MeV离子辐照下功能晶体材料的波导制备、闪烁响应与损伤特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带电离子辐照固态物质时,会通过一定的方式将其自身能量传递至靶材中:(1)通过电子能量损失过程,引起靶材原子的激发或者电离;(2)基于离子与靶原子核的弹性碰撞过程,引起靶原子的移位与反冲,称为核能量损失过程。在离子隧穿材料时主要以何种过程沉积辐照能量,主要依赖于入射离子所处的能量区间,低能离子辐照时以过程(2)的核碰撞过程为主,而高能离子辐照时的强电子激发主要由过程(1)产生。不论低能或者高能离子,其辐照过程在一定条件(剂量、温度等)下均会较为明显地改变材料自身的物理化学性质(辐照肿胀、硬化、脆化等)。基于离子与固体材料的相互作用,离子辐照技术已被广泛应用于当今诸多热门研究领域,比如生物学研究中的辐照育种,半导体工业中的杂质掺杂,材料学中的耐磨抗腐蚀性研究及医学研究中的重离子辐照治疗癌症等。
     本论文的主要工作便是基于离子与功能晶体材料的相互作用,分别从离子束辐照光学晶体制备波导结构,单离子辐照闪烁晶体研究其响应特性,以及应用离子束技术研究核材料及光电子领域所用晶体在辐照环境下的损伤行为等几方面开展。论文的主要内容归纳如下:
     1.光波导是连接集成光路中各器件的基本元件与重要组成部分。集成光路类似于集成电路,但具有更高的信息处理与传播速率,在现代通信领域中有重要的应用前景。基于波导结构的波导激光、波导放大器,以及基于波导倍频和光学参量振荡的相干激光源等,均是光学领域的研究热点;近年来以工作于红外波段波导结构为基础的光电子器件在通讯、探测、医疗、军事等领域也发挥着越来越重要的作用。
     以此为研究背景,我们采用较为传统的5MeV O3+以及Si3+辐照Nd:Li6Y(BO3)3晶体制备了“势阱”+“位垒”型平面波导结构,棱镜耦合结果显示其在可见光波段可支持多个传输模式,在近红外波段可支持单模传输;共聚焦拉曼光谱仪测得波导区的荧光特性在辐照后得到较好保持;相对于Si3+,O3+辐照波导基模具有更高的有效折射率及更低的传输损耗,为离子辐照制备波导结构的条件优化提供了实验依据。利用180MeV Ar8+离子辐照LiTaO3晶体得到其平面波导,利用thermal spike模型估算该晶体中形成离子径迹所需的电子阻止本领阈值,说明波导的形成原因在于离子隧穿过程中产生的径迹损伤;通过RBS/channeling谱及微拉曼谱分别表征辐照样品近表面处及沿离子隧穿深度的损伤特性;端面耦合实验结果表明该波导在可见光波段可支持多模传输,在近红外波段可支持单模传输;较高的辐照能量使波导具有较大厚度,而电子能量损失造成的光位垒区又具较大展宽,因而可有效避免近红外波段光波发生隧穿效应进入衬底,这是快重离子辐照制备作用于近红外波段波导结构的技术优势。
     2.闪烁晶体已被广泛应用于核医学、高能物理、工业无损探伤及空间物理等各个领域。对于X射线、γ射线等的探测需要尺寸较大、质量优异的块状晶体,而生长相应尺寸晶体所需周期长,费用高,限制了各类新型闪烁材料的性能研究与快速发展。相对而言,利用分子束外延,电子束蒸发及激光脉冲沉积等技术可在相对短的时间内获得各类新型闪烁体薄膜,如何快速评价这类薄膜在辐照环境下的闪烁响应特性是辐照探测领域的一个研究热点所在。
     以此为研究背景,我们利用TOF-scintillator-PMT装置测试了YAlO3:Ce及CaF2:Eu晶体在能量连续分布的H+,He+及O3+单离子辐照下的闪烁特性。相对于X、γ射线,低能离子在几微米深度内便可将辐照能量沉积到晶体中并引发闪烁响应,因而对材料尺寸要求较低。我们分析了YAlO3:Ce在离子辐照下的荧光产额、能量分辨率以及辐照损伤对其性能的影响等,说明离子束技术可用于评价小尺寸或薄膜尺度候选闪烁材料的响应特性,为闪烁晶体的优化选择及进行大尺寸生长的必要性提供实验依据。利用能量分区方法分析CaF2:Eu及YAlO3:Ce在单离子辐照下的闪烁响应曲线,对于CaF2:Eu,在低,中或高激发密度区(Dexci),非辐射复合过程均会伴随Dexci的增加而更易发生,进而降低闪烁效率;而YAlO3:Ce不同,在低Dexci区随着Dexci增加,单位激发能量所产生的激子数会增加,而激子在激活离子处被俘获的概率不变,从而提高闪烁效率;中Dexci区,辐射与非辐射复合过程达到一平衡态,闪烁效率保持恒定;高Dexci区,闪烁效率的变化与CaF2:Eu变为一致。不同激发密度下辐射复合(闪烁响应)与非辐射复合(加热晶格)两种退激发过程的相互竞争会引起闪烁效率的变化,这也是闪烁体非线性响应的主要原因。
     3.随着能源问题的日益突出,以及福岛事故后人们对于核电安全性的要求不断提升,新型抗辐照核材料的研究与应用正变得极为迫切。当前核材料领域各研究组正在尝试将SiC作为一种重要的工程材料应用于高温、强辐照等极端苛刻的环境中,如作为裂变堆的结构材料及核燃料的包覆层,聚变堆的部分结构构件等;而如何处理与保存高放射性核废料是核材料领域面临的另一问题,钛酸盐基钙钛矿SrTiO3,被考虑作为保存及固化锕系与其他高放射性裂变废料的候选基体。上述材料在辐照环境下的损伤累积可使其自身体积膨胀,并经历从晶态到非晶态的转变,进而极大地影响材料自身的物理化学性质,因而对其在辐照环境下的缺陷产生以及损伤的演变等进行系统评估显得尤为必要。
     以此为背景,我们讨论了SiC以及SrTiO3在低能及高能离子辐照下的损伤行为。对于SiC,利用RBS/channeling实验定出6H-SiC在0.9MeV Si+室温辐照下的损伤累积曲线;2.0MeV及3.5MeV He+分析束所测Si无序度并无明显不同;0.9MeV Si+辐照预损伤过的4H-SiC再经高能离子(4.5MeV C2+、6.5MeV O2+、21MeV Si6+及21MeV Ni6+)辐照后的损伤演变为:剂量为4×1015cm-2的C2+辐照未引起损伤区再结晶,该剂量下C2+辐照引起的移位损伤已开始变得明显;O2+辐照,在剂量为1×1014cm-2时SiC损伤区便已开始出现再结晶,而对于Ni6+,剂量为2×1013cm-2时该现象已变得十分明显;各离子所引起的再结晶效率直接依赖于辐照过程中的电子阻止本领,并随辐照剂量的增加而逐渐降低;同种离子诱导高初始损伤区的再结晶效率比低初始损伤区要高;在高能离子辐照下整个初始损伤区同时出现再结晶,而并没有出现在损伤层-晶体交界面处优先结晶的情况;离子辐照下再结晶效应的存在表明SiC有良好的抗辐照损伤特性。
