植物纤维/聚烯烃复合材料体积拉伸制备加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废弃植物纤维/聚合物复合材料作为一种低碳、环保型材料,其应用与发展不但可以缓解随着石油资源枯竭致使高分子材料的发展受到遏制的问题,而且为废弃植物资源综合利用提供了有效途径。废弃植物纤维粉体与聚合物共混的复合材料,由于粉体对聚合物只增量不增强,其应用与发展空间有限。利用废弃植物长短纤维与聚合物共混复合制备复合材料,则可在增量的同时对聚合物增强。然而长短植物纤维/聚合物复合材料的制备加工中还有许多技术问题需要解决,这促进了植物纤维的制备、复合材料的制备加工技术的迅速发展。废弃植物纤维增强体的短流程无污染制备技术、高性能植物纤维/聚合物复合材料高效低能耗加工等技术为废弃植物纤维/聚合物复合材料的应用与发展提供了强有力的手段。
     通过体积拉伸形变主导的叶片塑化输运技术解决了植物纤维和聚合物混炼加工难题,考察植物纤维/聚合物复合体系在体积拉伸流场中微结构生成与演化规律及其加工特性。研究表明,植物纤维在叶片单元内主要受物料沿轴向的进料流动和叶片单元容腔内沿周向拉伸流动的共同作用,但随着转子轴转动植物纤维所受进料流动或拉伸流动作用的程度有所差异,植物纤维在叶片单元内不同区域呈现出不同的取向分布状态;植物纤维/聚合物复合体系在体积拉伸塑化输运过程中体现出混炼混合和分布分散效果好、机械热历程短、物料适应性强、能耗低以及对植物纤维的低剪切、低损伤等独特的加工特性。
     利用连续性蒸汽爆破技术处理废弃药渣制备得到药渣纤维增强体,并采用多种先进测试分析手段对药渣纤维的物化性能进行表征。猴耳环药渣经蒸汽爆破处理后,纤维束被解离成许多更为细小的纤维;纤维的结晶度降低,长径比、比表面积增大;纤维表面的羟基数目增多,粗糙程度增大;纤维素含量明显增加,半纤维素含量显著降低,而木质素含量略有降低且有新结构的木质素生成。
     采用体积拉伸形变支配的叶片塑化输运技术制备得到高性能的药渣纤维/聚烯烃复合材料,并可通过改变加工工艺条件实现复合材料性能的调控,建立了药渣纤维/聚烯烃复合材料的宏观性能与加工工艺参数之间的对应关系。结果表明,药渣纤维含量、偶联剂含量、润滑剂含量、抗氧剂含量、蒸汽爆破处理次数、加工温度以及挤出转速等加工工艺条件对药渣纤维/聚烯烃复合材料力学性能有着显著的影响。
     本论文的研究在高分子复合材料制备、加工成型的理论方面取得了创新性研究成果,形成了全新的高分子复合材料制备加工技术,解决了传统成型加工方法不能胜任的许多关键技术问题,对促进高分子材料加工行业的可持续发展有着重要的科学意义和实际意义。
The abandoned plant fiber/polymer composites are seemed as a kind of low-carbon,environmental friendly material, its application and development can not only ease the issuethat the development of polymer materials was limited for the exhausted of the oil resources,but also provide an effective path for the comprehensive utilization of the abandoned plantresources. While the composites blended by abandoned plant fiber powder and polymer, asthe powder only increase the quality, not increase the strength, which limited the space ofapplication and development. To prepare composites by using polymer and abandoned plantfiber with different length, then the polymer can be strengthened when its quality wasincreased. However, there are many technical issues need to be solved during the preparationand processing of plant fiber/polymer composites, which stimulates the high speed process ofthe preparation technique of the plant fiber and the composites. Technics, such as theshort-process, non-polluting preparation technique of abandoned plant fiber reinforcedmaterial, and efficient, low-power processing on high performance plant fiber/polymercomposites, provide powerful means for the application and development of the abandonedplant fiber/polymer composites.
