不同低钾耐性大豆生长发育差异及遗传特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是我国主要的油料作物,也是需钾较多的作物。由于我国土壤速效钾缺乏,钾肥资源短缺,限制了大豆产量的提高。利用植物对环境胁迫的遗传多样性,发掘耐低钾种质资源,选育耐低钾大豆品种是解决这一问题的有效途径。本试验通过低钾土壤大田试验对72份东北三省新老大豆品种(系)进行筛选,并以筛选获得的不同低钾耐性的典型品种(系)为试材,通过大田、盆栽和水培试验,系统地对不同低钾耐性大豆的生长发育特性进行比较,并进行大豆耐低钾性状的遗传分析,其目的是为今后更好地应用大豆耐低钾种质资源、培育适合于缺钾土壤的大豆耐低钾新品种提供技术资料和理论依据。研究结果如下:
     1.耐低钾大豆基因型的筛选
     对72份大豆品种(系)的筛选结果表明,不同大豆品种(系)的耐性系数和叶片缺钾症状差异十分明显,多数大豆品种(系)对低钾胁迫的适应性为中等水平,对低钾胁迫比较敏感和耐性较强品种(系)较少。根据耐性系数和叶片缺钾症状可将供试品种(系)划分为3种类型,低钾敏感型、中间类型和耐低钾型。以筛选获得的典型材料耐低钾品种(系)铁豆36和T40,低钾敏感品系GD2910和GD8521进一步深入研究。
     2.不同低钾耐性大豆茎叶性状的差异
     低钾胁迫下不同的大豆品种(系)的株高总体上呈下降的趋势,但耐低钾品系T40的株高受低钾胁迫的影响最小。低钾胁迫下,不同耐性大豆品种(系)的主茎节数增加,开花以后增加的幅度较大,低钾敏感品系GD8521的主茎节数增加的最多。低钾胁迫使不同低钾耐性的大豆品种(系)的茎粗均减少,低钾敏感品系GD8521的茎粗减少幅度最大,低钾耐性品系T40的茎粗减少幅度较小。
     低钾胁迫对叶长影响最明显的时期是开花期,不同耐性大豆品种(系)的叶片长度均减少,耐低钾品种(系)的减少幅度比低钾敏感品系小。不同耐低钾性大豆品种(系)的叶柄长受低钾胁迫的影响并不一样,低钾敏感品系GD8521的叶柄长在低钾胁迫下明显受到抑制,耐低钾品系T40的叶柄长受低钾胁迫的影响较小。从分枝期开始,随着生长发育的推移,耐低钾大豆品种(系)症状叶比率逐渐降低或保持在低的水平;低钾敏感大豆品系症状叶比率逐渐上升或一直保持在高的水平。
     低钾胁迫下,低钾敏感品系的分枝数受到严重抑制,耐低钾品种(系)的分枝数受低钾胁迫的影响较小。低钾胁迫使不同低钾耐性大豆品种(系)的底荚节数升高,耐低钾品种(系)的升高幅度比低钾敏感品系小。
     3.不同低钾耐性大豆根系性状的差异
     盆栽试验表明,低钾胁迫下,不同耐性品种(系)的主根长、侧根长、侧根数和根瘤数均减少,低钾耐性品种(系)的变幅较小,敏感品种(系)的变幅较大。水培试验表明,在低钾胁迫下,不同低钾耐性的大豆品种(系)的根系总长、根系表面积、根系体积和根尖数均下降,耐低钾品种(系)的减少幅度明显小于低钾敏感品种(系)。低钾胁迫使敏感品种(系)的根系平均直径增加,耐性品种(系)的根系平均直径减少。
     4.不同低钾耐性大豆花荚性状的差异
     低钾胁迫下不同低钾耐性大豆始花期延迟,成熟期也延迟。低钾胁迫下,敏感品种(系)的单株荚数减少,耐性品种(系)的单株荚数增加;敏感品种(系)的单株粒数、百粒重的减少幅度大,耐性品种(系)的减少幅度小;不同低钾耐性大豆品种(系)的每荚粒数减少幅度大致相同。
     5.不同低钾耐性大豆干物质积累和分配的差异
     低钾胁迫下,不同低钾耐性大豆的各器官干物质积累均减少,总体上耐性品种(系)受低钾胁迫的影响较小,敏感品种(系)受低钾胁迫的影响较大。在分枝期,敏感品种(系)的茎秆干重受到低钾胁迫的影响较大,耐性品种(系)的根系受低钾胁迫的影响较小。开花以后,低钾耐性品种(系)的根系、叶片和茎秆干重的下降幅度均明显小于敏感品种(系)。成熟期,低钾下耐性品种(系)籽粒干重的下降幅度明显小于敏感品种(系)。
     耐性品种(系)开花前干物质分配合理,根、茎、叶生长比较协调,茎杆的干物质分配比例高于敏感品种(系),有利于光合产物运输和贮存。开花以后,耐性品种(系)根和叶的干物质分配比例减少幅度小,根和叶生长良好,有利于后期产量的形成。
     6.不同低钾耐性大豆钾素营养特性的差异
     低钾胁迫下,不同低钾耐性大豆叶片、茎秆、荚和籽粒的钾含量均降低,但是降低幅度不同,耐性品种(系)的各指标下降幅度小,并且低钾下的叶片、茎秆、荚和籽粒的钾含量相对较高,敏感品种(系)的各指标下降幅度大,钾含量相对较低。
     低钾胁迫下,不同低钾耐性大豆的钾积累量均下降,耐性品种(系)的钾积累量的下降幅度小,钾积累量比敏感品种(系)高。低钾胁迫下,不同低钾耐性大豆的钾利用效率明显升高,耐性品种(系)的钾利用效率的变化幅度小于敏感品种(系)。
     7.耐低钾大豆叶片缺钾症状和总根长的遗传分析
     以低钾耐性大豆Υ40为母本与两个敏感型大豆GD8521、GD2910为父本配制2个杂交组合,对2个组合的P1、P2、F1、F2和F2:35个世代,应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,以缺钾症状叶片数为指标,进行大豆低钾耐性的遗传分析,结果表明,2个组合的遗传模型相同,主要由1对加性主基因+加性-显性多基因控制,两个组合F2控制叶片缺钾症状的主基因遗传率分别为56.72%和59.31%,多基因遗传率分别为20.28%和9.19%;F2:3控制叶片缺钾症状的主基因遗传率分别为50.32%和40.68%,多基因遗传力分别为17.72%和23.32%;主基因遗传力均高于多基因遗传率,主基因效应显著。
     低钾耐性大豆T40和低钾敏感大豆GD8521及其F1、F2和F2:35个世代总根长的遗传分析,结果表明,总根长受加性-显性-上位性多基因控制,在F2和F2:3世代,多基因遗传率分别为38.266%和41.884%,环境变异占表型变异分别为61.734%和58.116%。环境对植物总根长有较大的影响。
Soybean is the main oil crops in China. The plant needs more potassium than other crops. However, both available potassium and potash fertilizer resource are deficient in China, which limits the improvement of soybean yield. Base on the plant genetic diversity to environmental stress, discovering the germplasm resources and breeding soybean varieties with tolerance to low potassium stress is an effective ways to solve the above problem. In this experiment, total of 72 soybean varieties (lines) from three northeast provinces in China were screened through the field experiment in low potassium soil, and typical varieties (lines) with different tolerance to low potassium stress were obtained. Furtherly, growth and development characters of these typical soybean varieties (lines) were compared through the field, potted and hydroponic experiment. Meanwhile, genetic characters of soybean tolerance to low potassium stress were studied. The purpose of this study is to provide technical and theoretical guidelines for better using soybean germplasm resources and breeding soybean varieties with tolerance to low potassium stress in the future. The results were as follows:
     1. Screening of soybean genotypes with tolerance to low potassium stress