     对于SrTiO3晶体,给出其在0.9MeV Au+(模拟α衰变环境中的低能高质量数反冲核)室温辐照下的损伤累积曲线;通过0.9MeV Au+辐照在SrTiO3晶体上产生四个损伤区(Sr无序度分别为0.07、0.29、0.54、0.67),再经21MeV Ni7+辐照(剂量从1×1011cm-2到2×1013cm-2)后发现其损伤会急剧升高直至非晶,而上述剂量的21MeV Ni7+辐照完美(未损伤)SrTiO3晶体时并无任何损伤产生,表明低能重离子(α衰变反冲核)对SrTiO3的辐照损伤可引起晶体结构的不稳定性,使其在高能Ni7+辐照时较易被损伤直至非晶化,对该过程起主要作用的仍是高能离子辐照时较强的电子阻止本领(~10keV/nm),实验表明将SrTiO3作为锕系废料固化体时需考虑α衰变产生的反冲核对其晶格稳定性的影响。
     LiNbO3晶体作为光电子领域最基本及最重要的功能材料,已广泛应用于光通讯、光学数据存储、激光技术等领域,目前的研究表明该晶体对离子辐照过程中的电子能量损失较为敏感。我们也围绕该晶体开展了部分工作,以期为离子辐照技术制备LiNbO3波导的实验条件优化提供必要数据,结果包括:RBS/channeling实验给出z切IiNbO3在0.9MeV Si+室温辐照下核能损区域的损伤累积曲线;研究了21MeV Si7+辐照时表面损伤与剂量之间的关系;相同剂量21MeV Si7+辐照,沿沟道方向造成的损伤比非沟道注入要低,沟道方向剂量为2×1013cm-2时表面Nb无序度为0.81,而该剂量非沟道辐照下样品表面区已完全非晶;研究了高能离子辐照损伤截面的速度效应,对于相同的电子阻止本领(5.8keV/nm), Si7+在LiNbO3中速度越低时产生的径迹半径越大;21MeV Si7+辐照预损伤过的z切LiNbO3会继续引入损伤,而不会引起初始损伤区的再结晶现象。
Under ion irradiation, the energetic ion will interact with both electrons and atoms in the materials and lose its energy via two nearly independent processes:(a) electronic energy deposition, which could induce the target-atom ionization and electronic excitation;(b) nuclear-energy deposition induced by nuclear collision, which could create a cascade of atomic collision events and displace the atoms from their initial sites. The former interaction is the dominate element during high energy ion irradiation process, and the latter will become more obvious once the ion energy is low enough, both of which could significantly change the physical and chemical properties of materials under certain conditions (fluence, temperature...). Nowadays the ion irradiation technique has been widely used in many hot research areas, such as biological radiation breeding, impurity doping of semiconductor, anti-wear and anti-eroding coat and cancer therapy.
     Based on the interaction between the irradiated ions and functional crystal materials, we carry out some research from three different aspects, including (i) the waveguide formation in optical crystals utilizing ion irradiation,(ii) the response properties of scintillation crystals to single ion excitation and (iii) damage behaviors of nuclear and optical materials under low and high energy ion irradiation. The main work in this dissertation is as follows:
     1. Optical waveguides, the fundamental and key element of the integrated photonic devices, are analogous to electronic systems but with higher information processing and transmission rate, which make them have many important applications in the telecommunication area. Waveguide lasers, waveguide amplifiers and laser sources utilizing SHG and OPO in nonlinear waveguides have attracted lots of attentions during recent years.
