版社,2001.
    [45] Kendall,M,G,and Stuart,A,The Advanced Theory of Statistics,Charles Griffin&Co., Limited Vol(2) Ch,21,1976.
    [46] Pedersen,J,G,Fiducial Inference,International Statistical Review,46,1978:147~170.
    [47] Bayes,T,R, An essay towards solving a problem in the doctrine of chances, Phil, Trans,Roy,Soc,London,1763: 53~54.
    [48] Berger J.The Robust Bayesian Viewpoint(with Discussion)in Robustness of Bayesian Analysis.North—Holland,Amsterdam:J.Kadane(Ed),1985.
    [49]裴鹿成,王仲奇,蒙特卡罗方法及其应用1993-1997 ,北京,海洋出版社,1998.
    [50]姚姚,蒙特卡罗非线性反演方法及应用,北京,冶金工业出版社,1997.
    [51]马智博,朱建士,有关正态分布的小样本可靠性评估,核科学与工程,2003(4).
    [52]杨宇航,冯允成,基于仿真的复杂系统可靠性、可用性和MTBF评估文献综述,系统工程理论与实践,2003(2).
    [53]何国伟,可靠性试验技术,国防工业出版社,1995:1~10.
    [54] Patrick D T,T O’Connor,实用可靠性工程(李莉等译),北京,电子工业出版社,2005:3~6.
    [55]高社生,张玲霞,可靠性理论与工程应用,北京,国防工业出版社,2002:204~210.
    [56]宋迎东,孙志刚,高希光,纤维复合材料有效性能分散性,航空动力学报,2005,20(2):230~235.
    [57]高希光,宋迎东,孙志刚,纤维位置随机引起的复合材料性能分散性研究,航空动力学报,2005,20(4):584~589.
    [58]雷友峰,宋迎东,高德平,纤维增强金属基复合材料细观几何结构对宏观弹性性能的影响,宇航材料工艺,2003,1:43~48.
    [59]高希光,宋迎东,孙志刚,纤维尺寸随机引起的复合材料性能分散性研究,材料科学与工程学报,2005,23(3):335~340.
    [60]张春华,温熙森,陈循,加速寿命试验技术综述,兵工学报,2004,25(4):485~490.
    [61]茆诗松,指数分布场合下步进应力加速寿命试验的统计分析,应用数学学报,1985,8(3):311~316.
    [62] NelsonW B,KielpinskiT J,Theory foroptimum censored accelerated life tests for normal and lognormal distributions,Technomettics,1976.18(1):105~114.
    [63] NelsonW B,MeekerW Q Theory for optimum censored accelerated life tests for Weibull and extreme value distributions,Teehnometrics,1978,20(2):171~177.
    [64] M iller R,Nelson W B.Optim um simple step-stress plans for accelerated life testing,IEEE Tran sactions on Reliability,1983,32(1):59~6.
    [65]孙利民,张志华,Weibul1分布下恒定应力加速寿命的试验分析,江苏理工大学学报(自然科学版),2000,21(4):78~81.
    [66]张志华,茆诗松,恒加试验简单线性估计的改进高校应用数学学报(A辑),1997,12(4):417-424.
    [67]杨之昌,马秀芳,长寿命He-Ne激光器的加速寿命试验中国激光,16(7):410~412.
    [68]杨之昌,马秀芳等,气体激光器的可靠性和可靠性试验,激光技术,1998,22(3):l79~184.
    [69]王喜山,孙振东用威布尔函数研究氦氖激光器的寿命特征,中国激光,14(4):213~215.
    [70]张有忱,绳以健,手摇鼓风机传动系统加速寿命试验研究,北京化工大学学报,1999,26(3):46~49.
    [71]王坚永,庄中华等,滚动轴承可靠性加速寿命试验研究,轴承,1996(3):23~28.
    [72]马海训,秘自强,张和平,黑白电视机的温度步进加速寿命试验,应用概率统计,l994,10(4):442~445.
    [73]张苹苹,航空产品加速寿命试验研究及应用,北京航空航天大学学报,1995,21(4):124~129.
    [74]马邦安,欧阳怡,电子设备温度加速试验的等效原理和技术研究中国科学院力学研究所研究报告,1995,11.
    [75]杨士特,杨惠敏,茆诗松,王玲玲,低压电机快速试验的统计分析,应用概率统计,1990,6(1):108~112.
    [76]赵和明,张亚,董少峰,无线电引信电子头部件长贮加速寿命试验数据处理方法探讨,探测与控制学报,1999,21(4):33~36.
    [77]卢秋红,董少峰,张亚,弹药步进应力加速寿命试验数据处理方法探讨,探测与控制学报,2000,22(1):47~50.
    [78]胡思平,罗兴柏,艾志利,三参数威布尔分布条件下的无线电引信步进应力加速寿命试验与数据处理,探测与控制学报,2000,22(2):37~40.
    [79]李道清,王德元某无线电引信加速寿命试验研究,探测与控制学报,2000,22(4):57~60.
    [80]峁诗松等,高等数理统计,高等教育出版社,1998,277~279.
    [81] Martz HF, Kvam PH,Abramson L R,Empirical Bayes estimation of the Reliability of Nuclear-Power-Plant Emergency Diesel Generators,Technometrics,1996,38(1):11~24.
    [82] Martz H F, Waller R A,Bayesian Reliability Analysis,John Wiley & Sons (New York), 1982.
    [83] Martz H F and Waller R A,The basics of Bayesian reliability estimation from attribute test data,Los Alamos Scientific Laboratory,port UC~79p,February,1976.
    [84] Martz J S,Smooth empirical Bayes estimation for continuous distribution,Biometrika, 1967,54:435~450.
    [85]周源泉,翁朝曦,可靠性评定,北京,科学出版社,1990.
    [86] N R Man,R E沙费尔等,可靠性与寿命数据的统计分析方法,中国电子学会电子产品可靠性与质量管理专业学会出版,1980.
    [87] Bartlett M S,Properties of sufficiency and Statistical Tests,Proceedings of the Royal Society,1937.
    [88]峁诗松,王玲玲,加速寿命试验,北京,科学出版社,1997.
    [89]魏丽,郑联语,概要工艺规划中关键特征的识别过程及方法,计算机集成制造系统,2007,13(1):147~152.
    [90]马林,六西格玛管理,北京,中国人民大学出版社,2004:199~207.
    [91] Kapur K C,Lamberson L R,Reliability in Engineering Design. John Wiley Sons,1977.
    [92] Van. Montfort. On Testing That the Distribution of Type I When Type II is the Alternative, Journal of Hydrology,11,1970.
    [93]高镇同,熊峻江,疲劳可靠性,北京,北京航空航天大学出版社,2000:208~312.