Noggin和BDNF基因修饰的BMSCs、羟基红花黄色素A、重复经颅磁刺激对血管性痴呆大鼠作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:①建立大鼠骨髓间充质干细胞(bone mesenchymal stem cells, BMSCs)的分离、培养及基因转染技术;②筛选BMSCs、Noggin和脑源神经营养因子(brain-derived neurotrophic factor, BDNF)基因修饰的BMSCs、羟基红花黄色素A (hydroxysafflor yellow A, HSYA)口重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)等干预血管性痴呆(vascular dementia)大鼠的方法,结合大鼠空间记忆力和海马区血管内皮生长因子(vascular endothelial growth factor, VEGF)的表达分析其效果;③将大鼠海马区长时程增强(long-term potentiation, LTP)与BDNF和N-甲基-D-天门冬氨酸受体(N-methyl-D-aspartic acid receptor, NMDAR)不同亚单位的表达结合,分析VaD大鼠空间记忆改善的机理。
     方法:①提取大鼠长骨骨髓中的BMSCs,对其进行传代培养,通过MTT等方法计算细胞活力,通过流式细胞技术、成骨诱导和成脂诱导技术对其进行鉴定;②选取第3至第5代的BMSCs进行Noggin和BDNF基因转染,以VVestern blotting(?)勺方法检测BMSCs目的蛋白的表达;③采用2VO法制作VaD大鼠模型,实验动物随机分为正常组、假手术组、模型组、PBS组、生理盐水组、BMSCs组、Noggin修饰BMSCs组、BDNF修饰BMSCs组、HSYA组和rTMS组;④对造模后1周的VaD大鼠分别给予BMSCs移植、转染Noggin的BMSCs移植、转染BDNF的BMSCs移植、HSYA尾静脉注射2周和高频rTMS4周;⑤造模后5周行水迷宫实验检测各组大鼠的空间记忆功能,行LTP实验检测各组大鼠海马区的突触可塑性,以Western blotting的方法检测各组大鼠海马区VEGF、 BDNF、NR1、NR2A和NR2B的表达,以HE染色观察各组大鼠海马区的结构,以免疫组化的方法检测各组大鼠海马区VEGF和NR1的表达。
     结果:①通过一般形态学的观察、流式细胞技术、成骨诱导和成脂诱导等鉴定方法显示,贴壁法分离、培养BMSCs可以有效达到纯化的目的;②通过荧光显微镜下观察和Western blotting法检测目的蛋白的表达,显示重组腺病毒Ad-GFP-Noggin和Ad-GFP-BDNF转染BMSCs,可使BMSCs高效表达Noggin和BDNF;③HE染色结果显示2VO法制作血管性痴呆模型,可以模拟人类血管性痴呆的病理表现,而各干预组均可使其病理变化得到改善;④水迷宫结果显不BMSCs移植、Noggin和BDNF转染BMSCs移植、HSYA和rTMS均可改善VaD大鼠的空间记忆功能,且Noggin和BDNF转染BMSCs组优于单纯给予BMSCs组;⑤Western blotting和免疫组化的结果显示,VaD模型组大鼠海马区VEGF表达轻度上调,HSYA和BDNF转染BMSCs可以显著上调VEGF的表达,其余各干预组增加VEGF表达的作用相对较小;⑥LTP结果显示,各干预组均明显优于VaD模型组,以Noggin、BDNF转染BMSCs组和rTMS组为著;⑦Western blotting和免疫组化的结果显示各干预组均可使海马区BDNF、NR1和NR2B的表达上调,以BDNF转染BMSCs组和rTMS组为著,而各组对NR2A均无显著影响。
     结论:①贴壁筛选法分离、培养大鼠BMSCs,可获得纯度和活力均较高的BMSCs;②Noggin、BDNF对BMSCs的存活和分化具有重要意义,有望临床应用神经营养因子基因转染BMSCs治疗神经系统疾病;③BDNF基因修饰的BMSCs既能修复受损的记忆功能和突触效能,又可促进血管生成,其总体效果优于单纯的BMSCs移植和Noggin基因修饰的BMSCs移植,对VaD有良好的治疗前景;④HSYA可明显促进血管生成,rTMS可显著调节突触可塑性,有望将二者联合用于临床治疗VaD患者;⑤LTP的形成与BDNF和NMDAR有密切关系,其中NMDAR主要是NR1和NR2B的活化,而不是NR2A; BMSCs、Noggin基因转染BMSCs、BDNF基因转染BMSCs、HSYA和rTMS可能都是通过此途径而改善VaD大鼠的空间学习记忆能力。
Objecitive:①To establish the method of the isolation, cultivation and gene transfection of bone mesenchymal stem cells (BMSCs).②To evaluate the therapeutic effect of BMSCs, Noggin and brain-derived neurotrophic factor (BDNF) modified BMSCs, hydroxysafflor yellow A (HSYA) and repetitive transcranial magnetic stimulation (rTMS) on the vascular dementia (VaD) rats by the Morris water maze and the vascular endothelial growth factor (VEGF) expression in the hippocampus. To analyze the physiological and molecular mechanism of the learning and memory improvement, indicated by the long-term potentiation (LTP), the BDNF and different N-methyl-D-aspartic acid receptor (NMDAR) subunits expression in the hippocampus.
     Method:①BMSCs were isolated from SD rats bone marrow and purified through adherence ability. These cells were identified as BMSCs by their phenotypical properties and their ability to differentiate into osteocyte and adipocyte.②Ad-GFP-Noggin gene and Ad-GFP-BDNF gene were transfected to the BMSCs. The target proteins were measured with Western blotting.③The rats were randomly divided into ten groups, including normal control, sham operation, VaD model, PBS, NS, BMSCs, Noggin modified BMSCs, BDNF modified BMSCs, HSYA and rTMS. The VaD model rats were made by two vessel occlusion (2VO) method.④BMSCs, Noggin modified BMSCs, BDNF modified BMSCs, HSYA(2weeks duration) and rTMS(4weeks duration) were administered in one week after the2VO.⑤The spatial learning and memory of all groups were measured by Morris water maze in five weeks after the operation. Then the CA3-to-CA1LTP were measured. The VEGF, BDNF, NR1, NR2A and NR2B expression in the hippocampus were measured with Western blotting. The pathologic changes were observed by hematoxylin and eosin stain. The VEGF and NR1expression in the hippocampus were also observed by immunohistochemistry.
     Results:①The method that isolation and cultivation of BMSCs through the adherence ability could effectively purify the BMSCs, which identified by the morphology, flow cytometry, osteogenic differentiation and adipogenic differentiation. ②The BMSCs modified by Ad-GFP-Noggin and Ad-GFP-BDNF could express Noggin and BDNF respectively with high efficiency.③The2VO model could mimic the pathological features of vascular dementia in human, in which could be improved by BMSCs transplantation (modified with or without Noggin and BDNF), HS YA and rTMS.④All therapeutic groups could improve the spatial learning and memory of rats in the Morris Water Maze tests, and the improvement was greater in Noggin and BDNF modified BMSCs groups than that in BMSCs groups.⑤The VEGF expression in the hippocampus was slightly higher after2VO. HSYA and BDNF modified BMSCs transplantation could significantly up-regulate the VEGF expression in the hippocampus.⑥All the therapeutic groups could enhance the CA3-to-CA1LTP, especially the Noggin or BDNF modified BMSCs transplantation and the rTMS groups.⑦All the therapeutic groups could increase the BDNF, NR1and NR2B expression, but not NR2A, in the hippocampus, especially the BDNF modified BMSCs transplantation and the rTMS groups.