     Based on above-mentioned situation, we fabricate Nd:Li6Y(BC>3)3waveguides by using5MeV O3+or Si3+ion irradiation, respectively, which have typical "well"+"barrier" refractive index distribution and can effectively support the fundamental mode in visible and near-infrared telecommunication band through prism-coupling measurement. The studies of luminescence and Raman spectra demonstrate that Nd3+luminescence feature and crystal structure of the waveguide active region don't change significantly and gain good preservation. Under the same conditions of irradiated energy and fluence, compared to the Nd:Li6Y(BO3)3waveguide formed by Si3+irradiation, the waveguide produced by O3+has a larger effective refractive index of fundamental mode and lower propagation loss, which could help us optimize the selection of irradiated ion species to produce the high-quality waveguide structure. In our work, LiTaO3waveguide has also been produced by swift Ar8+ion irradiation with low fluence. The surface damage and structure change along ion trajectory have been discussed based on RBS/channeling spectra and micro-Raman spectra. The threshold value of electronic stopping power for ion track formation in LiTaO3is evaluated using thermal spike model, which shows that the electronic stopping power in our experiment is large enough to induce the lattice amorphization along ion trajectory and further change the refractive index, and this is also the waveguide formation mechanism under swift heavy ion irradiation. Modal profile measurements through end-face coupling prove that the waveguide can support multimode waveguide in visible band and single-mode waveguide in near-infrared telecommunication band. The high irradiated energy generates a large thickness of the waveguide region, while the electron energy loss produces a large thickness of the optical barrier, which could effectively protect the light with near-infrared wavelength from coupling into the substrate based on tunneling effect, and play an important role in LiTaO3near-infrared waveguide formation.
     2. New inorganic scintillators with excellent response properties to irradiation energy are highly desirable to meet the increasing demands in various applications, such as advanced irradiation detectors in high energy nuclear physics, medical imaging, nondestructive inspection and astronomical observation. Due to the large penetration depth for x and y rays in materials, a high-quality scintillation crystal with large volume is necessary to completely absorb them, which has a high requirement for crystal growth and restricts the rapid evaluation of detector performance. It is worth noting that the candidate scintillator films can be readily prepared by various advanced deposition techniques, such as molecular beam epitaxy, electron beam evaporator and pulsed laser deposition, and their scintillation properties under ionizing-irradiation environment need to be identified quickly.
     Compared to x and y rays, irradiated ions can more effectively deposit their energy in a relatively small volume and then induce the luminescence emission, which could also be used to evaluate scintillation performance. Utilizing a TOF-scintillator-PMT setup, the response spectra of CaF2:Eu and YA103:Ce scintillators to H+, He+and O3+ions over a continuous energy range are measured. The light yield and energy resolution of YAlO3:Ce to single ion irradiation have been discussed, which shows that TOF-scintillator-PMT technique can be used to rapidly and effectively evaluate the scintillation performance of the radiation detector materials in forms of thin films or small crystals, and the related experiment data are beneficial for the selection of the optimum scintillator and therefore guide the bulk crystal growth. The energy partitioning process is used to analyze the scintillation intensity change of CaF2:Eu and YAlO3:Ce over the continuous excitation energy. The results clearly demonstrate that the scintillation response strongly depends on the excitation density in the irradiated region. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response (emitting the photons) and the nonradiative quenching process (heating the crystal lattice) under different excitation densities, which is also the main origin of the nonlinear response of the scintillators to irradiation.
     3. With the increasing of the energy needs and the security standards for nuclear power after Fukushima accident, the requirements for nuclear materials running safely for long period of time have prompted interests in advanced nuclear materials discovery, efficient screening techniques, as well as the fundamental research in understanding irradiation damage mechanism. Silicon Carbide (SiC), the key engineering material with good radiation tolerance, is considered to be used in the harsh (high temperature and strong irradiation) environment of the nuclear power, such as structural materials and fuel coatings in fission reactors, and structural components in fusion reactors. SrTiO3(titanate-based perovskite) is proposed as possible host materials for the immobilization of actinides and other long-lived fission products. Due to the irradiation damage will obviously change the physical and chemical properties of materials, it is necessary for us to study the damage behaviors of SiC and SrTiO3under irradiation environment.
     The damage accumulation curve of6H-SiC crystal irradiated by0.9MeV Si+at room temperature is determined through RBS/channeling spectra. The Si-disorders analyzed by2.0MeV He+and3.5MeV He+, respectively, could match with each other. We use0.9MeV Si+irradiation to produce several initial damage regions in4H-SiC crystal and then irradiate high energy ion (4.5MeV C2+,6.5MeV O2+,21MeV Si6+and21MeV Ni6+) to study the damage evolution. The C2+irradiation with the fluence of4×1015cm-2couldn't induce any recrystallization and the corresponding displacement damage produced by C+starts to increase. The initial damage reduces after O2+irradiation with the fluence of1×101cm-2, which shows the recrystallization phenomenon existing in the damage area, and this process becomes very significant under Ni6+irradiation with the fluence of2×1013cm-2. The irradiation-induced recrystallization rate strongly depends on the electronic stopping power along ion trajectory, and will decrease along with the decreasing initial damage. The entire initial damage region will recrystallize simultaneously, which indicates that the interface between damage region and crystal region has no priority for this process.