     Difference of tolerance coefficient and K deficiency symptoms in leaf was obvious among the 72 soybean varieties (lines). In most of soybean varieties (lines), adaptability to low potassium stress was moderate. A few of soybean varieties (lines) showed more sensitive or tolerant phenotype to low potassium stress. According to tolerance coefficient and leaf K deficiency symptoms, these soybean varieties (lines) were divided into three types:sensitive type to low potassium, middle type to potassium and tolerant type to low potassium. Tiedou 36 and T40 as typical tolerant type varieties (lines), and GD2910 and GD8521 as typical sensitive type varieties (lines) were selected for further study.
     2. Differences in stem and leaf characters of soybeans with different tolerance to low potassium stress
     Generally, plant height of soybeans was lower at each stage of growth period under low potassium stress. While, plant height of tolerance line T40 by low potassium stress was less affected.
     Number of stem nodes on all tested soybean varieties (lines) increased under low potassium stress, especially after blooming period.Number of stem nodes on GD8521, a sensitive type varieties (lines) to low potassium increased most. Moreover, low potassium stress reduced stem diameter of all tested soybean varieties (lines). Decreasing range of stem diameter on sensitive line GD8521 was the largest, but smaller on tolerant line T40.
     Leaf length of all tested soybean varieties (lines) was also decreased under low potassium stress, especially at blooming period. Decreasing range in tolerant varieties (lines) to low potassium was smaller than that in sensitive varieties (lines). Similarly, petiole length of sensitive line GD8521 was markedly inhibited, while, little effect was presented on tolerant line T40. From the beginning of branching period, ratio of K deficiency symptoms leave in tolerant varieties (lines) gradually reduced or maintained at a low level. On the contrary, the ratio in sensitive varieties (lines) gradually increased or maintained at a high level.
     Under low potassium stress, the number of branch of the sensitive varieties (lines) was seriously decreased, while tolerant line T40 was lightly affected. Low potassium stress increased node number of lowest pod, especially in sensitive varieties (lines).
     3. Differences in root characters of soybeans with different tolerance to low potassium stress
     Through pot experiment, it was showed that taproot length, lateral root length, number of lateral root and root nodules of all tested varieties (strains) were reduced under low potassium stress. The negative effects on sensitive varieties (lines) were stronger than tolerant varieties (lines). Data from water culture experiments showed that low potassium stress reduced total root length, surface area of root, root volume and number of root tips of soybeans. Samely, the negative effects on sensitive varieties (lines) were stronger than tolerant varieties (lines). It was also found that low potassium stress increased root average diameter of sensitive varieties (lines) and decreased it in tolerance varieties (lines).
     4. Differences in flower and pod characters of soybeans with different tolerance to low potassium stress
     The time of the first flower and mature of soybeans under low potassium stress were delayed. Low potassium stress reduced the number of pods per plant in sensitive varieties (lines), and increased the number of pods per plant in tolerance varieties (lines). Decreasing ranges in seed number per plant and 100-seed weight in sensitive varieties (lines) were larger than tolerant varieties (lines). There was no significant difference in the number of seeds per pod between sensitive and tolerant varieties (lines).