     The vane plasticizing transportation technique, which dominated by volume elongationflow, solves the processing problem of the plant fiber and polymer, it reveals the forcedmixing mechanism during the short thermal-mechanical processing history of plant fiber andpolymer, and the generation, evolution law of the micro-structure during the processinghistory of the composites. In the vane unit, the plant fiber was forced synergistically by thematerial inflow along the axial direction and the extensional flow along the circumferentialdirection of the vane unit chamber, but with the different rotating speeds of the rotor shaft,forces that gener-ated by inflow and extensional flow are different, which makes the plantfiber present a variety of orientation distribution states in different zones of the vane unit.Based on the extensional rheology, the vane plasticizing transportation equipment presentsgood effects of mixing, distribution and dispersion, short history of thermal-mechanical,adaptability to raw materials, low power consumption and its unique processingcharacteristics of low shear, low damage on plant fiber during plasticizing transportationprocessing on plant fiber/polymer composites.
     By using continuous steam explosion technology, the Pipleccellollcem Clypsia Bemth(PCB) fiber was prepared from the abandoned PCB residue. Moreover, a variety of advancedtests and analysis means are used to characterize the physical and chemical properties. After the treat-ment of the steam explosion, the fiber bundles of the PCB residue are dissociatedinto more small fibers; the crystallinity increases first and decreases later, the ratio of thelength to the diameter and the specific surface area are all increase; on the fiber surface, thenumber of hydroxyl increases, the roughness increases; the content of cellulose increasesob-viously, the content of the hemicellulose decreases significantly, while the content of thelignin decreases slightly, and lignin with new structures generate.
     Preparing PCB fiber/polyolefin composites by using vane plasticizing transportationtechnique which based on extensional deformation, and controlling the performance of thecomposites through changing the processing technology conditions, then the correspondingrelationship between the macroscopic properties and the processing parameters was build up.The results showed that the processing technique conditions, which contain the PCB fibercontent, coupling agent content, lubricant content, antioxidant content, times of steamex-plosion treatments, processing temperature and extruding speed, had great influence on themechanical properties of the PCB fiber/polyolefin composites.
     The research of this paper gained innovative achievement in preparing polymercomposites, and building molding process theory. A brand new theory system of preparingpolymer composites was formed, which could solve a lot of critical technique issues thattraditional processing means not fit. This has scientific and practical significances onpromoting the sustainable development of the polymer processing industry.
引文
[1] Yang H. S, Wolcott M. P, Kim H. S, et al. Properties of lingo-cellulosic material filledpolypropylene bio-composites made with different manufacturing processes[J]. PolymerTesting.2006,25(5):668-676.
    [2]伍波,张求慧,李建章.木塑复合材料的研究进展及发展趋势[J].材料导报.2009,23(7):62-64.
    [3]王伟宏,李春桃,王清文.木塑复合材料产业化现状及制造关键技术[J].现代化工.2010,30(1):6-10.
    [4]钟鑫,薛平,丁筠.木塑复合材料性能研究的关键问题[J].工程塑料应用.2003,31(1):67-70.
    [5] Sawpan M. A, Pickering K. L, Fernyhough A. Improvement of mechanical performanceof industrial hemp fbre reinforced polylactide biocomposites[J]. Composites: Part A.2011,42(3):310-319.
    [6] Satyanarayana K. S, Arizaga G. G. C, Wypych F. Biodegradable composites based onlignocellulosic fibers An overview[J]. Progress in Polymer Science,2009,34(9):982-1021.
    [7] Gupta B. S, Reiniati I, Labpriem P. G. Surface properties and adhesion of wood fiberreinforced thermoplastic composites[J]. Colloids and Surfaces A: PhysicochemicalEngineering Aspects.2007,302(1-3):388-395.
    [8]方明锋,黄华.木塑复合材料的研究及应用[J].现代农业.2009,(3):8-10.
    [9]鲁礼娟.我国木塑复合材料的生产现状及发展趋势.木材加工机械.2008,(6):40-42.
    [10]肖泽芳,赵林波,谢延军,等.木材-热塑性塑料复合材料的进展[J].东北林业大学学报.2003,31(1):39-41.