     The damage behavior of SrTiO3crystal irradiated by0.9MeV Au+(used to simulate a-recoils) at room temperature has been studied. Four initial damage regions (Sr-disorder:0.07,0.29,0.54and0.67) are produced in SrTiO3utilizing0.9MeV Au+irradiation, and then irradiated by21MeV Ni7+(fluence:1×1011-2×1013cm-2). We find that the damage of Au+-irradiated region will increase so seriously under Ni7+irradiation. However, the Ni7+irradiation process with the same energy and the same fluence won't produce any obvious damage in the virgin region (without Au+irradiation). This result shows that the irradiation of low energy ion with large mass number (a-recoil) could induce the crystal lattice instability of SrTiO3, which will make this material easier to be destroyed by the strong electronic energy loss during high energy ion irradiation process and this effect needs to be considered when we plan to use SrTiO3as the immobilization matrix for nuclear waste.
     LiNbO3is one of the most attractive and fundamental materials due to its outstanding acousto-optic, electro-optic and nonlinear properties, and has been widely used in the optical communication, data storage, laser technique and other optics yields. Recent studies have shown that during ion irradiation process, this crystal is very sensitive to the electronic energy deposition, so the damage behaviors of LiNbO3under low and high energy Si-ion (0.9MeV Si+and21MeV Si7+) irradiation are studied in this work and the results are as follows:The damage accumulation curve of z-cut LiNbO3crystal irradiated by0.9MeV Si+at room temperature is determined. The relationship between the surface damage and the fluence of21MeV Si7+has been discussed. The surface region of LiNbO3will become totally amorphous under21MeV Si7+non-channeling irradiation with the fluence of2×1013cm-2, and the damage will reduce (Nb-disorder:0.81) under21MeV Si7+irradiation with the same fluence but along channeling direction. For the same electronic stopping power, compared to higher energy ion, the track radius produced by lower energy ion is larger, which proves that the damage cross section depends on ion velocity. High energy Si7+irradiation will continue to increase the damage level of low energy Si+-irradiated region, and there is no recrystallization phenomenon for z-cut LiNbO3irradiated by high energy ion. Due to some basic models have been built to describe how the refractive index is affected by the lattice disorder, what we did could offer the necessary informations for LiNbO3waveguide formation through ion irradiation.
引文
1.郁金南:材料辐照效应,化学工业出版社,2007.
    2. R. Hellborg, H. J. Whitlow, and Y. Zhang, Ion Beams in Nanoscience and Technology (Springer Verlag, New York,2009).
    3. D. A. Young, Nature 182,375 (1958).
    4. E. C. H. Silk, and R. S. Barnes, Phil. Mag.4,970 (1959).
    5. K. Schwartz, C. Trautmann, T. Steckenreiter, O. Geiss, and M. Kramer, Phys. Rev. B 58,11232(1998).
    6. M. Toulemonde, J. M. Constantini, C. Dufour, A. Meftah, E. Paumier, and F. Studer, Nucl. Instrum. Methods Phys. Res. B 116,37 (1996).
    7. M. Toulemonde, S. Bouffard, and F. Studer, Nucl. Instrum. Methods Phys. Res. B 91,108 (1994).
    8. G. Szenes, Phys. Rev. B 51,8026 (1995).
    9. V. Hardy, D. Groult, M. Hervieu, J. Provost, B. Raveau, and S. Bouffard, Nucl. Instrum. Methods Phys. Res. B 54,472 (1991).
    10. D. Lesueur, and A. Dunlop, Radiat. Eff. Defects Solids 126,163 (1993).
    11. M. Toulemonde, C. Dufour, A. Meftah, and E. Paumier, Nucl. Instrum. Methods Phys. Res. B 166,903 (2000).
    12. Z. G. Wang, C. Dufour, E. Paumier, and M. Toulemonde, J. Phys.:Condens. Matter 6,6733 (1994).
    13. A. Benyagoub, and A. Audren, J. Appl. Phys.106,083516 (2009).
    14. A. Benyagoub, A. Audren, L. Thome, and F. Garrido, Appl. Phys. Lett.89, 241914 (2006).
    15. A. Debelle, M. Backman, L. Thome, W. J. Weber, M. Toulemonde, S. Mylonas, A. Boulle, O. H. Pakarinen, N. Juslin, F. Djurabekova, K. Nordlund, F. Garrido, and D. Chaussende, Phys. Rev. B 86,100102 (R) (2012).
    16. A. Dunlop, G. Jaskierowicz, G. Rizza, and M. Kopcewicz, Phys. Rev. Lett.90, 015503 (2003).
    17. A. Biswas, R. Gupta, N. Kumar, D. K. Avasthi, J. P. Singh, S. Lotha, D. Fink, S. N. Paul, and S. K. Bose, Appl. Phys. Lett.78,4136 (2001).
    18. J. F. Ziegler, J. P. Biesack, and U. Littmark, Computer code TRIM, http://www.srim.org.
    19.[美]Amnon Yariv:现代通信光电子学,电子工业出版社,2004.
    20.[英]卡萨普:光电子学与光子学的原理及应用,电子工业出版社,2003.
    21.杨淑雯:全光光纤通信网,科学出版社,2008.
    22.[日]西原浩:集成光路,科学出版社,2004.
    23.陈益新:集成光学,上海交通大学出版社,1985.
    24.黄庆:山东大学博士学位论文,离子辐照铌酸锂波导结构的晶格损伤和倍频效应,2012.