     Conclusion:①BMSCs could be isolated and purified from rat bone marrow through the adherence ability and subculture.②Both Noggin and BDNF play a crucial role on the survival and differatiation of the BMSCs. The method of neurotrophic factors gene transfected BMSCs is a very hopeful therapeutic strategy in the nervous system diseases.③The BDNF modified BMSCs transplantation was proved to be better in improving the memory and synaptic efficacy, and promote the angiogenesis, compared with the BMSCs transplantation or Noggin modified BMSCs transplantation. Therefore the BDNF modified BMSCs transplantation is a promising therapeutic method in the treatment of VaD.④HSYA could promote the angiogenesis in the hippocampus, and rTMS could significantly enhance the synaptic plasticity, so combination HSYA and rTMS is worthwhile of applying in the treatment of VaD patients.⑤The formation of LTP is associated with BDNF, NR1and NR2B, but not NR2A, in the hippocampus. BMSCs (modified with or without Noggin and BDNF) transplantation, HSYA and rTMS improved the spatial learning and memory of the VaD rats through the BDNF-NMDAR (NR1/NR2B) dependent LTP.
引文
[1]Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer's disease and vascular dementia in developing countries:prevalence, management, and risk factors. Lancet Neurol,2008,7(9):812-826.
    [2]Dong MJ, Peng B, Lin XT, et al. The prevalence of dementia in the People's Republic of China:a systematic analysis of 1980-2004 studies. Age Ageing, 2007,36(6):619-624.
    [3]Zhang ZX, Zahner GE, Roman GC, et al. Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol,2005, 62(3):447-453.
    [4]O'Brien JT, Erkinjuntti T, Reisberg B, et al. Vascular cognitive impairment. Lancet Neurol,2003,2(2):89-98.
    [5]Moorhouse P, Rockwood K. Vascular cognitive impairment:current concepts and clinical developments. Lancet Neurol,2008,7(3):246-255.
    [6]Gross CG. Neurogenesis in the adult brain:death of a dogma. Nat Rev Neurosci,2000,1(1):67-73.
    [7]Phinney DG, Prockop DJ. Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair-current views. Stem Cells,2007,25:2896-2902.
    [8]Ao Q, Fung CK, Tsui AY, et al. The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials,2011,32(3):787-796.
    [9]Opydo-Chanek M, Dabrowski Z. Response of astrocytes and microglia/macrophages to brain injury after bone marrow stromal cell transplantation:a quantitative study. Neurosci Lett,2011,487(2):163-168.
    [10]Liu Z, Li Y, Zhang ZG, et al. Bone marrow stromal cells enhance inter-and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab,2010,30(7):1288-1295.
    [11]Guo J, Shen JK, Wang L, et al. In vivo evaluation of cerebral transplantation of resovist-labeled bone marrow stromal cells in Parkinson's disease rats using magnetic resonance imaging. Appl Biochem Biotechnol,2011,163(5): 636-648.
    [12]Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature,2005,436:193-200.
    [13]Eichmann A, Le Noble F, Autiero M, et al. Guidance of vascular and neural network formation. Curr Opin Neurobiol,2005,15:108-115.
    [14]Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci,2006,110:175-191.
    [15]Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors,2004,22:123-131.
    [16]Huang EJ, Reichardt LF. Neurotrophins:roles in neuronal development and function. Annu Rev Neurosci,2001,24:677-736.
    [17]Meselhy MR, Kadota S, Momose Y, et al. Two new quinochalcone yellow pigments from Carthamus tinctorius and Ca2+ antagonistic activity of tinctormine. Chem Pharm Bull (Tokyo),1993,41(10):1796-1802.
    [18]Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet,1985,1(8437):1106-1107.
    [19]Moser DJ, Jorge RE, Manes F, et al. Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology,2002, 58(8):1288-1290.
    [20]杜登青,吴育彬.低频重复经颅磁刺激改善脑卒中抑郁患者的生活能力和认知功能与药物加心理治疗的比较.中国临床康复,2005,9(16):22-23.
    [21]Koch G, Oliveri M, Brusa L, et al. High-frequency rTMS improves time perception in Parkinson disease. Neurology,2004,63(12):2405-2406.
    [22]Cotelli M, Manenti R, Cappa SF, et al. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol,2008,15(12):1286-1292.
    [23]Gao F, Wang S, Guo Y, et al. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia:a microPET study. Eur J Nucl Med Mol Imaging,2010,37(5):954-961.
    [24]王晓明,龙存国,付红梅,等.抑郁症患者脑单光子发射计算机断层扫描显像的初步研究.现代康复,2001,5(3):27,35.
    [25]Bliss TV, Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus. Nature,1993,361(6407):31-39.
    [26]Costa-Mattioli M, Gobert D, Harding H, et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature,2005,436(7054):1166-1173.
    [27]Dupret D, O'Neill J, Pleydell-Bouverie B, et al. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat Neurosci,2010,13(8):995-1002.
    [28]Micu I, Jiang Q, Coderre E, et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature,2006,439(7079): 988-992.
    [29]Dalmau J, Tuzun E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol,2007, 61(1):25-36.
    [30]Gielen M, Siegler RB, Mony L, et al. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature,2009,459(7247): 703-707.
    [31]Vacotto M, Rapacioli M, Flores V, et al. Acute hypoxia differentially affects the NMDA receptor NR1, NR2A and NR2B subunit mRNA levels in the developing chick optic tectum:stage-dependent plasticity in the 2B-2A ratio. Neurochem Res,2010,35(10):1609-1619.
    [32]Liu Z, Zhao W, Xu T, et al. Alterations of NMDA receptor subunits NR1, NR2A and NR2B mRNA expression and their relationship to apoptosis following transient forebrain ischemia. Brain Res,2010,1361:133-139.
    [33]李涛,程焱.NGF基因修饰的BMSCs对VaD大鼠海马区细胞凋亡及NMDAR1表达的影响.山东医药,2009,49(21):3-5.
    [34]Wang F, Geng X, Tao HY, et al. The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area. J Mol Neurosci,2010,41(1):145-155.
    [35]Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation,1968,6(2):230-247.
    [36]Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet,1987,20(3):263-272.
    [37]Zhang Y, Lin HK, Frimberger D, et al. Growth of bone marrow stromal cells on small intestinal submucosa:an alternative cell source for tissue engineered bladder. BJU Int,2005,96(7):1120-1125.
    [38]Sasaki DT, Tichenor EH, Lopez F, et al. Development of a clinically applicable high-speed flow cytometer for the isolation of transplantable human hematopoietic stem cells. J Hematother,1995,4(6):503-514.
    [39]Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol,2000,164(2): 247-256.
    [40]Anokhina EB, Buravkova LB. Heterogeneity of stromal precursor cells isolated from rat bone marrow. Tsitologiia,2007,49(1):40-47.
    [41]Rismanchi N, Floyd CL, Berman RF, et al. Cell death and long-term maintenance of neuron-like state after differentiation of rat bone marrow stromal cells:a comparison of protocols. Brain Res,2003,991(1-2):46-55.
    [42]Yaghoobi MM, Mahani MT. NGF and BDNF expression drop off in neurally differentiated bone marrow stromal stem cells. Brain Res,2008,1203: 26-31.