    [11]陈国符,邬义明.植物纤维化学[M].北京:中国轻工业出版社.1991.
    [12]杨淑蕙.植物纤维化学[M].第三版.北京:中国轻工业出版社.2001.
    [13]沈寒知.热处理植物纤维/聚乳酸复合材料的制备与性能研究[D].广州:华南理工大学硕士学文论文.2011.
    [14]张叶青.猴耳环药渣纤维/聚丙烯复合体系原位增容机理研究[D].广州:华南理工大学硕士学文论文.2012.
    [15]于旻,何春霞.国内外木塑复合材料研究进展[J].工程塑料应用.2011,39(8):92-95.
    [16]周海鸥,王宝成.木塑复合材料的研究进展[J].化工科技市场.2008,31(11):13-14.
    [17] Liu L.F, Yu J.Y, Cheng L.D, et al. Mechanical properties of poly(butylene succinate)(PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A:Applied Science and Manufacturing.2009,40(5):669-674.
    [18]冯彦洪,沈寒知,瞿金平,等. PLA/蔗渣复合材料的制备及其性能的研究[J].塑料工业.2010,38(1):25-28.
    [19]冯彦洪,沈寒知,瞿金平,等. PLA/蔗渣复合材料的制备及其性能的研究[J].塑料.2010,39(2):65-67.
    [20]罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技,2005,30(3):53-56.
    [21] Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatmentof lignocellulosic biomass[J]. Bioresource Technology,2005,96(6):673-686.
    [22] Dupeyre D, Vignon M. R. Fibres from semi-retted hemp bundles by steam explosiontreatment[J]. Biomass and Bioenergy.1998,14(3):251-260.
    [23]闫军,冯连勋.蒸汽爆破技术的研究[J].现代农业科技.2009,1(11):278-280.
    [24]宋先亮,殷宁,潘定如.爆破制浆技术的研究现状[J].北京林业大学学报.2003,25(4):75-79.
    [25]牛永亮,韦春,钟锦标,等.蒸汽爆破处理对酚醛/SF/GF复合材料静态及动态力学性能的影响[J].桂林工学院学报.2007,27(4):549-552.
    [26]廖双泉,马凤国,廖建和,等.蒸汽爆破处理对剑麻纤维组分分离的影响[J].热带作物学报.2003,24(3):27-30.
    [27] Esteves B. M, Pereira H.M. Wood modification by heat treatment[J]. BioResources.2009,4(1):370-404.
    [28] Inari G. N, Petrissans M, Gerardin P. Chemical reactivity of heat-treated wood[J]. WoodScience Technology.2007,41(2):157-168.
    [29]李惠明,陈人望,严婷.热处理改性木材的性能分析I.热处理材的物理力学性能[J].木材工业.2009,23(2):43-45.
    [30] Gerardin P, Petric M, Petrissans M, et al. Evolution of wood surface free energy afterheat treatment[J]. Polymer Degradation and Stability.2007,92(4):653-657.
    [31] Inari G. N, Petrossans M, Lambert J, et al. XPS characterization of wood chemicalcomposition after heat-treatment[J]. Surface and Interface Analysis.2006,38(10):1336-1342.
    [32] Tasdemir M, Biltekin H, Caneba G. T. Preparation and characterization of LDPE andPP-wood fiber composites[J]. Journal of Applied Polymer Science.2009,112(5):3095-3102.
    [33]周绪斌.秸秆和塑料复合界面的改性分析和研究[D].南京:南京林业大学硕士学位论文.2009.
    [34]吴比.纤维增强废塑料基复合材料的力学性能研究[D].重庆:重庆大学硕士学位论文.2004.
    [35] Liu Y. P, Hu H. X-ray diffraction study of bamboo fibers treated with NaOH[J]. Fibersand Polymers.2008,9(6):735-739.
    [36] Athijayamani A, Thirychitrambalam M, Natarajan U, et al. Influence of alkali-treatedfibers on the mechanical properties and machinability of roselle and sisal fiber hybridpolyester composite[J]. Polymer Composites.2010,31(4):723-731.