    25. M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, Appl. Phys. Lett.69,2977 (1996).
    26. K. M. Wang, B. R. Shi, N. Cue, Y. Y. Zhu, F. R. Xiao, F. Lu, W. Li, and Y. G. Liu, Appl. Phys. Lett.73,1020 (1998).
    27. T. Yamashiki, and K. Tsuda, Opt. Lett.28,316 (2003).
    28. R. Ramponi, M. Malangoni, and R. Osellame, Appl. Phys. Lett.78,2098 (2001).
    29.王亮玲:山东大学博士学位论文,离子注入与离子交换平面和条形光波导的制备及其特性研究,2008.
    30. F. Laurell, and G. Arvidsson, J. Opt. Soc. Am. B 5,292 (1988).
    31. U. B. Ramabadran, H. E. Jackson, and J. T. Boyd, Appl. Phys. Lett.58,672 (1991).
    32. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, Appl. Phys. Lett.89 081108(2006).
    33. M. Heinrich, A. Szameit, F. Dreisow, S. Doring, J. Thomas, S. Nolte, A. Tunnermann, and A. Ancona, Appl. Phys. Lett.93,101111 (2008).
    34. E. J. Teo, A. A. Bettiol, B. Xiong, M. B. H. Breese, P. Yang, G. Z. Mashanovich, and G. T. Reed, Opt. Lett.34,659 (2009).
    35. A. A. Bettiol, S. Venugopal Rao, E. J. Teo, J. A. van Kan, and F. Watt, Appl. Phys. Lett.88,171106 (2006).
    36. Y. Yao, N. Dong, F. Chen, S. K. Vanga, and A. A. Bettiol, Opt. Lett.36,4173 (2011).
    37. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press,1994).
    38. F. Chen, J. Appl. Phys.106,081101 (2009).
    39. F. Chen, Laser Photonics Rev.6,622 (2012).
    40. B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, J. Mater. Res.23, 2561 (2008).
    41. C. W. E. van Eijk, Phys. Med. Biol.47, R85 (2002).
    42. Piotr A. Rodnyi, Physical Processes in Inorganic Scintillators, (CRC Press, 1997).
    43.汪晓莲,李澄,邵明,陈宏芳:粒子探测技术,中国科学技术大学出版社,2009.
    44. S. E. Derenzo, M. J. Weber, E. Bourret-Courchesne, and M. K. Klintenberg, Nucl. Instrum. Methods Phys. Res. A 505,111 (2003).
    45. C. W. E. vanEijk, Nucl. Instrum. Methods Phys. Res. A 392,285 (1997).
    46. Y. W. Zhang and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 267,1705 (2009).
    47. Y. W. Zhang, M. Elfinan, B. D. Milbrath, and W. J. Weber, IEEE Trans. Nucl. Sci.55,1097 (2008).
    48. Y. W. Zhang, X. Xiang, J. L. Rausch, X. T. Zu, and W. J. Weber, IEEE Trans. Nucl. Sci.56,920 (2009).
    49. J. E. Jaffe, D. V. Jordan, and A. J. Peurrung, Nucl. Instrum. Methods Phys. Res. A 570,72 (2007).
    50. R. B. Murray and A. Meyer, Phys. Rev.122,815 (1961).
    51. M. R. Altman, H. B. Dietrich, and R. B. Murray, Phys. Rev. B 7,1743 (1973).
    52. K. Michaelian and A. Menchca-Rocha, Phys. Rev. B 49,15550 (1994).
    53.李文埮:核材料导论,化学工业出版社,2007.
    54.刘建章:核结构材料,化学工业出版社,2007.
    55. R. J. Price, Nucl. Technol.35,320 (1977).
    56. Y. Katoh, L. L. Snead, I. Szlufarska, and W. J. Weber, Curr. Opin. Solid State Mater. Sci.16,143 (2012).
    57. R. Naslain, Compos. Sci. Technol.64,155 (2004).
    58. C. H. J. Henager, Y. Shin, Y. Blum, L. A. Giannuzzi, B. W. Kempshall, and S. M. Schwarz, J. Nucl. Mater.367-370,1139 (2007).
    59. W. J. Weber and R. C. Ewing, Science 289,2051 (2000).
    60. W. J. Weber, A. Navrotsky, S. Stefanovsky, E. R. Vance, and E. Vernaz, MRS Bull.34,46 (2009).
    61. W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. D. de la Rubia, L. W. Hobbs, C. Kinoshita, H. Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Vance, and S. J. Zinkle, J. Mater. Res.13,1434 (1998).
    62. M. Muthuraman, N. A. Dhas, and K. C. Patil, Bull. Mater. Sci.17,977 (1994).
    63.车春霞,滕元成,桂强,材料导报,第20卷第2期,94(2006).
    64. I. Farnan, H. M. Cho, and W. J. Weber, Nature 445,190 (2007).
    65. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, J. Appl. Phys.89,5224(2001).
    66. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, J. Appl. Phys.92,6477 (2002).
    67. F. Chen, X. L. Wang, and K.M. Wang, Opt. Mater.29,1523 (2007).
    68. J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, Appl. Phys. Lett.86,183501 (2005).
    69. F. Agullo-Lopez, G. Garcia, and J. Olivares, J. Appl. Phys.97,093514 (2005).
    70. Q. Huang, J. H. Zhao, P. Liu, and X. L. Wang, J. Appl. Phys.108,093103 (2010).
    71. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, and Y. Jiao, Phys. Rev. B 75 195101 (2007).
    1.任盈盈:山东大学博士学位论文,晶体光波导结构中的波导激光与倍频,2013.
    2.黄庆:山东大学博士学位论文,离子辐照铌酸锂波导结构的晶格损伤和倍频效应,2012.