    [43]Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol,2002,1(2):92-100.
    [44]Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol, 2005,191(2):344-360.
    [45]Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell,1996,86(4):599-606.
    [46]Chmielnicki E, Benraiss A, Economides AN, et al. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J Neurosci,2004,24(9):2133-2142.
    [47]Lim DA, Tramontin AD, Trevejo JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron,2000,28(3): 713-726.
    [48]Ding J, Cheng Y, Gao S, et al. Effects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats. J Neurosci Res,2011,89(2):222-230.
    [49]Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J,1982,1(5):549-553.
    [50]Patapoutian A, Reichardt LF. Trk receptors:mediators of neurotrophin action. Curr Opin Neurobiol,2001,11(3):272-280.
    [51]Rezaee F, Rellick SL, Piedimonte G, et al. Neurotrophins regulate bone marrow stromal cell IL-6 expression through the MAPK pathway. PLoS One, 2010,5(3):e9690.
    [52]Babu H, Ramirez-Rodriguez G, Fabel K, et al. Synaptic Network Activity Induces Neuronal Differentiation of Adult Hippocampal Precursor Cells through BDNF Signaling. Front Neurosci,2009,3:49.
    [53]Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. J Neurosurg Spine,2007,6(5):412-419.
    [54]Yaghoobi MM, Mowla SJ. Differential gene expression pattern of neurotrophins and their receptors during neuronal differentiation of rat bone marrow stromal cells. Neurosci Lett,2006,397(1-2):149-154.
    [55]Li LY, Li JT, Wu QY, et al. Transplantation of NGF-gene-modified bone marrow stromal cells into a rat model of Alzheimer'disease. J Mol Neurosci, 2008,34(2):157-163.
    [56]Wang TH, Feng ZT, Wei P, Li H, Shi ZJ, Li LY. Effects of pcDNA3-beta-NGF gene-modified BMSC on the rat model of Parkinson's disease. J Mol Neurosci,2008,35(2):161-169.
    [57]Makar TK, Bever CT, Singh IS, et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol,2009,210(1-2):40-51.
    [58]Makar TK, Trisler D, Sura KT, et al. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci,2008,270(1-2):70-76.
    [59]Koda M, Kamada T, Hashimoto M, et al. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord. Eur Spine J,2007,16(12): 2206-2214.
    [60]刘谦虚,陈观贵,贺湘波,等.脑源性神经营养因子基因转染骨髓间充质干细胞对豚鼠受损耳蜗螺旋神经节细胞的影响.中华耳鼻咽喉头颈外科杂志,2010,45(12):1029-1034.
    [61]郑明辉,张志坚,黄东煜,等.脑源性神经营养因子基因修饰骨髓间充质干细胞治疗坐骨神经损伤.中国组织工程研究与临床康复,2009,13(01):120-124.
    [62]魏昌秀,陈松林.脑源性神经营养因子基因修饰骨髓间质干细胞移植对痴呆大鼠记忆功能的影响.中国组织工程研究与临床康复,2008,12(38):7431-7434.
    [63]Roman GC, Erkinjuntti T, Wallin A, et al. Subcortical ischaemic vascular dementia. Lancet Neurol,2002,1(7):426-436.
    [64]Leblanc GG, Meschia JF, Stuss DT, et al. Genetics of vascular cognitive impairment:the opportunity and the challenges. Stroke,2006,37(1): 248-255.
    [65]Klijn CJ, Kappelle LJ, Tulleken CA, et al. Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke,1997,28(10): 2084-2093.
    [66]Pascual B, Prieto E, Arbizu J, et al. Brain glucose metabolism in vascular white matter disease with dementia:differentiation from Alzheimer disease. Stroke,2010,41(12):2889-2893.
    [67]Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope. Pharmacol Res, 2005,51(1):1-17.
    [68]Baskys A, Blaabjerg M. Understanding regulation of nerve cell death by mGluRs as a method for development of successful neuroprotective strategies. J Neurol Sci,2005,229-230:201-209.
    [69]姚国恩,王景周,陈曼娥.血管性痴呆大鼠认知障碍的NMDAR机制研究.第三军医大学学报,2002,24(12):1408-1410.
    [70]Nilsson K, Gustafson L, Hultberg B. C-reactive protein:vascular risk marker in elderly patients with mental illness. Dement Geriatr Cogn Disord,2008, 26(3):251-256.
    [71]Zuliani G, Ranzini M, Guerra G, et al. Plasma cytokines profile in older subjects with late onset Alzheimer's disease or vascular dementia. J Psychiatr Res,2007,41(8):686-693.
    [72]Zuliani G, Guerra G, Ranzini M, et al. High interleukin-6 plasma levels are associated with functional impairment in older patients with vascular dementia. Int J Geriatr Psychiatry,2007,22(4):305-311.
    [73]Ravaglia G, Forti P, Maioli F, et al. Blood inflammatory markers and risk of dementia:The Conselice Study of Brain Aging. Neurobiol Aging,2007, 28(12):1810-1820.
    [74]Malaguarnera L, Motta M, Di RM, et al. Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer's disease and vascular dementia. Neuropathology,2006,26(4):307-312.
    [75]Tomimoto H, Akiguchi I, Wakita H, et al. Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans. Acta Neuropathol, 2000,99(1):26-30.
    [76]Rosenberg GA, Sullivan N, Esiri MM. White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke,2001,32(5): 1162-1168.
    [77]Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly:molecular pathology suggests origin from chronic hypoperfusion injury. Stroke,2006,37(6):1391-1398.
    [78]Adair JC, Charlie J, Dencoff JE, et al. Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke,2004,35(6):e159-162.
    [79]Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly:astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol,2007,33(4):410-419.
    [80]Zini I, Tomasi A, Grimaldi R, et al. Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci Lett, 1992,138(2):279-282.
    [81]Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology,2006, 13(3):129-142.
    [82]Sinclair AJ, Bayer AJ, Johnston J, et al. Altered plasma antioxidant status in subjects with Alzheimer's disease and vascular dementia. Int J Geriatr Psychiatry.1998,13(12):840-845.
    [83]Polidori MC, Mattioli P, Aldred S, et al. Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: relevance to Alzheimer disease and vascular dementia. Dement Geriatr Cogn Disord,2004,18(3-4):265-270.
    [84]Casado A, Encarnacion LM, Concepcion CM, et al. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res,2008,33(3):450-458.
    [85]Gackowski D, Rozalski R, Siomek A, et al. Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease/vascular dementia. J Neurol Sci,2008,266(1-2):57-62.
    [86]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989,20(1):84-91.
    [87]Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke,1979,10(3):267-272.
    [88]Tsuchiya M, Sako K, Yonemasu Y, et al. The effects of HA1077, a novel protein kinase inhibitor, on reductions of cerebral blood flow and glucose metabolism following acute and/or chronic bilateral carotid artery ligation in Wistar rats. Exp Brain Res,1993,97(2):233-238.
    [89]Watanabe H, Ni JW, Sakai Y, et al. Permanent occlusion of bilateral internal carotid arteries produces cognitive deficits in two learning behavior tasks. Nihon Shinkei Seishin Yakurigaku Zasshi,1996,16(1):19-24.
    [90]Nanri M, Watanabe H. Availability of 2VO rats as a model for chronic cerebrovascular disease. Nippon Yakurigaku Zasshi,1999,113(2):85-95.
    [91]Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods,1984,11(1):47-60.