     5. Differences in accumulation and distribution of dry matter in soybeans with different tolerance to low potassium stress
     Accumulations of dry matter in different organs of tested soybean varieties (lines) were reduced under low potassium stress. The negative effects on sensitive varieties (lines) were stronger than tolerant varieties (lines), such as accumulation of dry matter in stem at the stage of branching period, in roots, leave and stems after blooming period, and in seeds at the maturity stage.
     Before blooming period, distribution of dry matter in tolerant varieties (lines) was more reasonable than sensitive varieties (lines). The growth among root, stem and leaf was harmonious, and distribution ratio of dry matter in stem was higher in tolerant varieties (lines), which facilitate transport and storage of photosynthate product. After blooming period, decrease in distribution ratio of dry matter in root and leaf was lesser in tolerant varieties (lines), which facilitate yield formation.
     6. Differences in nutrition characters of potassium in soybeans with different tolerance to low potassium stress
     Under low potassium stress, content of potassium in leaf, stem, pod and seed in all tested soybean varieties (lines) decreased, but there was a difference between tolerant and sensitive varieties (lines). Decreasing extent of above indexes was smaller, and K content was higher in tolerant varieties (lines) than in sensitive varieties (lines).
     K accumulation in all tested soybean varieties (lines) decreased under low potassium stress. Compared with sensitive varieties (lines), the tolerant varieties (lines) were less affected. Moreover, K utilization efficiency of all tested soybean varieties (lines) was significantly improved under low potassium stress, especiall for sensitive varieties (lines).
     7. Genetic analysis of leaf k deficiency symptom and total root length in soybeans with tolerance to low potassium stress
     T40 (tolerance to low-potassium stress) as the female parent, two sensitive lines GD8521and GD2910 as the male parent made two cross. Genetic analysis of the number of leaf with low potassium symptom was conducted applying the joint segregation analysis of a mixed genetic model of major gene plus polygene in five generations (P1, P2, F1, F2 and F2:3) derived from two crosses. The results showed that tolerance to low-potassium stress in soybean was dominated by one major gene with additive effects plus poly-genes with additive-dominance effects. Heritability of major geneswas 56.72% and 59.31% in F2 population from two cross, and that of poly-genes in F2 population was 20.28% and 9.19% respectively. Heritability of major genes was50.32% and 40.68% in F2:3 populations from two cross, and that of poly-genes in F2:3 populations was 17.72% and 23.32% respectively. Heritability of major gene in two crosses was more powerful than poly-genes. It indicated that the number of leaf with low potassium symptomthe in soybean was dominated by major genes.
     T40 (tolerance to low-potassium stress) as the female parent, sensitive lineGD8521 as the male parent made cross.Inheritance of total root length was analyzed applying the joint segregation analysis of a mixed genetic model of major gene plus polygene in five generations (P1, P2, F1, F2 and F2:3). The results showed that total root length was dominated by additive-dominance-epistatic gene. The heritability of poly-genes in F2 and F2:3 was 38.266%和41.884% respectively. In addition, the environmental variance in F2 and F2:3 accounted for 61.734%, and 58.116% of the phenotypic variance respectively, indicating that the environmental factors have some effect on total root length in tolerance to low-potassium soybean.
引文
1.安林升,倪晋山.1995.耐低钾水稻的钾营养特性.植物生理学通讯,31(4):257-259.
    2.曹敏建,王淑琴,松元英明.1999.玉米自交系对低钾胁迫耐性的差异.作物学报.25(2):254-259.
    3.曹敏建,张雨林.1994.钾对玉米生长发育及生理指标影响的研究.土壤通报.25(4):181-183.
    4.陈际型.1997.钾素营养对水稻根系生长和养分吸收的影响.土壤学报.34(2):182-188.
    5.陈培元,蒋永罗,李英.1987.钾对小麦生长发育、抗旱性和某些生理特性影响.作物学报.13(4):322-327.
    6.崔国贤,李宗道.1997.植物钾营养基因型的差异及其机理研究进展.作物研究.(1):43-48.
    7.冯笃敬,1993.植物钾营养的理论与实践.长沙:湖南科学技术出版社,21-57.
    8.冯锋,张福锁,杨新泉.2000.植物营养研究:进展与展望.北京:中国农业大学出版社,139.
    9.封克,殷士学,张山泉.1992.矿物钾在作物营养中的意义.土壤通报,23(2):58-60.
    10.盖钧镒,章元明,王建康.2003.植物数量性状遗传体系.北京:科学出版社,8-106,169-219,351-370.
    11.郭丽琢,胡恒觉.2001.植物体内钾循环与再循环的研究进展.甘肃农业大学学报.36(1):1-7.
    12.郭兆奎,杨谦,颜培强,万秀清.2008.拟南芥AVP2基因转化烟草中吸钾相关基因的转录分析.西北农林科技大学学报(自然科学版),09:58-64.
    13.韩晓增,王守宇,刘晓杰.2002.黑土钾素分布状态与大豆钾肥效应的研究.大豆科学,21(1):36-42.
    14.韩燕来,刘新红,王宜伦,谭金芳.2006.不同小麦品种钾素营养特性的差异.麦类作物学报.26(1):99-103.