    3.刘秀红:山东大学博士学位论文,离子注入钒酸钇光波导及其平板光子晶体,2012.
    4.赵金花:山东大学博士学位论文,离子注入光学晶体波导结构的特性研究,2011.
    5.丁洪林:核辐射探测器,哈尔滨工程大学出版社,2009.
    6.汪晓莲,李澄,邵明,陈宏芳:粒子探测技术,中国科学技术大学出版社,2009.
    7. Matej Mayer, Computer code SIMNRA, http://www.simnra.com.
    8.王广厚:粒子同固体相互作用物理学,科学出版社,1988.
    9.杨福家,赵国庆:离子束分析,复旦大学出版社,1985.
    10. Wei-Kan Chu, James W. Mayer, and Marc-A. Nicolet,背散射分析技术,原子能出版社,1986.
    1. M. Chavoutier, V. Jubera, P. Veber, M. Velazquez, O. Viraphong, J. Hejtmanek, R. Decourt, J. Debray, B. Menaert, P. Segonds, F. Adamietz, V. Rodriguez, I. Manek-Hoenninger, A. Fargues, D. Descamps, and A. Garcia, J. Solid State Chem. 184,441(2011).
    2. Y. Huang, C. Tu, Z. Luo, and G. Chen, Opt. Commun.92,57 (1992).
    3. J. Sablayrolles, V. Jubera, J. P. Chaminade, I. Manek-Honninger, G. S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, and F. Salin, Opt. Mater.27,1681 (2005).
    4. J. Sablayrolles, V. Jubera, F. Guillen, R. Decourt, M. Couzi, J. P. Chaminade, and A. Garcia, Opt. Commun.280,103 (2007).
    5. M. Delaigue, V. Jubera, J. Sablayrolles, J. P. Chaminade, A. Garcia, and I. Manek-Honninger, Appl. Phys. B 87,693 (2007).
    6. Y. W. Zhao, X. H. Gong, Y. J. Chen, L. X. Huang, Y. F. Lin, G. Zhang, Q. G. Tan, Z. D. Luo, and Y. D. Huang, Appl. Phys. B 88,51 (2007).
    7. J. Holsa, and M. Leskela, J. Lumin.48-49, Part 2,497 (1991).
    8. C. W. E. van Eijk, A. Bessiere, and P. Dorenbos, Nucl. Instrum. Methods Phys. Res. A 529,260 (2004).
    9. J. P. Chaminade, O. Viraphong, F. Guillen, C. Fouassier, and B. Czirr, IEEE Trans. Nucl. Sci.48,1158(2001).
    10. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, Opt. Lett.28, 194 (2003).
    11. R. T. Smith, and F. S. Welsh, J. Appl. Phys.42,2219 (1971).
    12. R. C. Miller, and W. A. Nordland, Phys. Rev. B 2,4896 (1970).
    13. K. T. Gahagan, V. Gopalan, J. M. Robinson, Q. X. Jia, T. E. Mitchell, M. J. Kawas, T. E. Schlesinger, and D. D. Stancil, Appl. Opt.38,1186 (1999).
    14. J. P. Meyn, and M. M. Fejer, Opt. Lett.22,1214 (1997).
    15. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, Jpn. J. Appl. Phys., Part 2, 43,1265 (2004).
    16. J. Imbrock, S. Wevering, K. Buse, and E. Kratzig, J. Opt. Soc. Am. B:Opt. Phys. 16,1392(1999).
    17. S. G. Porter, Ferroelectr.33,193 (1981).
    18. P. J. Chandler and F. L. Lama, Opt. Acta 33,127 (1986).
    19. D. Yevick and W. Bardyszewiski, Opt. Lett.17,329 (1992).
    20. R. Ramponi, R. Osellame, and M. Marangoni, Rev. Sci. Instrum.73,1117 (2002).
    21. G. Szenes, Phys. Rev. B 51,8026 (1995).
    22. M. Toulemonde, Ch. Dufour, A. Meftah and E. Paumier, Nucl. Instrum. Methods Phys. Res. B 166-167,903 (2000).
    23. A. Meftah, J. M. Costantini, N. Khalfaoui, S. Boudjadar, J. P. Stoquert, F. Studer, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 237,563 (2005)
    24. A. Meftah, F. Brisard, J. M. Costantini, M. Hage-Ali, J. P. Stoquert, F. Studer and M. Toulemonde, Phys. Rev. B 48,920 (1993).
    25. P. Thevenard, G. Guiraud, C. H. S. Dupuy, and B. Delaunay, Radiat. Eff.32,83 (1977).
    26. S. M. Kostritskii and P. Moretti, Phys. Stat. Sol. (c) 1,3126 (2004).
    27. Y. Repelin, E. Husson, F. Bennani, and C. Proust, J. Phys. Chem. Solid 60,819 (1999).
    1. V. G. Baryshevsky, M. V. Korzhik, V. I. Moroz, V. B. Pavlenko, A. A. Fyodorov, S. A. Smirnova, O. A. Egorycheva, and V. A. Kachanov, Nucl. Instrum. Methods Phys. Res. B 58,291 (1991).
    2. A. A. Fyodorov, A. L. Kholmetskii, M. V. Korzhik, A. R. Lopatik, M. Mashlan, and O. V. Misevich, Nucl. Instrum. Methods Phys. Res. B 88,462 (1994).