    [92]Fitzgerald LW, Dokla CP. Morris water task impairment and hypoactivity following cysteamine-induced reductions of somatostatin-like immunoreactivity. Brain Res,1989,505(2):246-250.
    [93]Morris RG, Hagan JJ, Rawlins JN. Allocentric spatial learning by hippocampectomised rats:a further test of the "spatial mapping" and "working memory" theories of hippocampal function. Q J Exp Psychol B, 1986,38(4):365-395.
    [94]D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev,2001,36(1):60-90.
    [95]Morris RG, Davis S, Butcher SP. Hippocampal synaptic plasticity and NMD A receptors:a role in information storage. Philos Trans R Soc Lond B Biol Sci,1990,329(1253):187-204.
    [96]Jeffery KJ, Morris RG. Cumulative long-term potentiation in the rat dentate gyrus correlates with, but does not modify, performance in the water maze. Hippocampus,1993,3(2):133-140.
    [97]Moser EI, Krobert KA, Moser MB, et al. Impaired spatial learning after saturation of long-term potentiation. Science,1998,281(5385):2038-2042.
    [98]Bannerman DM, Good MA, Butcher SP, et al. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature, 1995,378(6553):182-186.
    [99]Vorhees CV, Williams MT. Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nat Protoc,2006,1(2): 848-858.
    [100]Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983,219(4587):983-985.
    [101]Ferrara N. Vascular endothelial growth factor:basic science and clinical progress. Endocr Rev,2004,25(4):581-611.
    [102]Ferrara N. VEGF as a therapeutic target in cancer. Oncology,2005,69(Suppl 3):11-16.
    [103]Haigh JJ, Morelli PI, Gerhardt H, et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol, 2003,262(2):225-241.
    [104]Raab S, Beck H, Gaumann A, et al. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb Haemost,2004,91(3):595-605.
    [105]Breier G, Albrecht U, Sterrer S, et al. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development,1992,114(2):521-532.
    [106]Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn,1995,204(3):228-239.
    [107]Maurer MH, Tripps WK, Feldmann RE Jr, et al. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett,2003,344(3):165-168.
    [108]Meng H, Zhang Z, Zhang R, et al. Biphasic effects of exogenous VEGF on VEGF expression of adult neural progenitors. Neurosci Lett,2006,393(2-3): 97-101.
    [109]Schanzer A, Wachs FP, Wilhelm D, et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol,2004,14(3):237-248.
    [110]Cao L, Jiao X, Zuzga DS, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet.,2004,36(8):827-835.
    [111]Jin K, Mao XO, Batteur SP, et al. Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience,2001, 108(2):351-358.
    [112]Matsuzaki H, Tamatani M, Yamaguchi A, et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity:signal transduction cascades. FASEB J,2001,15(7):1218-1220.
    [113]Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci,1999,19(14):5731-5740.
    [114]Svensson B, Peters M, Konig HG, et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab, 2002,22(10):1170-1175.
    [115]Wick A, Wick W, Waltenberger J, et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci,2002,22(15):6401-6407.
    [116]Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest,2003,111(12): 1843-1851.
    [117]Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest, 2000,106(7):829-838.
    [118]van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest,1999,104(11):1613-1620.
    [119]Yasuhara T, Shingo T, Kobayashi K, et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci,2004,19(6):1494-1504.
    [120]Yasuhara T, Shingo T, Muraoka K, et al. Neurorescue effects of VEGF on a rat model of Parkinson's disease. Brain Res,2005,1053(1-2):10-18.
    [121]Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004,429(6990):413-417.
    [122]Lambrechts D, Storkebaum E, Morimoto M, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet,2003,34(4):383-394.
    [123]Storkebaum E, Lambrechts D, Dewerchin M, et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci,2005,8(1):85-92.
    [124]Nakano N, Nakai Y, Seo TB, et al. Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett,2010,483(1):57-61.
    [125]Dai Y, Xu M, Wang Y, et al. HIF-1 alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. J Mol Cell Cardiol,2007,42(6):1036-1044.
    [126]Ray R, Herring CM, Markel TA, et al. Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. Am J Physiol Regul Integr Comp Physiol,2008,294(5):R1498-1503.
    [127]Kan CD, Lee HL, Yang YJ. Cell transplantation for myocardial injury:a preliminary comparative study. Cytotherapy,2010,12(5):692-700.
    [128]He XY, Chen ZZ, Cai YQ, et al. Expression of cytokines in rat brain with focal cerebral ischemia after grafting with bone marrow stromal cells and endothelial progenitor cells. Cytotherapy,2011,13(1):46-53.
    [129]Bao X, Wei J, Feng M, et al. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res,2011,1367:103-113.
    [130]Deng YB, Ye WB, Hu ZZ, et al. Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res,2010,32(2):148-156.
    [131]Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell,1992, 70(5):829-840.
    [132]Nimmagadda S, Geetha LP, Huang R, et al. BMP4 and noggin control embryonic blood vessel formation by antagonistic regulation of VEGFR-2 (Quekl) expression. Dev Biol,2005,280(1):100-110.
    [133]Kelly MA, Hirschi KK. Signaling hierarchy regulating human endothelial cell development. Arterioscler Thromb Vase Biol,2009,29(5):718-724.
    [134]Rosen V. BMP and BMP inhibitors in bone. Ann N Y Acad Sci,2006,1068: 19-25.
    [135]Boyd NL, Dhara SK, Rekaya R, et al. BMP4 promotes formation of primitive vascular networks in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood),2007,232(6):833-843.
    [136]Reese DE, Hall CE, Mikawa T. Negative regulation of midline vascular development by the notochord. Dev Cell,2004,6(5):699-708.
    [137]Bressan M, Davis P, Timmer J, et al. Notochord-derived BMP antagonists inhibit endothelial cell generation and network formation. Dev Biol,2009, 326(1):101-111.
    [138]Dai J, Kitagawa Y, Zhang J, et al. Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res,2004,64(3):994-999.
    [139]Jamora C, DasGupta R, Kocieniewski P, et al. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature,2003,422(6929):317-322.
    [140]Kang HW, Walvick R, Bogdanov A Jr. In vitro and In vivo imaging of antivasculogenesis induced by Noggin protein expression in human venous endothelial cells. FASEB J,2009,23(12):4126-4134.
    [141]Hiltunen JO, Arumae U, Moshnyakov M, et al. Expression of mRNAs for neurotrophins and their receptors in developing rat heart. Circ Res,1996, 79(5):930-939.
    [142]Donovan MJ, Miranda RC, Kraemer R, et al. Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol,1995,147(2):309-324.
    [143]Kim H, Li Q, Hempstead BL, et al. Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem,2004,279(32):33538-33546.
    [144]Nakamura K, Tan F, Li Z, et al. NGF activation of TrkA induces vascular endothelial growth factor expression via induction of hypoxia-inducible factor-1 alpha. Mol Cell Neurosci,2011,46(2):498-506.
    [145]Li KX, Li AM, Zhang JH. Effects of TrkB-BDNF signal pathway on synthesis and secretion of vascular endothelial growth factor in human neuroblastoma cells. Zhongguo Dang Dai Er Ke Za Zhi,2011,13(3): 240-243.
    [146]Nakamura K, Martin KC, Jackson JK, et al. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1 alpha in neuroblastoma cells. Cancer Res,2006,66(8):4249-4255.