    [37]曹勇,柴田信一.甘蔗渣的碱处理对纤维增强全降解复合材料的影响[J].复合材料学报.2006,23(3):60-66.
    [38] Bakar A. A, Keat T. B, Hassan A. Tensile properties of a poly(vinyl chloride) compositefilled with poly(methyl methacrylate) grafted to oil palm empty fruit bunches[J]. Journalof Applied Polymer Science.2010,115(1):91-98.
    [39] Rahman M. M, Mallik A. K, Khan M. A. Influences of various surface pretreatments onthe mechanical and degradable properties of photografted oil palm fibers[J]. Journal ofApplied Polymer Science.2007,105(5):3077-3086.
    [40]杨庆浩,程光旭,胥聪敏,等.原位接枝剑麻纤维增强聚丙烯复合材料研究[J].西安科技大学学报.2010,30(1):92-96.
    [41] Kalia S, Kaith B. S, Sharma S, et al. Mechanical properties of flax-g-poly(methylacrylate) reinforced phenolic composites[J]. Fibers and Polymers.2008,9(4):416-422.
    [42]韩志超,迟红训,王少廷,等.丙烯酸甲酯接枝亚麻纤维及其在PVC/亚麻复合材料中的应用[J].大连工业大学学报.2008,27(3):241-244.
    [43] Petinakis E, Yu L, Edward G, et al. Effect of matrix-particle interfacial adhesion on themechanical properties of poly(lactic acid)/pood-flour micro-composites[J]. Journal ofPolymers and the Environment.2009,17(2):83-94.
    [44] Lee S. H, Wang S. Biodegradable polymers/bamboo fiber biocomposite with bio-basedcoupling agent[J]. Composites Part A: Applied Science and Manufacturing.2006,37(1):80-91.
    [45] Lee B. H, Kim H. S, Lee S, et al. Bio-composites of kenaf fibers in polylactide: Role ofimproved interfacial adhesion in the carding process[J]. Composites Science andTechnology.2009,69(15-16):2573-2579.
    [46] Xiong C, Qi R. R, Wang Y. L. Wood-thermoplastic composites from wood flour andhigh-density polyethylene[J]. Journal of Applied Polymer Science.2009,114(2):1160-1168.
    [47]陈钦慧,李雪芳,林金火.铝酸酯偶联剂对竹塑复合材料界面性能的影响[J].林产化学与工业.2009.29(1):83-86.
    [48] Tronc E, Hernández-Escobar C. A, Ibarra-Gómez R, et al. Blue agave fiber esterificationfor the reinforcement of thermoplastic composites[J]. Carbohydrate Polymers.2007,67(2):245-255.
    [49]雷文,杨涛.不饱和聚酯树脂/大麻纤维复合材料性能的研究[J].工程塑料应用.2008,36(4):25-29.
    [50] Stark N. M, Rowlands R. E. Effects of wood fiber characteristics on mechanicalproperties of wood/polypropylene composites[J]. Wood and Fiber Science.2007,3(2):167-174.
    [51] Feng D, Caulfield D. F, Sanadi A. R. Effect of compatibilizer on the structure-propertyrelationships of kenaf-fiber/polypropylene composite[J]. Polymer Composites.2001,22(4):506-517.
    [52] Nourbakhsh A, Kouhpayehzadeh M. Mechanical properties and water absorption offiber-reinforced polypropylene composites prepared by bagasse and beech fiber[J].Journal of Applied Polymer Science,2009,114(1):653-657.
    [53]孟召辉,姚正军,周金堂.麦秸纤维/废旧塑料再生复合材料[J].材料科学与工程学报.2008,26(2):260-263.
    [54]米耀荣,于中振,杨彪.聚合物纳米复合材料[M].北京:机械工业出版社.2010.
    [55]周曦亚.复合材料[M].第一版.北京:化学工业出版社.2005.
    [56]倪礼忠,陈麒.聚合物基复合材料[M].上海:华东理工大学出版社.2007.