    15.胡笃敬,董任瑞,葛旦之.1992.植物钾营养的理论与实践.长沙:湖南科学技术出版社,21-45,50-108,
    16.胡国松.2000.烤烟营养原理.北京:科学出版社,78-90.
    17.胡泓,王光火.2003.钾肥对杂交水稻养分积累以及生理效率的影响.植物营养与肥料学报.9(2):184-189.
    18.胡思农,涂仕华.2001.四川省作物钾素营养和钾肥应用研究.成都:四川科学出版社,30-49.
    19.黄绍文,金继运.1995.土壤钾形态及其植物有效性研究进展.土壤肥料,(5):23-29.
    20.黄绍文,金继运,王泽良,程明.1998,北方主要土壤钾形态及其植物有效性研究.植物营养与肥料学报,4(2)156-164.
    21.贾彦博,杨肖娥,王为木.2006.不同供钾水平下水稻钾素吸收利用与产量的基因型差异.水土保持学报.20(2):64-67,72.
    22.姜存仓,王运华,鲁剑巍等.2004.不同棉花品种苗期钾效率差异的初步探讨.棉花学报,16(3):162-165.
    23.姜存仓,高祥照,王运华,鲁剑巍,徐芳森.2006.不同钾效率棉花基因型对低钾胁迫的反应.棉花学报18(2):109-114.
    24.蒋德安,翁晓燕,洪健.1994.低钾营养条件下水稻叶碳同化物输出的障碍.植物生理学报.20(2):137-144.
    25.金继运.1992.土壤钾素研究进展.土壤学报,30(1):94-108.
    26.李春杰,王建国,许艳丽,李兆林.2005.钾对大豆产量及品质的影响.农业系统科学与综合研究.21(2):154-155,160.
    27.李佛琳,彭桂芬.1999.我国烟草钾素研究的现状与展望.中国烟草科学,(1):22-25.
    28.李共福.1985.耐低钾水稻品种筛选利用的研究Ⅰ.水稻不同品种在低钾条件下的产量差异及低钾品种对钾的吸收利用特点.湖南农业科学,(3):15-17.
    29.李共福.1986.耐低钾水稻品种筛选利用的研究Ⅱ.水稻品种耐低钾与高产稳产的关系.湖南农业科学,(3):23-24.
    30.李共福,谢少平.1991.水稻耐低钾能力及其鉴定研究.作物研究,5(1):4-9.
    31.李见云,谭金芳,介晓磊.2003.黄淮麦区钾高效小麦品种的筛选麦.麦类作物学报,23(3):49-52.
    32.李金洪,李伯航.1995.矿质营养对玉米籽粒营养品质的影响.玉米科学,3(3):54-57.
    33.李廷轩,马国瑞.2004.籽粒苋富钾基因型的根系形态和生理特性.作物学报.30(11):1145-1151.
    34.李廷强,王昌全.2001.植物钾素营养研究进展.四川农业大学学报.19(3):281-285
    35.李兴涛,曹敏建,于海秋,吕文彦,王晓光.2011.玉米低钾耐性性状的主基因+多基因遗传分析.玉米科学,04:93-97.
    36.李植,王伟,周春喜,等.2007.不同钾营养型大豆主要形态、生理及产量指标的研究.沈阳农业大学学报,38(4):483-487.
    37.林葵,李琳,徐坤,颜季琼,焦新之.1998.耐低钾水稻的根质膜ATPase和H+分泌特性.植物学报.40(6):521-526.
    38.林咸永,孙羲.1992.不同水稻基因型对钾肥的反映的差异及其根系生理基础.土壤通报,23(4):159-161.
    39.刘国栋,刘更另.1994.水稻基因型与钾营养关系的研究.中国土壤学会第五界青年科学工作者学术论文编委会编.现代土壤科学研究.北京:中国农业科学出版社.535-538.
    40.刘国栋,刘更另.1995.论缓解我国钾源短缺问题的新对策.中国农业科学,28(1):25-32.
    41.刘国栋,刘更另.1995.籼稻不同基因型钾素吸收利用效率的调控.植物营养与肥料学报,1(2):47-53.
    42.刘国栋,刘更另.1998.籼稻不同基因型对钾、钠的反应.植物营养与肥料学报.4(4):360-365.
    43.刘国栋,刘更另.2000.籼稻不同品种(系)钾素积累动态变化的微区试验.作物学报,26(2):243-249.
    44.刘国栋,刘更另.2002.籼稻耐低钾基因型的筛选.作物学报,28(2):161-166.
    45.刘宇,于海秋,李兴涛,依兵,蒋春姬,王晓磊,曹敏建.2010.耐低钾玉米自交系主要根系性状的遗传分析.沈阳农业大学学报,41(02):199-202.
    46.刘亨官,刘振新,刘放新.1987.水稻耐低钾品种(系)鉴定筛选及其吸钾特性的研究.福建省农科院学报,2(2):10-17.
    47.刘亨官,刘振新,刘放新.1987a.耐低钾水稻品种的初探.《福建省农科院学报.2(1):39-42.
    48.刘建祥,杨肖娥,吴良欢等.2002.不同水稻基因型地上部钾素累积和转运规律的研究.中国水稻科学,16(2):189-192.
    49.刘建祥,杨肖娥,杨玉爱,吴良欢.2003.低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究.植物营养与肥料学报.9(2):190-195.
    50.刘俊风.2011钾高效玉米基因型快速筛选体系的建立及相关基因的克隆与表达分析.吉林大学硕士论文.