    [147]Sun CY, Hu Y, Huang J, et al. Brain-derived neurotrophic factor induces proliferation, migration, and VEGF secretion in human multiple myeloma cells via activation of MEK-ERK and PI3K/AKT signaling. Tumour Biol, 2010,31(2):121-128.
    [148]Zhang L, Hu Y, Sun CY, et al. Lentiviral shRNA silencing of BDNF inhibits in vivo multiple myeloma growth and angiogenesis via down-regulated stroma-derived VEGF expression in the bone marrow milieu. Cancer Sci, 2010,101(5):1117-1124.
    [149]张岭,宋艳,李长龄,等.羟基红花黄色素A促内皮细胞增殖的机制研究.中草药,2008,39(3):403-408.
    [150]Ji DB, Zhu MC, Zhu B, et al. Hydroxysafflor yellow A enhances survival of vascular endothelial cells under hypoxia via upregulation of the HIF-1 alpha-VEGF pathway and regulation of Bcl-2/Bax. J Cardiovasc Pharmacol, 2008,52(2):191-202.
    [151]梁辉,范金英,朱海波,等.羟基红花黄色素A对局灶性脑缺血再灌注大鼠血管内皮生长因子表达的影响.中华航海医学与高气压医学杂志, 2009,16(6):363-365.
    [152]王传恩,黄玉川,杨淑娟,等.羟基红花黄色素A对力竭大鼠大脑皮质VEGF及受体VEGFR-2表达的影响.现代预防医学,2009,36(9):1760-1761,1764.
    [153]梁文章,梁勇,黄沁园,等.羟基红花黄色素A对高糖作用下恒河猴脉络膜-视网膜血管内皮细胞迁移及VEGF表达的影响.广东医学,2010,31(24):3164-3167.
    [154]张前,牛欣,闫妍,等.羟基红花黄色素A抑制新生血管形成的机制研究.北京中医药大学学报,2004,27(3):25-29.
    [155]Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol,1973,232(2):331-356.
    [156]Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 2002,415(6873):793-798.
    [157]Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science,1992,256(5060): 1217-1221.
    [158]Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacol Rev,1999,51(1):7-61.
    [159]Omkumar RV, Kiely MJ, Rosenstein AJ, et al. Identification of a phosphorylation site for calcium/calmodulindependent protein kinase Ⅱ in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem,1996, 271(49):31670-31678.
    [160]Tingley WG, Ehlers MD, Kameyama K, et al. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem,1997,272(8):5157-5166.
    [161]Gardoni F, Schrama LH, van DJJ, et al. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett,1999,456(3):394-398.
    [162]Morris RG, Anderson E, Lynch GS, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature,1986,319(6056):774-776.
    [163]Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature, 1995,373(6510):151-155.
    [164]Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell,1996, 87(7):1327-1338.
    [165]Mainen ZF, Malinow R, Svoboda K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature,1999, 399(6732):151-155.
    [166]Panatier A, Theodosis DT, Mothet JP, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell,2006,125(4):775-784.
    [167]Bellone C, Nicoll RA. Rapid bidirectional switching of synaptic NMDA receptors. Neuron,2007,55(5):779-785.
    [168]Jin SX, Feig LA. Long-term potentiation in the CA1 hippocampus induced by NR2A subunit-containing NMDA glutamate receptors is mediated by Ras-GRF2/Erk map kinase signaling. PLoS One,2010,5(7):el 1732.
    [169]Sprengel R, Suchanek B, Amico C, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell,1998, 92(2):279-289.
    [170]Hashimoto R, Hough C, Nakazawa T, et al. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons:involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem,2002,80(4):589-597.
    [171]Erreger K, Dravid SM, Banke TG, et al. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol,2005,563(Pt 2):345-358.
    [172]Liu L, Wong TP, Pozza MF, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science,2004, 304(5673):1021-1024.
    [173]Yashiro K, Philpot BD. Regulation of NMD A receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology, 2008,55(7):1081-1094.
    [174]Ren K, Dubner R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry:role of BDNF-TrkB signaling and NMDA receptors. Mol Neurobiol,2007,35(3):224-235.
    [175]Yan Q, Rosenfeld RD, Matheson CR, et al. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience,1997,78(2):431-448.
    [176]Altar CA, DiStefano PS. Neurotrophin trafficking by anterograde transport. Trends Neurosci,1998,21(10):433-437.
    [177]Matsuda N, Lu H, Fukata Y, et al. Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci, 2009,29(45):14185-14198.
    [178]Balkowiec A, Katz DM. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci,2002,22(23):10399-10407.
    [179]Gartner A, Staiger V. Neurotrophin secretion from hippocampal neurons evoked by long-term-potentiation-inducing electrical stimulation patterns. Proc Natl Acad Sci U S A,2002,99(9):6386-6391.
    [180]Strauss J, Barr CL, George CJ, et al. Brain-derived neurotrophic factor variants are associated with childhood-onset mood disorder:confirmation in a Hungarian sample. Mol Psychiatry,2005,10(9):861-867.
    [181]Gorski JA, Balogh SA, Wehner JM, et al. Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience,2003,121(2):341-354.
    [182]Mizuno M, Yamada K, Olariu A, et al. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci,2000,20(18):7116-7121.
    [183]Gooney M, Lynch MA. Long-term potentiation in the dentate gyrus of the rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation of TrkB. J Neurochem,2001,77(5):1198-1207.
    [184]Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci, 2000,3(4):323-329.
    [185]Messaoudi E, Ying SW, Kanhema T, et al. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci,2002,22(17):7453-7461.
    [186]Korte M, Carroll P, Wolf E, et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A,1995,92(19):8856-8860.
    [187]Patterson SL, Abel T, Deuel TA, et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron,1996,16(6):1137-1145.
    [188]Escobar ML, Figueroa-Guzman Y, Gomez-Palacio-Schjetnan A. In vivo insular cortex LTP induced by brain-derived neurotrophic factor. Brain Res, 2003,991(1-2):274-279.
    [189]Akaneya Y, Tsumoto T, Kinoshita S, et al. Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J Neurosci,1997, 17(17):6707-6716.
    [190]Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science,1995,267(5204): 1658-1662.
    [191]Kang H, Schuman EM. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science,.1996, 273(5280):1402-1406.
    [192]Figurov A, Pozzo-Miller LD, Olafsson P, et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature,1996,381(6584):706-709.
    [193]Binder DK, Croll SD, Gall CM, et al. BDNF and epilepsy:too much of a good thing. Trends Neurosci,2001,24(1):47-53.
    [194]Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity, Trends Neurosci.2000,23(12):639-645.
    [195]Gottschalk W, Pozzo-Miller LD, Figurov A, et al. Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus. J Neurosci,1998,18(17):6830-6839.
    [196]Kovalchuk Y, Hanse E, Kafitz KW, et al. Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science,2002,295(5560): 1729-1734.
    [197]Messaoudi E, Kanhema T, Soule J, et al. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci,2007,27(39): 10445-10455.
    [198]Rex CS, Lin CY, Kramar EA, et al. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci,2007,27(11):3017-3029.
    [199]Bramham CR, Southard T, Sarvey JM, et al. Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and trk receptor mRNA expression in behaving rats:evidence for interhemispheric communication. J Comp Neurol,1996,368(3):371-382.
    [200]Dragunow M, Hughes P, Mason-Parker SE, et al. TrkB expression in dentate granule cells is associated with a late phase of long-term potentiation. Brain Res Mol Brain Res,1997,46(1-2):274-280.