    [57] Malkapuram R, Kumar V, Negi Y. S. Recent development in natural fiber reinforcedpolypropylene composites[J]. Journal of Reinforced Plastics and Composites.2009,28(10):1169-1189.
    [58] Mohanty A. K, Misra M, Hinrichsen G. Biofibres, biodegradable polymers andbiocomposites: An overview[J]. Macromolecular Materials and Engineering.2000,276(3-4):1-24.
    [59]李坚.木材科学[M].哈尔滨:东北林业大学出版社,1994.
    [60]黄臻,程秀才,赵颖峰,等.木塑复合材料的发展与应用前景展望[J].国际木业.2008,(10):38-40.
    [61]蔡绍祥,喻云水.木塑复合材料的应用及其发展前景[J].西部林业科学.2005,34(2):113-117.
    [62] Bavan D. S, Kumar G. C. M. Potential use of natural fiber composite materials inIndia[J]. Journal of Reinforced Plastics and Composites.2010,29(24):3600-3613.
    [63]沈凡成,贾润礼.木塑复合材料的研究进展与发展前景[J].塑料助剂.2010,79(1):5-9.
    [64] George J, Speekala M. S, Tomas S. A review on interface modification andmharacterization of natural fiber reinforced plastic composites[J]. Polymer Engineeringand Science.2001,41(9):1471-1485.
    [65]杨德旭,张林文.天然纤维复合材料在建筑装饰上的应用[J].纤维复合材料,2005,(4):39-43.
    [67]泽雁.木塑复合共挤型材门窗[J].新型建筑材料.2001,(2):30.
    [68] Bhattacharyya D, Jayaraman K. Manufacturing and evaluation of woodfibre-wasteplastic composite sheets[J]. Polymers and Polymer Composites.2003,11(6):433-440.
    [69] Holbery J, Houston D. Natural-fiber-reinforced polymer composites in automotiveapplications[J]. Chemistry and Materials Science.2006,58(11):80-86.
    [70] Ashori A. Wood-plastic composites as promising green-composites for automotiveindustries[J]. Bioresource Technology.2008,99(11):4661-4667.
    [71] Alves C, Ferrao P. M. C, Silva A. J, et al. Ecodesign of automotive components makinguse of natural jute fiber composites[J]. Journal of Cleaner Production.2010,18(4):313-327.
    [72]张卓,任忠海,叶湖水.麻纤维在汽车工业中的开发应用与展望[J].广东农业科学,2010,(10):250-252.
    [73]曲丽君.麻纤维在汽车用装饰材料中的应用[J].产业用纺织品.2002,20(143):36-39.
    [74]侯新秀.植物纤维复合材料在包装领域的应用[J].上海包装.2010,(4):33-35.
    [75]张晓惠,黎厚斌.聚乳酸改性及其在包装领域的应用[J].包装工程.2008,29(8):237-239.
    [76]张绍华.聚丙烯/蔗渣复合材料叶片塑化挤出特性及力学性能研究[D].广州:华南理工大学硕士学位论文.2009.
    [77]陈华鑫.叶片挤出机加工的植物纤维/聚丙烯复合材料性能研究[D].广州:华南理工大学硕士学位论文.2011.
    [78]韩天旭.木塑复合材料生产工艺进展[J].林业科技情报.2010,42(4):104-105.
    [79]李新功,吴义强,郑霞.生物可降解竹纤维增强塑料复合材料成型工艺[J].世界竹藤通讯.2009,7(4):22-26.
    [80]许民.生物质-塑料复合工学[M].北京:科学出版社,2006.
    [81]张明珠.木质纤维填充热塑性塑料复合材料与挤出成型的研究[D].北京:北京化工大学硕士学位论文,2001.
    [82]耿孝正.塑料混合及连续混合设备[M].北京:中国轻工业出版社,2008.
    [83]许民,曹军,李坚,等.机械参数对木塑复合材性能的影响[J].木材加工机械,2008,(4):4-10.
    [84]薛平,张明珠,何亚东,等.木塑复合材料及挤出成型特性的研究[J].中国塑料,2001,15(8):53-59.