    5].刘荣乐,金继运,吴荣贵等.]999.我国北方土壤-作物系统内钾素平衡及钾肥肥效研究Ⅰ主要种植制度下土壤钾素平衡与调控.土壤肥料,(6):3-6.
    52.刘桃菊,黄完基.1995.钾对苎麻养分吸收及产量品质影响.土壤肥料,(6):9-12.
    53.刘晓燕,何萍,金继运.2006.钾在植物抗病性中的作用及机理的研究进展.植物营养与肥料学报,12(3):445-450.
    54.鲁黎明.2011.烟草钾转运体基因TPK1的电子克隆及生物信息学分析.中国农业科学,44(01):28-35.
    55.鲁如坤,刘鸿翔,闻大中等.1996a.我国典型地区农业生态系统养分循环和平衡研究Ⅲ全国和典型地区养分循环和平衡现状.土壤通报,27(5):193-196.
    56.鲁如坤,刘鸿翔,闻大中等.1996b.我国典型地区农业生态系统养分循环和平衡研究Ⅳ农田养分平衡的评价方法和原则.土壤通报,27(5):197-199.
    57.陆国权,丁守仁.2000.甘薯钾素利用效率的基因型差异研究.植物营养与肥料学报,7(3):357-360.
    58.罗奇祥,Cassman K.G.1994水田土壤非代换性钾的释放研究.江西农业学报,第六卷增刊,106-115.
    59.吕福堂,张秀省,张保华,刘春生.2005a.不同玉米基因型吸钾和耐低钾能力的研究.植物营养与肥料学报.11(4):556-559.
    60.吕世华等.1996.耐低钾小麦品种筛选及吸钾特性的初步研究.耕作与栽培,(3):53-54.
    61.倪晋山,安林升.1984.三系杂交水稻幼苗K+吸收的动力学分析.植物生理学报,10(4):381-390.
    62.饶鸣钿,郑履端,等.氮、磷、钾有机肥对水稻产量和品质的影响.耕作与栽培,2003,1:61-61.
    63.彭志红,彭克勤,萧浪涛.2007.水稻耐低钾变异后代的苗期钾营养特性.湖南农业大学学报(自然科学版.33(1):5-8
    64.綦左莹,王伟,曹敏建.2008.不同钾效应型大豆根系形态和生理特性差异的比较.沈阳农业大学学报,39(2):137-140.
    65.邱全胜.2000.植物质膜钾离子转运研究进展.植物学通讯,17(1):34-38
    66.沈伟其.1990.不同杂交水稻组合对低钾胁迫的反应.科技通报,6(1):28-31.
    67.施木出.1992.钾对作物抗病性的影响.北京:北京农业大学出版社,141-147.
    68.宋桂云,徐正进,陈温福,张文忠,贺梅,张喜娟.2006.田间低钾对不同穗型水稻钾的吸收和利用效率的影响.华北农学报,21(6):89-94.
    69.沈伟其.1995.水稻耐低钾胁迫特性的研究与展望.作物研究.9(4):46-49.
    70.苏贤坤,张晓海,江自强.2005.烤烟钾素营养特性的基因型差异研究.植物营养与肥料学报.11(4):536-540.
    71.孙爱文,张卫峰,杜芬,等.2009中国钾资源及钾肥发展战略.现代化工,29(9)10-16.
    72.史建文,鲍士旦,史瑞和.1992.不同水稻和大麦品种对土壤层间钾的利用.南京农业大学学报,15(1):65-70.
    73.史建文,鲍士旦,史瑞和.1994.耗竭条件下层间钾的释放及耗竭后土壤的固钾特性.土壤学报,31(1):42-49.
    74.史振声,张喜华.1994.钾肥对甜玉米籽粒品质和茎秆含糖量的影响.玉米科学,1:78-82.
    75.唐劲驰,曹敏建,祝子平,等.2001.不同基因型大豆对低钾的耐性极限及缺钾症状研究简报.大豆科学,20(4):295-297
    76.唐劲驰,曹敏建.2001.作物耐低钾营养研究进展.沈阳农业大学学报.32(5):382-385
    77.唐劲驰,曹敏建.2005.2个大豆基因型钾效率的比较研究.华南农业大学学报,26(1):7-10.
    78.腾应,钱晓刚,陈泽辉,杨光梅.2001b.植物钾营养性状遗传研究进展.种子.4:31-34
    79.田晓莉,王刚卫,朱睿.2008.棉花耐低钾基因型筛选条件和指标的研究.作物学报,34(8):1435-1443.
    80.汪自强.1996.不同钾水平下春大豆品种(系)的钾积累和利用特性研究.大豆通报.3:7-8.
    81.王波,杨振明,鲍士旦.1999.水稻耐低钾基因型的筛选及吸钾特性的研究.植物营养与肥料学报.5(1):85-88.
    82.王海泉,朱继强,汪建学.2005.钾对高油大豆产量和品质的影响.黑龙江农业科学,6:19-21.
    83.王娇爱,张定一,姬虎太等.2001.不同小麦基因型对土壤钾的吸收研究小麦研究,22(1):13-5.
    84.王静康.2008.国际钾肥博览会论文集.北京:中国无机盐工业协会钾盐分会.
    85.王伟,曹敏建,周春喜,李植,张辉.2005a.大豆耐低钾胁迫品种(系)的筛选.大豆通报.(4):8-10.