    [201]Patterson SL, Grover LM, Schwartzkroin PA, et al. Neurotrophin expression in rat hippocampal slices:a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron,1992,9(6):1081-1088.
    [202]Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci,2009,10(12):850-860.
    [203]Levine ES, Crozier RA, Black IB, Plummer MR. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci U S A,1998, 95(17):10235-10239.
    [204]Suen PC, Wu K, Levine ES, et al. Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc Natl Acad Sci U S A,1997,94(15):8191-8195.
    [205]Lin SY, Wu K, Levine ES, et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res Mol Brain Res,1998,55(1): 20-27.
    [206]Crozier RA, Black IB, Plummer MR. Blockade of NR2B-containing NMDA receptors prevents BDNF enhancement of glutamatergic transmission in hippocampal neurons. Learn Mem,1999,6(3):257-266.
    [207]Rosenblum K, Dudai Y, Richter-Levin G. Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc Natl Acad Sci U S A,1996,93(19): 10457-10460.
    [208]Rostas JA, Brent VA, Voss K, et al. Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation. Proc Natl Acad Sci U S A,1996,93(19):10452-10456.
    1209] Mizuno M, Yamada K, He J, et al. Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem,2003,10(2):108-115.
    [210]Xu F, Plummer MR, Len GW, et al. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation. Brain Res,2006,1121(1):22-34.
    [211]Raber J, Rola R, LeFevour A, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res,2004,162(1):39-47.
    [212]Bonaguidi MA, Peng CY, McGuire T, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci,2008,28(37):9194-9204.
    [213]Fan XT, Cai WQ, Yang Z, et al. Effect of antisense oligonucleotide of noggin on spatial learning and memory of rats. Acta Pharmacol Sin,2003, 24(5):394-397.
    [214]Ye SY, Gao WY. Hydroxysafflor yellow A protects neuron against hypoxia injury and suppresses inflammatory responses following focal ischemia reperfusion in rats. Arch Pharm Res,2008,31(8):1010-1015.
    [215]陈亭亭,杜玉娟,刘晓雷,等.羟基红花黄色素A对脑缺血大鼠皮层炎症信号转导途径相关因子的抑制作用.药学学报,2008,(06):570-575.
    [216]Wei X, Liu H, Sun X, et al. Hydroxysafflor yellow A protects rat brains against ischemia-reperfusion injury by antioxidant action. Neurosci Lett, 2005,386(1):58-62.
    [217]赵金明,刘士君,李伟,等.红花黄色素对实验性大鼠脑缺血的保护作用.医学综述,2006,(14):830+897.
    [218]Shan LQ, Ma S, Qiu XC, et al. Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits. BMC Neurosci,2010,11: 98.
    [219]Bie XD, Han J, Dai HB. Effects of hydroxysafflor yellow A on the experimental traumatic brain injury in rats. J Asian Nat Prod Res,2010, 12(3):239-247.
    [220]Han B, Zhao H. Effects of hydroxysafflor yellow A in the attenuation of MPTP neurotoxicity in mice. Neurochem Res,2010,35(1):107-113.
    [221]逯素梅,刘鲁华,孙涛,等.羟基红花黄色素A抗谷氨酸氧化性神经损伤的保护作用.山东大学学报(医学版),2008,46(3):232-236.
    [222]Ji DB, Zhang LY, Li CL, et al. Effect of Hydroxysafflor yellow A on human umbilical vein endothelial cells under hypoxia. Vascul Pharmacol,2009, 50(3-4):137-145.
    [223]姚海涛,张晓波,欧芹,等.红花黄色素对衰老模型小鼠海马区神经细胞凋亡及Bcl-2和PLA2的影响.中国老年学杂志,2006,26(6):809-811.
    [224]欧芹,魏晓东,张鹏霞,等.红花黄色素对衰老模型小鼠脑细胞凋亡的影响.中国康复医学杂志,2006,21(6):504-505.
    [225]梁辉,范金英,李爱华,等.羟基红花黄色素A对大鼠局灶性脑缺血再灌注NMDAR1蛋白表达的影响.中华老年心脑血管病杂志,2004,6(3):194-196.
    [226]Yang Q, Yang ZF, Liu SB, et al. Neuroprotective effects of hydroxysafflor yellow A against excitotoxic neuronal death partially through down-regulation of NR2B-containing NMDA receptors. Neurochem Res, 2010,35(9):1353-1360.
    [227]Heller L, van HDB. Brain stimulation using electromagnetic sources: theoretical aspects. Biophys J,1992,63(1):129-138.
    [228]Li W, Yang Y, Ye Q, et al. Effect of chronic and acute low-frequency repetitive transcranial magnetic stimulation on spatial memory in rats. Brain Res Bull,2007,71(5):493-500.
    [229]Kling JW, Yarita M, Yamamoto T, et al. Memory for conditioned taste aversions is diminished by transcranial magnetic stimulation. Physiol Behav, 1990,48(5):713-717.
    [230]Grafman J, Pascual-Leone A, Alway D, et al. Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport,1994,5(9): 1157-1160.
    [231]Hausmann A, Pascual-Leone A, Kemmler G, et al. No deterioration of cognitive performance in an aggressive unilateral and bilateral antidepressant rTMS add-on trial. J Clin Psychiatry,2004,65(6):772-782.
    [232]Schulze-Rauschenbach SC, Harms U, Schlaepfer TE, et al. Distinctive neurocognitive effects of repetitive transcranial magnetic stimulation and electroconvulsive therapy in major depression. Br J Psychiatry,2005,186: 410-416.
    [233]Brunoni AR, Boggio PS, Fregni F. Can the 'yin and yang' BDNF hypothesis be used to predict the effects of rTMS treatment in neuropsychiatry. Med Hypotheses,2008,71(2):279-282.
    [234]Thickbroom GW. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res,2007,180(4): 583-593.
    [235]Angelucci F, Oliviero A, Pilato F, et al. Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis. Neuroreport,2004, 15(4):717-720.
    [236]Muller MB, Toschi N, Kresse AE, et al. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology,2000,23(2): 205-215.
    [237]Zanardini R, Gazzoli A, Ventriglia M, et al. Effect of repetitive transcranial magnetic stimulation on serum brain derived neurotrophic factor in drug resistant depressed patients. J Affect Disord,2006,91(1):83-86.
    [238]Yukimasa T, Yoshimura R, Tamagawa A, et al. High-frequency repetitive transcranial magnetic stimulation improves refractory depression by influencing catecholamine and brain-derived neurotrophic factors. Pharmacopsychiatry,2006,39(2):52-59.
    [239]Gersner R, Toth E, Isserles M, et al. Site-specific antidepressant effects of repeated subconvulsive electrical stimulation:potential role of brain-derived neurotrophic factor. Biol Psychiatry,2010,67(2):125-132.
    [240]Lang UE, Hellweg R, Gallinat J, et al. Acute prefrontal cortex transcranial magnetic stimulation in healthy volunteers:no effects on brain-derived neurotrophic factor (BDNF) concentrations in serum. J Affect Disord,2008, 107(1-3):255-258.
    [241]Lisanby SH, Belmaker RH. Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (RTMS):comparisons with electroconvulsive shock (ECS). Depress Anxiety,2000,12(3):178-187.
    [242]Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron,2005,45(2):201-206.