    3. Y. Toriyabe, E. Yoshida, and J. Kasagi, Nucl. Instrum. Methods Phys. Res. A 611, 69 (2009).
    4. A. J. Wojtowicz, J. Glodo, W. Drozdowski, and K. R. Przegietka, J. Lumin.79, 275(1998).
    5. S. Baccaro, K. Blazek, F. de Notaristefani, P. Maly, J.A. Mares, R. Pani, R. Pellegrini, and A. Soluri, Nucl. Instrum. Methods Phys. Res. A 361,209 (1995).
    6. C. Bacci, P. Belli, R. Bernabei, C. J. Dai, W. Di Nicolantonio, L. K. Ding, E. Gaillard-Lecanu, G. Gerbier, Y. Giraud-Heraud, H. H. Kuang, A. Incicchitti, J. Mallet, L. Mosca, D. Prosperi, C. Tao, B. Chambon, V. Chazal, M. De Jesus, D. Drain, Y. Messous, and C. Pastor, Astropart. Phys.2,117 (1994).
    7. J. Menefee, C. F. Swinehart, and E. W. Odell, IEEE Trans. Nucl. Sci. NS13,720 (1966).
    8. D. W. Aitken, B. L. Beron, G. Yenicay, and H. R. Zulliger, IEEE Trans. Nucl. Sci. NS14,468 (1967).
    9. P. Belli, R. Bernabei, C. J. Dai, F. Grianti, H. L. He, G. Ignesti, A. Incicchitti, H. H. Kuang, J. M. Ma, F. Montecchia, O. A. Ponkratenko, D. Prosperi, V. I. Tretyak, and Y. G. Zdesenko, Nucl. Phys. B 563,97 (1999).
    10. D. R. Tovey, V. Kudryavtsev, M. Lehner, J. E. McMillan, C. D. Peak, J. W. Roberts, N. J. C. Spooner, and J. D. Lewin, Phys. Lett. B 433,150 (1998).
    11. Y W. Zhang, X. Xiang, J. L. Rausch, X. T. Zu, and W. J. Weber, IEEE Trans. Nucl. Sci.56,920 (2009).
    12. Y. W. Zhang, X. Xiang, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 266,2750 (2008).
    13. B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, J. Mater. Res.23,2561 (2008).
    14. S. E. Derenzo, M. J. Weber, E. Bourret-Courchesne, and M. K. Klintenberg, Nucl. Instrum. Methods Phys. Res. A 505,111 (2003).
    15. M. J. Weber, Nucl. Instrum. Methods Phys. Res. A 507,9 (2004).
    16. Y. W. Zhang, B. D. Milbrath, W. J. Weber, M. Elfinan, and H. J. Whitlow, Appl. Phys. Lett.91,094105 (2007).
    17. S. C. Prashantha, B. N. Lakshminarasappa, and Fouran Singh, J. Lumin.132, 3039 (2012).
    18. S. Nagata, H. Katsui, K. Takahiro, B. Tsuchiya, and T. Shikama, Nucl. Instrum. Methods Phys. Res. B 268,3099 (2010).
    19. T. Evans, Philos. Mag.8,1235 (1963).
    20. Y. W. Zhang and W. J. Weber, Phys. Rev. B 82,075202 (2010).
    21. J. E. Jaffe, Nucl. Instrum. Methods Phys. Res. A 580,1378 (2007).
    22. R. B. Murray and A. Meyer, Phys. Rev.122,815 (1961).
    23. G. Bizarri, W. W. Moses, J. Singh, A. N. Vasil'ev, and R. T. Williams, J. Appl. Phys.105,044507 (2009).
    24. J. B. Birks, Phys. Rev.86,569 (1952).
    25. M. Luntz, Phys. Rev. B 4,2857 (1971).
    26. L. Muga and G. Griffith, Phys. Rev. B 9,3639 (1974).
    27. L. Muga and M. Diksic, Nucl. Instrum. Methods 122,553 (1974).
    1. W. Wesch, Nucl. Instrum. Methods Phys. Res. B 116,305 (1996).
    2. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine and D. D. Awschalom, Nature 479,84 (2011).
    3. T-H. Lee, S. Bhunia and M. Mehregany, Science 10,1316 (2010).
    4. D. Obermayer, B. Gutmann and C. O. Kappe, Angew. Chem., Int. Ed.48,8321 (2009).
    5. Y. Katoh, L. L. Snead, I. Szlufarska and W. J. Weber, Curr. Opin. Solid State Mater. Sci.16,143 (2012).
    6. E. D. Herderick and K. Cooper, Adv. Mater. Processes 170,24 (2012).
    7. L. L. Snead, T. Nozawa, Y. Katoh, T-S. Byun, S. Kondo and D. A. Petti, J. Nucl. Mater.371,329 (2007).
    8. L. L. Snead, S. J. Zinkle, J. C. Hay and M. C. Osborne, Nucl. Instrum. Methods Phys. Res. B 141,123 (1998).
    9. L. Giancarli, J. P. Bonal, A. Caso, G. Le Marois, N. B. Morley and J. F. Salavy, Fusion Eng. Des.41,165 (1998).
    10. S. J. Zinkle and J. T. Busby, Mater. Today 12,12 (2009).
    11. R. A. Verrall, M. D. Vlajic and V. D. Krstic, J. Nucl. Mater.274,54 (1999).
    12. W. J. Weber, F. Gao, R. Devanathan and W. Jiang, Nucl. Instrum. Methods Phys. Res. B 218,68 (2004).
    13. Y. Zhang, W. J. Weber, W. Jiang, C. M. Wang, V. Shutthanandan and A. Hallen, J. Appl. Phys.95,4012 (2004).
    14. A. Benyagoub,A. Audren, L. Thome, and F. Garrido, Appl. Phys. Lett.89, 241914 (2006).
    15. A. Benyagoub and A. Audren, J. Appl. Phys.106,083516 (2009).
    16. A. Debelle, M. Backman, L. Thome, W. J. Weber, M. Toulemonde, S. Mylonas, A. Boulle, O. H. Pakarinen, N. Juslin, F. Djurabekova, K. Nordlund, F. Garrido, and D. Chaussende, Phys. Rev. B 86,100102 (2012).