    [85]熊伟,李大纲,周道.影响木塑复合材料挤出成型质量因素分析[J].林业机械与木工设备.2008,36(7):15-17.
    [86]李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业.2003,31(11):22-24.
    [87]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P]. ZL200810026054.X.
    [88] Qu J. P, Liu L. M, Tan B, et al. Effect of dynamical converging channels on fiberorganization and damage during vane extrusion of sisal fiber-reinforced polypropylenecomposites[J]. Polymer Composites.2012,33(2):185-191.
    [89] Qu J. P, Yang Z. T, Yin X. C, et al. Characteristics study of polymer melt conveyingcapacity in vane plasticization extruder[J]. Polymer-Plastics Technology andEngineering.2009.48(12):1269-1274.
    [90]杨智韬.聚合物叶片挤出机熔体正位移输送与混合特性研究[D].广州:华南理工大学博士学位论文.2009.
    [91]赵永青.非晶淀粉吸附材料的制备与吸附机理研究[D].广州:华南理工大学硕士学位论文.2009.
    [92]朱诚身.聚合物结构分析[M].第二版.北京:科学出版社.2010.
    [93]何曼君,陈维孝,董西侠.高分子物理[M].修订版.上海:复旦大学出版社.2006.
    [94]布莱恩﹒哈里斯.工程复合材料[M].北京:化学工业出版社,2004.
    [95]张志坚,李镜友,李国强.猴耳环研究进展[J].中国药业.2010,19(18):82-84.
    [96]苏妙贤,唐之岳,黄伟欢,等.猴耳环化学成分分析[J].中药材.2009,32(5):705-707.
    [97]邓海英,康四和.猴耳环的形态组织学鉴别[J].中药材.2005,28(7):547-549.
    [98] Brownell H. H, Yu E. K. C, Saddler J. N. Steam-explosion pretreatment of wood: Effectof chip size, acid, moisture content and pressure drop[J]. Biotechnology andBioengineering.1986,28(6):792-801.
    [99] Montane D, a, Farriol X, SalvadóJ, et al. Application of steamexplosion to thefractionation and rapid vapor-phase alkaline pulping of wheat straw[J]. Biomass andBioenergy.1998,14(3):261-276.
    [100]冯彦洪,瞿金平.螺杆注射式植物纤维蒸汽爆破装置[P]. ZL200910036569.
    [101] Rong M. Z, Zhang M. Q, Liu Y, et al. The effect of fiber treatment on the mechanicalproperties of unidirectional sisal-reinforced epoxy composites[J]. Composites Scienceand Technology.2001,61(10):1437-1447.
    [102] Xu W. L, Ke G. Z, Wu J. H, et al. Modification of wool fiber using steamexplosion[J].European Polymer Journal.2006,42(9):2168-2173.
    [103] Parka B. D, Wib S. G, Lee K. H, et al. X-rayphotoelectronspectroscopy of rice husksurface modified with maleated polypropylene and silane[J]. Biomass and Bioenergy.2004,27(4):353-363.
    [104]杜官本.表面光电子能谱及其在木材科学与技术领域的应用[J].木材工业,1999,13(3):17-20.
    [105]李坚.木材波谱学[M].北京:科学出版社,2003.
    [106]刘传富,孙润仓,叶君.固体核磁CP/MAS13C-NMR在植物纤维原料研究中的应用[J].中国造纸学报,2005,20(2):184-188.
    [107]陈洪章.麦草蒸汽爆破处理的研究Ⅱ.麦草蒸汽爆破处理作用机制分析[J].纤维素科学与技术,1999,7(4):14-22.
    [108] Tjeerdsma B. F, Militz H. Chemaical changes in hydrothermal treated wood: FTIRanalysis of combined hydrothermal and dry heat-treated wood[J]. Holzals Rohundwerkstoff,2005,63(2):102-111.
    [109]何翠芳.棉秆蒸爆处理制备无胶纤维板工艺及胶合机理的研究[D].南京:南京林业大学硕士学位论文,2008.