    [243]Kole MH, Fuchs E, Ziemann U, et al. Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res,1999,826(2):309-312.
    [244]Tokay T, Holl N, Kirschstein T, et al. High-frequency magnetic stimulation induces long-term potentiation in rat hippocampal slices. Neurosci Lett, 2009,461(2):150-154.
    [245]Ahmed Z, Wieraszko A. Modulation of learning and hippocampal, neuronal plasticity by repetitive transcranial magnetic stimulation (rTMS). Bioelectromagnetics,2006,27(4):288-294.
    [246]Kim EJ, Kim WR, Chi SE, et al. Repetitive transcranial magnetic stimulation protects hippocampal plasticity in an animal model of depression. Neurosci Lett,2006,405(1-2):79-83.
    [247]Aydin-Abidin S, Trippe J, Funke K, et al. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res,2008,188(2): 249-261.
    [248]Fitzgerald PB, Benitez J, de Castella A, et al. A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression. Am J Psychiatry,2006,163(1):88-94.
    [249]Maeda F, Keenan JP, Tormos JM, et al, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res,2000,133(4):425-430.
    [250]Fitzgerald PB, Brown TL, Marston NA, et al. Transcranial magnetic stimulation in the treatment of depression:a double-blind, placebo-controlled trial. Arch Gen Psychiatry,2003,60(10):1002-1008.
    [1]Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer's disease and vascular dementia in developing countries:prevalence, management, and risk factors. Lancet Neurol,2008,7(9):812-826.
    [2]Dong MJ, Peng B, Lin XT, et al. The prevalence of dementia in the People's Republic of China:a systematic analysis of 1980-2004 studies. Age Ageing, 2007,36(6):619-624.
    [3]Zhang ZX, Zahner GE, Roman GC, et al. Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol,2005, 62(3):447-453.
    [4]Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation,1968,6(2):230-247.
    [5]Nikoletopoulou V, Lickert H, Frade JM, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature,2010, 467(7311):59-63.
    [6]Okano H. Making and repairing the mammalian brain:Introduction. Semin Cell Dev Biol,2003,14(3):159.
    [7]Jin K, Galvan V, Xie L, et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci U S A,2004, 101(36):13363-13367.
    [8]Curtis MA, Penney EB, Pearson AG, et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc Natl Acad Sci USA,2003,100(15):9023-9027.
    [9]Tattersfield AS, Croon RJ, Liu YW, et al. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience,2004, 127(2):319-332.
    [10]Shan X, Chi L, Bishop M, et al. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells,2006,24(5):1280-1287.
    [11]de Hemptinne I, Boucherie C, Pochet R, et al. Unilateral induction of progenitors in the spinal cord of hSODl(G93A) transgenic rats correlates with an asymmetrical hind limb paralysis. Neurosci Lett,2006,401(1-2): 25-29.
    [12]Yagita Y, Kitagawa K, Ohtsuki T, et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke,2001,32(8):1890-1896
    [13]Jin K, Wang X, Xie L, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A,2006,103(35):13198-13202.
    [14]Rice AC, Khaldi A, Harvey HB, et al. Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol,2003,183(2):406-417.
    [15]Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol,2001,19(12):1134-1140.
    [16]Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol,2001,19(12):1129-1133.
    [17]Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A,2002,99(4):2344-2349.
    [18]Gage FH. Mammalian neural stem cells. Science,2000,287(5457): 1433-1438.
    [19]Bjornson CR, Rietze RL, Reynolds BA, et al. Turning brain into blood:a hematopoietic fate adopted by adult neural stem cells in vivo. Science,1999, 283(5401):534-537.
    [20]Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood,2004, 104(9):2643-2645.
    [21]Bantubungi K, Blum D, Cuvelier L, et al. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci,2008,37(3):454-470.
    [22]Miller JT, Bartley JH, Wimborne HJ, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci,2005,6:63.
    [23]Lu P, Jones LL, Snyder EY, et al. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol,2003,181(2):115-129.
    [24]Yasuhara T, Matsukawa N, Hara K, et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease. J Neurosci,2006,26(48):12497-12511.
    [25]Ourednik J, Ourednik V, Lynch WP, et al. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol, 2002,20(11):1103-1110.
    [26]Corti S, Locatelli F, Papadimitriou D, et al. Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain,2007,130(Pt 5):1289-1305.
    [27]Xu L, Yan J, Chen D, et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation,2006,82(7): 865-875.
    [28]Qu R, Li Y, Gao Q, et al. Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology,2007,27(4):355-363.
    [29]Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma,2004,21(1):33-39.
    [30]Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature,2005,436(7048):266-271.
    [31]Ziv Y, Avidan H, Pluchino S, et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci USA,2006,103(35):13174-13179.
    [32]Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell,2008,2(2):141-150.
    [33]Ortiz LA, Dutreil M, Fattman C, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A,2007,104(26): 11002-11007.
    [34]Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood,2006,107(1):367-372.
    [35]Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions:evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood,2006,107(4):1484-1490.
    [36]Zhang J, Li Y, Chen J, et al. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol,2005, 195(1):16-26.
    [37]Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood,2005,106(5):1755-1761.
    [38]Corti S, Locatelli F, Papadimitriou D, et al. Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet,2006,15(2): 167-187.
    [39]Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery,2004,55(5):1185-1193.
    [40]Rivera FJ, Couillard-Despres S, Pedre X, et al. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells, 2006,24(10):2209-2219.
    [41]Wislet-Gendebien S, Bruyere F, Hans G, et al. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci,2004,5:33.
    [42]Munoz JR, Stoutenger BR, Robinson AP, et al. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A,2005,102(50): 18171-18176.
    [43]Himes BT, Neuhuber B, Coleman C, et al. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair,2006,20(2):278-296.
    [44]Jiang Q, Zhang ZG, Ding GL, et al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage, 2005,28(3):698-707.
    [45]Shyu WC, Lin SZ, Chiang MF, et al. Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing betal integrin-mediated angiogenesis in chronic stroke rats. J Neurosci,2006, 26(13):3444-3453.
    [46]Kasper G, Dankert N, Tuischer J, et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells,2007, 25(4):903-910.
    [47]Hoener MC, Hewitt E, Conner JM, et al. Nerve growth factor (NGF) content in adult rat brain tissues is several-fold higher than generally reported and is largely associated with sedimentable fractions. Brain Res,1996,728(1): 47-56.
    [48]Levi-Montalcini R. The nerve growth factor 35 years later. Science,1987, 237(4819):1154-1162.
    [49]Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J,1982,1(5):549-553.
    [50]Cooper JD, Salehi A, Delcroix JD, et al. Failed retrograde transport of NGF in a mouse model of Down's syndrome:reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc Natl Acad Sci USA,2001,98(18):10439-10444.
    [51]Bemelmans AP, Horellou P, Pradier L, et al. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther,1999,10(18):2987-2997.
    [52]Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol, 2011,228(1):118-125.
    [53]Massa SM, Yang T, Xie Y, et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest, 2010,120(5):1774-1785.
    [54]Kaspar BK, Llado J, Sherkat N, et al. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science,2003,301(5634): 839-842.
    [55]Wang L, Muramatsu S, Lu Y, et al. Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson's disease. Gene Ther,2002,9(6):381-389.
    [56]Wang LJ, Lu YY, Muramatsu S, et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci,2002,22(16):6920-6928.