    86.王伟,曹敏建,綦左莹,何萍,许海涛.大豆科学.不同大豆品种对钾素吸收和利用效率差异的比较研究.2007,26(4):561-564.
    87.王晓光,曹敏建,王伟,等.2005.钾对大豆根系形态与生理特性的影响.大豆科学,24(2):126-129.
    88.王晓光,曹敏建,蒋文春,王伟,李植,于海秋.2006.钾肥对不同基因型大豆叶片生理功能的影响.大豆科学.25(2):133-136.
    89.王伟.2008.不同大豆品种对低钾胁迫的生物学响应及耐性机制研究.沈阳农业大学博士论文.1-30.
    90.王为木,杨肖娥,李华,魏幼璋.2003.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响.中国水稻科学.17(1):52-56.
    91.王为木,杨肖娥,魏幼璋,杨肖娥,叶正钱,刁维萍.2005.水稻不同基因型吸收利用土壤钾素的差异.浙汀大学学报(农业与生命科学版).31(1):52-58.
    92.王永锐,沈玉梅,邓政寰.1989.耐低钾水稻劫苗的生长及其营养吸收状况.中山大学学报(自然科学),28(4):68-73.
    93.王永锐,李卫军.1996.不同耐低钾基因型水稻品种的矿质营养及植株性状.中山大学学报(自然科学版).35(4):24-29.
    94.王政,高瑞凤,李文香,等.2008.氮磷钾肥配施对大豆干物质积累及产量的影响.大豆科学,27(4):588-598.
    95.吴荣生,蒋海芹.1997.水稻苗期耐低钾种质资源筛选.江苏农业科学,(3):4-6.
    96.吴荣生,蒋海芹.1998.早稻耐低钾基因型的营养特性.江苏农业科学,(2):14-16.
    97.项虹艳,丁洪,郑金贵,李卫华,林勇.2004a.耐低钾水稻品种的筛选.江西农业大学学报.26(3):338-344
    98.谢建昌.1981土壤钾素研究的现状和展望.土壤学进展,9(1):1-16.
    99.谢建昌.1991.中国土壤的钾素肥力与需钾前景,中国植物营养学会.中国平衡施肥报告会论文集.北京:14-34.
    100.谢建昌.1998.我国钾肥的使用现状、需求和对策.见:李庆逵,朱兆良,于天仁主编.中国持续发展中的肥料问题.南昌:江西科学技术出版社,69-8.
    101.谢建昌,周建民.1999.我国土壤钾素研究和钾肥使用的进展.土壤,31(5):244-254.
    102.谢建昌,HARD TER R.2000.钾与中国农业.南京:河海大学出版社,105-106.
    103.谢建昌.2002.我国士壤钾素肥力概况和钾肥使用的进展.中国化肥100年回眸——化肥在中国应用100年纪念论文集,北京:中国农业技术推广协会,23-33.
    104.谢少平,倪晋山.1987.空心连心草、大豆和向日葵根部K+(86Rb+)的吸收和通量分析.植物生理学报,13(4):410-417.
    105.谢少平.1989.高等植物钾离子吸收的调节.植物生理学通讯,25(4):1-7.
    106.谢少平,倪晋山.1990.杂交水稻及其亲本幼苗根部K+(86Rb+)的通量和向上运输.植物生理学报,16(3):271-276.
    107.项虹艳,丁洪,郑金贵,李卫华,林勇.2004a.耐低钾水稻品种的筛选.江西农业大学学报.26(3):338-344
    108.项虹艳,丁洪,郑金贵,李卫华.2004b.低钾胁迫对水稻部分生理生化特性的影响.仲恺农业技术学院学报.17(3):12-18.
    109.徐国华,鲍士旦,杨建平,吴明.1995.不同作物的吸钾能力及其与根系参数的关系.南京农业天学学报.18(1):49-52
    110.闫春娟,韩晓增,王树起等.2008.钾对大豆干物质积累、产量及品质的影响.大豆科学,27(1):113-117.
    111.闫洪奎,曹敏建,胡兴波,李娜.2003.玉米耐低钾胁迫鉴定指标的筛选.玉米科学,11(3):70-73.
    112.闫洪奎,曹敏建,兰进好.2005.玉米耐低钾特性的遗传效应分析.中国农学通报,21(11):129-132.
    113.严小龙,张福锁.1997,植物营养遗传学.北京:中国农业出版社,1-17,40-53,79-91,118-124.
    114.杨肖娥,吴良欢等.2001.低钾胁迫对水稻叶片光合功能的影响及其基因型差异.作物学报,27(6):1000-1006.
    115.杨振明,李秋梅.1998.耐低钾冬小麦基因型筛选方法的研究.土壤学报.35(3):376-383.
    116.于海秋,李兴涛,刘宇,依兵,王晓磊,曹敏建.2011.耐低钾玉米总根长的主基因+多基因遗传分析.玉米科学.19(4):27-30.
    117.赵学强,介晓磊,谭金芳,许仙菊,李有田.2006.钾高效小麦基因型的筛选指标和筛选环境研究.植物营养与肥料学报,12(2):277-281.
    118.赵学强,介晓磊,李有田,许仙菊,谭金芳,华党领.2006.不同基因型小麦钾离子吸收动力学分析.植物营养与肥料学报.12(3):307-312.
    119.周碧青,刑世和,郭旭东,王凌怡.1995.几种耕作土壤的释钾动态和供钾特性.福建大学学报,24(3)323-329.