    17. W. J. Weber and F. Gao, J. Mater. Res.25,2349 (2010).
    18. R. Devanathan, W. J. Weber, and F. Gao, J. Appl. Phys.90,2303 (2001).
    19. M. Mayer, Computer code SIMNRA, http://www.simnra.com.
    20. Y. Zhang, I. T. Bae, K. Sun, C. M. Wang, M. Ishimaru, Z. Zhu, W. Jiang, and W. J. Weber, J. Appl. Phys.105,104901 (2009).
    21. H. Z. Xue, Y. Zhang, Z. Zhu, W. M. Zhang, I. T. Bae, and W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 286,114 (2012).
    1. W. J. Weber and R. C. Ewing, Science 289,2051 (2000).
    2. I. Farnan, H. M. Cho, and W. J. Weber, Nature 445,190 (2007).
    3. W. J. Weber, A. Navrotsky, S. Stefanovsky, E. R. Vance, and E. Veraaz, MRS Bulletin 34,46 (2009).
    4. R. C. Ewing, W. J. Weber, and W. Lutze, in Disposal of Weapons Plutonium, edited by E.R. Merz and C.E. Walter (Kluwer Aca-demic Publishers, Dordrecht, The Netherlands,1996, p.65.
    5. W. Sinclair and A. E. Ringwood, Geochem. J.15,229 (1981).
    6. A. E. Ringwood, V. M. Oversby, and W. Sinclair, in Scientific Basis for Nuclear Waste Management, edited by CJ.M. Northrup, Jr. (Plenum Press, New York,1980), Vol.2, p.273.
    7. W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. Diaz de la Rubia, L. W. Hobbs, C. Kinoshita, Hj. Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Vance and S. J. Zinkle, J. Mater. Res.13,1434 (1998).
    8. R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys.95,5949 (2004).
    9. Y. Zhang, W. J. Weber, V. Shutthanandan, R. Devanathan, S. Thevuthasan, G. Balakrishnan and D. M. Paul, J. Appl. Phys.95,2866 (2004).
    10. Y. Zhang, W. J. Weber, W. Jiang, C. M. Wang, V. Shutthanandan, and A.Hallen, J. Appl. Phys.95,4012(2004).
    11. Y. Zhang, J. Lian, C. M. Wang, W. Jiang, R. C. Ewing, and W. J. Weber, Phys. Rev. B 72,094112 (2005).
    12. Y. Zhang, C. M. Wang, M. H. Engelhard, and W. J. Weber. J. Appl. Phys.100, 113533(2006).
    13. Y. Zhang, J. Lian, Z. Zhu, W. D. Bennett, L. V. Saraf, J. L. Rausch, C. A. Hendricks, R. C. Ewing, and W. J. Weber, J. Nucl. Mater.389,303 (1999).
    14. K. L. Smith and N. J. Zaluzec, J. Nucl. Mater.336,261 (2005).
    15. R. Cooper, K. L. Smith, M. Colella, E. R. Vance, and M. Phillips, J. Nucl.Mater. 289,199 (2001).
    16. K. L. Smith, M. Collela, R. Cooper, and E. R. Vance, J. Nucl. Mater.321,19 (2003).
    17. C. Sabathier, J. Chaumont, J.-C. Krupa, Nucl. Instrum. Methods Phys. Res. B 196,308(2002).
    18. W. J. Weber, Nucl. Instrum. Methods Phys. Res. B 166-167,98 (2000).
    19. W. J. Weber, J. Nucl. Mater.98,206 (1981).
    20. W. J. Weber, Radiat. Eff.83,145 (1984).
    1. F. Chen, J. Appl. Phys.106,081101 (2005).
    2. J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, Appl. Phys. Lett.86,183501 (2005).
    3. Q. Huang, J. H. Zhao, P. Liu, and X. L. Wang, J. Appl. Phys.108,093103 (2010).
    4. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, J. Appl. Phys.96,242 (2004).
    5. J. Olivares, A. Garcia-Navarro, G. Garcia, A. Mendez, F. Agullo-Lopez, A. Garcia-Cabanes, M. Carrascosa, and O. Caballero. Opt. Lett.32,2587 (2007).
    6. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, and Y. Jiao, Phys. Rev. B 75 195101 (2007).
    7. F. Agullo-Lopez, G. Garcia, and J. Olivares, J. Appl. Phys.97,093514 (2005).
    8. F. Schrempel, T. Gischkat, H. Hartung, E. B. Kley, W. Wesch and A. Tunnermann, Mater. Res. Soc. Symp.Proc. Vol.908E,0908-OO16-01.1.
    9. A. Meftah,J. M. Costantini, N. Khalfaoui, S. Boudjadar, J. P. Stoquert, F. Studer, M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 237,563 (2005).