    [57]Storkebaum E, Lambrechts D, Dewerchin M, et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci,2005,8(1):85-92.
    [58]Sun W, Funakoshi H, Nakamura T. Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J Neurosci,2002,22(15):6537-6548.
    [59]Pun S, Santos AF, Saxena S, et al. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci,2006,9(3):408-419.
    [60]McBride JL, Ramaswamy S, Gasmi M, et al. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A,2006,103(24):9345-9350.
    [61]Li LY, Li JT, Wu QY, et al. Transplantation of NGF-gene-modified bone marrow stromal cells into a rat model of Alzheimer' disease. J Mol Neurosci, 2008,34(2):157-163.
    [62]Wang TH, Feng ZT, Wei P, et al. Effects of pcDNA3-beta-NGF gene-modified BMSC on the rat model of Parkinson's disease. J Mol Neurosci,2008,35(2):161-169.
    [63]Makar TK, Bever CT, Singh IS, et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol,2009,210(1-2):40-51.
    [64]Makar TK, Trisler D, Sura KT, et al. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci,2008,270(1-2):70-76.
    [65]Koda M, Kamada T, Hashimoto M, et al. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord. Eur Spine J,2007,16(12): 2206-2214.
    [66]魏昌秀,陈松林.脑源性神经营养因子基因修饰骨髓间质干细胞移植对痴呆大鼠记忆功能的影响.中国组织工程研究与临床康复,2008,12(38):7431-7434.
    [67]Roman GC, Erkinjuntti T, Wallin A, et al. Subcortical ischaemic vascular dementia. Lancet Neurol,2002,1(7):426-436.
    [68]Leblanc GG, Meschia JF, Stuss DT, et al. Genetics of vascular cognitive impairment:the opportunity and the challenges. Stroke,2006,37(1): 248-255.
    [69]Klijn CJ, Kappelle LJ, Tulleken CA, et al. Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke,1997,28(10): 2084-2093.
    [70]Pascual B, Prieto E, Arbizu J, et al. Brain glucose metabolism in vascular white matter disease with dementia:differentiation from Alzheimer disease. Stroke,2010,41(12):2889-2893.
    [71]Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope. Pharmacol Res, 2005,51(1):1-17.
    [72]Baskys A, Blaabjerg M. Understanding regulation of nerve cell death by mGluRs as a method for development of successful neuroprotective strategies. J Neurol Sci,2005,229-230:201-209.
    [73]姚国恩,王景周,陈曼娥.血管性痴呆大鼠认知障碍的NMDAR机制研究.第三军医大学学报,2002,24(12):1408-1410.
    [74]Nilsson K, Gustafson L, Hultberg B. C-reactive protein:vascular risk marker in elderly patients with mental illness. Dement Geriatr Cogn Disord,2008, 26(3):251-256.
    [75]Zuliani G, Ranzini M, Guerra G, et al. Plasma cytokines profile in older subjects with late onset Alzheimer's disease or vascular dementia. J Psychiatr Res,2007,41(8):686-693.
    [76]Zuliani G, Guerra G, Ranzini M, et al. High interleukin-6 plasma levels are associated with functional impairment in older patients with vascular dementia. Int J Geriatr Psychiatry,2007,22(4):305-311.
    [77]Ravaglia G, Forti P, Maioli F, et al. Blood inflammatory markers and risk of dementia:The Conselice Study of Brain Aging. Neurobiol Aging,2007, 28(12):1810-1820.
    [78]Malaguarnera L, Motta M, Di RM, et al. Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer's disease and vascular dementia. Neuropathology,2006,26(4):307-312.
    [79]Tomimoto H, Akiguchi I, Wakita H, et al. Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans. Acta Neuropathol, 2000,99(1):26-30.
    [80]Rosenberg GA, Sullivan N, Esiri MM. White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke,2001,32(5): 1162-1168.
    [81]Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly:molecular pathology suggests origin from chronic hypoperfusion injury. Stroke,2006,37(6):1391-1398.
    [82]Adair JC, Charlie J, Dencoff JE, et al. Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke,2004,35(6):e159-162.
    [83]Simpson JE, Fernando MS, Clark L, et al. White matter lesions in an unselected cohort of the elderly:astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol,2007,33(4):410-419.
    [84]Zini I, Tomasi A, Grimaldi R, et al. Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci Lett, 1992,138(2):279-282.
    [85]Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology,2006, 13(3):129-142.
    [86]Sinclair AJ, Bayer AJ, Johnston J, et al. Altered plasma antioxidant status in subjects with Alzheimer's disease and vascular dementia. Int J Geriatr Psychiatry.1998,13(12):840-845.
    [87]Polidori MC, Mattioli P, Aldred S, et al. Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: relevance to Alzheimer disease and vascular dementia. Dement Geriatr Cogn Disord,2004,18(3-4):265-270.
    [88]Casado A, Encarnacion LM, Concepcion CM, et al. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res,2008,33(3):450-458.
    [89]Gackowski D, Rozalski R, Siomek A, et al. Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease/vascular dementia. J Neurol Sci,2008,266(1-2):57-62.
    [90]Roman GC, Salloway S, Black SE, et al. Randomized, placebo-controlled, clinical trial of donepezil in vascular dementia:differential effects by hippocampal size. Stroke,2010,41(6):1213-1221.
    [91]Wilkinson D, Roman G, Salloway S, et al. The long-term efficacy and tolerability of donepezil in patients with vascular dementia. Int J Geriatr Psychiatry,2010,25(3):305-313.
    [92]Wilkinson D, Doody R, Helme R, et al. Donepezil in vascular dementia:a randomized, placebo-controlled study. Neurology,2003,61(4):479-486.
    [93]Black S, Roman GC, Geldmacher DS, et al. Efficacy and tolerability of donepezil in vascular dementia:positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke,2003, 34(10):2323-2330.
    [94]Auchus AP, Brashear HR, Salloway S, et al. Galantamine treatment of vascular dementia:a randomized trial. Neurology,2007,69(5):448-458.
    [95]Ballard C, Sauter M, Scheltens P, et al. Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia:the VantagE study. Curr Med Res Opin,2008,24(9):2561-2574.
    [96]Kavirajan H, Schneider LS. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia:a meta-analysis of randomised controlled trials. Lancet Neurol,2007,6(9):782-792.
    [97]Mobius HJ, Stoffler A. Memantine in vascular dementia. Int Psychogeriatr, 2003,15 Suppl 1:207-213.
    [98]Pantoni L, del ST, Soglian AG, et al. Efficacy and safety of nimodipine in subcortical vascular dementia:a randomized placebo-controlled trial. Stroke, 2005,36(3):619-624.
    [99]Muresanu DF, Alvarez XA, Moessler H, et al. Persistence of the effects of Cerebrolysin on cognition and qEEG slowing in vascular dementia patients: results of a 3-month extension study. J Neurol Sci,2010,299(1-2):179-183.
    [100]Cohen RA, Browndyke JN, Moser DJ, et al, Sweet L. Long-term citicoline (cytidine diphosphate choline) use in patients with vascular dementia: neuroimaging and neuropsychological outcomes. Cerebrovasc Dis,2003, 16(3):199-204.
    [101]李涛,程焱.NGF基因修饰的BMSCs对VaD大鼠海马区细胞凋亡及NMDAR1表达的影响.山东医药,2009,49(21):3-5.
    [102]Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci,2006,110:175-191.
    [103]Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors,2004,22:123-131.