    120.周贤芬,陈志坚,张兴江.1990.晚稻耐低钾品种的筛选与研究.浙江农业科学.6:251-254.
    121.张福锁.1993.环境胁迫与植物营养.北京:北京农业大学出版社,148-170.
    122.张福锁.1995.植物营养生态生理学和遗传学.北京:中国科学技术出版社.
    123.赵利梅,赵继文,高炳德,王文玲.2000钾肥对春玉米籽粒建成与品质形成影响的研究.内蒙古农业大学学报(自然科学版),21(S1):11-15.
    124.郑圣先,李明德,戴平安,Sam Portch1995.湖南省主要旱地土壤供钾能力的研究.中国农业科学,28(2):43-50.
    125.赵学强,介晓磊,谭金芳,许仙菊,李有田.2006.钾高效小麦基因型的筛选指标和筛选环境研究.植物营养与肥料学报,12(2):277-281.
    126.张学斌,孙克刚,汪立刚,刘纯敏,王继印,贾改花.2002河南省夏大豆施用钾肥的效果研究.土壤肥料,(1):23-25.
    127.张永清,毕润成,庞春花,苗果园.2006.不同品种春小麦根系对低钾胁迫的生物学响应.西北植物学报.26(6):1190-1194.
    128.曾宪坤.1995.中国化肥工业的现状和展望.土壤学报,32(2):117-125.
    129.郑淑琴.2001.钾对大豆生理效应及产量和品质的影响.黑龙江农业科学,(4):25-27.
    130.周贤芬,陈志坚,张兴江.1990.晚稻耐低钾品种的筛选与研究.浙江农业科学.6:251-254.
    131.邹春琴,李振声,李继云.2002.钾利用效率不同的小麦品种各生育期钾营养特点.中国农业科学,35(3):340-344.
    132.邹春琴,李振声,李继云.2001小麦对钾高效吸收的根系形态学和生理学特征.植物营养与肥料学报,7(1):36-43.
    133.撰文,李可,高洪艳.2010中国贸易报.9月14日第003版,1-5.
    134. Amtmann A, Troufflard S, Armengaud P.2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682-691.
    135. Andreson J A, Huprikar S S, Kochian LV, et al.1992. Functional expression of a probable A rabi dopsis thaliana potassium channel in S.Cerevisiae. Proc Natl Acad Sci USA,89:3736-3740.
    136. Ashley MK, Grant M, Grabov A.2006.Plant responses to potassium deficiencies:a role for potassium transport proteins. J Exp Bot 57:425-436.
    137. Assmann SM.1993.Signal transudation in guard cells. Annual Review of Cell Biology.9:345-375.
    138. Cakmak I.2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521-530.
    139. Casanova E.2000. Phosphorus and potassium fertilization and mineral nutrition of soybean. Interciencia,25 (2):92-95.
    140. Chen J, Gabelman WH.1995.1solation of tomato strains varying in potassium acquisition using a sand-zeolite culture system. Plant Soil 176:65-70.
    141. Chen J, Gabelman W H.1999.Potassium-transport rate from root to shoot unrelated to potassium-use efficiency in tomato grown under low-potassium stress. Journal of Plant Nutrition.22(4/5):621-361.
    142. Chen J, Warren HG..2000. Morphological and physiological characteristics of tomato roots associated with potassium-acquisition efficiency. Scientia Horticulturae,83:213-225.
    143. Clark R. B.1982. Plant response to mineral element toxicity and deficiency.In:Christiansen M N, Lewis John Wiley C F, eds. Breeding Plants for Less Favorable Environments. New York:John Wiley C F and Sons,.137-141.
    144. Claassen N, Jungk.A, Pflenzenernahr J.1984. Bodenkd. Plant Nutrition.147 (3):276-289.
    145. Damon PM, Rengel Z.2007.Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust J Agric Res 58:816-823
    146. Dessougi Hanadi E, Claassen N, Steingrobe B.2002.Potassium efficiency mechanisms of wheat, barley, and sugar beet grown on a K fixing soil under controlled conditions. Journal of Plant Nutritionand Soil Science,165 (6):732-737.
    147. Epstein E, Rains DW, Elzam OE. Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci.,1963,49:684-692.
    148. Figdore SS, Gabelman WH, Gerloff GC.1987. The accumulation and distribution of sodium in tomato strains differing in potassium efficiency when grown under low-K stress. Plant and Soil,99:85-92.
    149. Figdore S, Gerloff G C, Gabelman W H.1989. The effect of increasing sodium chloride levels on potassium utilization efficiency of tomato grown under low2potassium stress. Plant and Soil,119 (2): 295-304.
    150. Fuchs 1, Stolzle S, Ivashikina N, et al.2004. R ice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta,12:14.
    151. George MS, Lu GQ, Zhou WJ.2002. Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L.). Field Crops Research,77(1):7-15.
    152. Glass ADM, Perley JE.1980. Varietal differences in potassium uptake by barley.Plant Physiol.65:160-169.
    153. Glass ADM, Siddiqi MY, Giles KL.1981.Correlations between potassium uptake and hydrogen efflux in barley varieties.Apotential screening method for the isolation of nuttrient efficient lines. Plant Physiol.68:457-459.
    154. Gerloff G C, Gabelman W H.1983.Genetic basis of inorganic plant nutrition. Encyclopedia of Plant Physiology.15:453-480.
    155. Grabe M, Lai HC, Jain M, Jan YN, Jan LY.2007. Structure prediction for the down state of a potassium channel voltage sensor. Nature,445:550-553.
    156. GrahamR D.1984. Breeding for nutritional characteristic in cereals. Adv Plant Nutrition, (1):57-107.
    157. Hasan R.2002. Potassium status of soils in India. Better Crops Intern 16:3-5.
    158. Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B.2000. Functional characterization of LKT1. A K+uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta,210(5):723-731.
    159. Heenan DP, Campbell LC.1981. Influence of potassium and manganese on growth and uptake of magnesium by soybeans (Glycine max (L.) Merr. cv. Bragg). Plant Soil 61:447-456.
    160. Jia YB, Yang XE, Feng Y, Ghulam J.2008.Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. Journal of Zhejiang University Science B,9(5):427-434.
    161. Kolar JS, Grewal HS.1994. Effect of split application of potassium on growth, yield and potassium accumulation by soybean. Fertil Res 39:217-222.
    162. Leigh RA, Johnston AE.1983. Concent rations of potassium in the dry matter and tissue water of field-grown spring barley and their relationships to grain yield. J Agric Scil 01:675-685.
    163. Li LG, Liu K, Hu Y, Li DP, Luan S.2008. Single mutations convert an outward K+ channel into an inward K+ channel. PNAS,105:2871-2876.
    164. Mackinnon R, Zhou M.2004. A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution. JMB,338:839-846.
    165. Makmur A, Gerloff G C, Gabelman W H.1978. Physiology and inheritance of efficiency in potassium utilization in tomato grown under potassium stress. Proc Am Soc Hortic Sci,103:545-549.
    166. Marschner H.1995.Mineral Nutrition of Higher Plants. London:Academic Press.3-78.
    167. Memon AR, Siddiqi MY, Class ADM.1985. Efficiency of K+ utilization by barley varieties:Activation of pyruvate kinase. Journal of Experimental Botany,36(1):79-90.
    168. Memon AR, Glass ADM.1987.Genotypic differences in subcellular compartmentation of K+ implications for protein synthesis growth and yield.In:Genetic aspects of plant mineral nutrition. Eds. Gabelman WH, Loughman BC. Mrtinus Nijhoff Publishers.323-330.
    169. Mengel K.1983.Responses of various crop species and cultivars to fertilizer application. Plant and Soil.72:305-319.
    170. Mengel K, Steffens D.1985. Potassium uptake of rye-grass (Lolium perenne) and red clover (Trolium pratense) as related to root parameters. Biology and Fertility of Soils, (1):53-58.
    171. Muller R ober B, Ellenberg J, Provant N, et al.1995.Cloning and electrophysiological analysis of KST1, and inward rectifying K+ channel expressed in potato guard cells.EMBO,14(11):2409-2416.
    172. Pettersson S, Jensen P.1983.Variation among species and varieties in uptake and utilization of potassium.Plant and Soil,72:231-237.
    173. Pettigrew WT.2008.Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670-681.
    174. Quemener J.19861mportant factors in potassium balance sheets. In:Nutrient balance and the need for potassium. Proceedings of the 13th International Potash Institute Congress,41-72.
    175. Randall G W, Evans S D, Iragavarapu T K.1997. Long-term P and K applications:II Effect on corn and soybean yields and plant P and K concentrations. Journal of Production Agriculture,10(4):572-580.
    176. Rengel Z, Damon PM.2008. Crops and genotypes differ in efficiency of potassium uptake and use.
    177. Schachtman DP, Schroeder Jl, Lucns WJ.1992. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science,258:1654.
    178. Schroeder JI, Hedrich R, Femandez JM.1984.Potassium selective single channels in guard cell protoplasts of vicia faba. Nature.312,361-363.
    179. Sentenac H, Bonneaud N, Minet M, et al.1992.Cloning and expression in yeast of a plant potassium ion transport system. Science,256:663.
    180. Shea PE, Gerloff GC, Gabelman WH.1968.Differing efficiency of potassium utilization in strains of snap beans. Plant and Soil,28:337-346.
    181. Siddiqi M Y, Glass A D M, Hisiso A I, et al.1987a. Genotypic differences among wild oat lines in potassium uptake and growth in relation to potassium supply. Plant Soil,99:93-95.
    182. Sparks D L.1987.Potassium dynamics in soil. Advances in Soil Science,6:61-63.
    183. Steingrover E.1983.Stroage of osmotically active compounds in the taproot of Daucus carota L.J.Exp.Bot.,34:425-433.
    184. Trehan SP, Sharma RC.2002. Potassium uptake efficiency of young plants of three potato cultivars as related to root andshoot parameters. Commun Soil Sci Plant Anal 33:1813-1823.
    185. Wang Y, Wu W-H.2010. Plant sensing and signaling in response to K+ deficiency. Mol Plant 3:280-287.
    186. Wild A V.1974. Comparison of potassium uptake by four plant species grown in sand and in flowing solution culture. Appl Ecol,11:801-812.
    187. Jiang Xu, Hao-Dong Li, Li-Qing Chen, Yi Wang, Li-Li Liu, Liu He, Wei-Hua Wu.2006.A Protein Kinase, Interacting with Two Calcineurin B-Like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell.125:1347-1360.
    188. Zeiger E.1983.The biology of stomatal guard cells. Plant Physiol.34:441-475.