工作记忆的保持影响时间知觉的认知与神经机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人的认知资源或能量是有限的,加工的刺激越复杂,需要的心理资源越多。注意是一种普遍的、通用的心理资源,时间加工成绩的下降能够用注意的转移、分配到的注意资源减少来解释。但是对时间的注意不等同于对非时间属性(例如颜色、形状)的注意,时间信息加工不仅需要知觉注意,更大程度需求一种内在的注意。人类对时间信息的加工反映了意识、思维的程度。
     日常工作和生活中,即使没有外界刺激的干扰,人们对时间的估计仍然受到大脑中信息的干扰,这类信息可能来源于记忆,也可能源自对情景的想象。此时,计时的注意模型不能充分地解释此现象。这说明人们对时间信息的加工需要的资源可能更复杂。
     近年来,研究者指出,时间信息加工和非时间信息的加工除了共享一般的注意资源,还竞争工作记忆中某种特殊的认知资源。工作记忆指个体在执行认知任务过程中暂时储存和加工信息的能量有限的系统,本质上是一种容量有限的注意控制系统,是人类加工高级认知活动的基础。考察它在计时中的作用能够从更广的范围内探讨时间信息加工的本质及其影响因素。工作记忆是一个复杂的结构,分类不同,涉及的记忆资源也随之不同。本研究重点探讨工作记忆信息的保持过程对时间知觉的影响。时间知觉是指对毫秒至大约3秒内的时间信息加工。
     本论文由5个系列研究组成,包括10个实验。研究一的实验1采用难以用言语命名的魔方图形为记忆材料,采用Sternberg记忆任务和时间产生相结合的双任务范式,要求被试在工作记忆的保持阶段产生2.5秒的时间,结果发现估计的时间随着记忆负荷的增加而增加,表明客体信息的保持能够影响时间知觉。实验2借助ERP技术探讨信息保持影响时间知觉的具体过程,将工作记忆中常用的变化觉察范式和时间产生法相结合,结果发现记忆负荷越低,不规则图形中,计时的N1、N470以及CNV成分的波幅越负,这表明记忆信息的保持对时间知觉的影响与记忆负荷有关,也与记忆材料的类型有关。
     研究二探讨工作记忆的保持对短时间内时间知觉的影响。时间任务采用两分法,除了操作记忆负荷,还操纵记忆任务和时间任务之间的时间间隔(ISI),结果发现记忆负荷仅影响时间判断的反应时间;ISI越短,知觉到的时间越少,反应时越长。这表明信息保持对短时间内时间知觉的影响与工作记忆的切换功能有关。
     研究一和研究二要求被试同时记忆几个刺激,通过操作记忆负荷来探讨保持过程对时间知觉的影响。研究三和研究四进一步从微观的视角,考察当工作记忆的内容与时间信息有关时,工作记忆内容引起的注意定向如何影响时间知觉。实验5a采用时间比较和工作记忆的双任务范式,操作时间任务中的刺激与记忆内容的匹配程度;实验5b仅要求被试完成时间判断任务,无记忆任务,考察知觉匹配对时间知觉的影响。结果发现,记忆匹配延长了时间判断的反应时间,而知觉匹配对时间判断无影响。实验6a和实验7a考察基于工作记忆内容的干扰效应是否具有强劲性,以致记忆内容的保持能够改变数字-时间或空间-时间的内在联结,分别以实验6b和实验7b作为对照条件(知觉匹配)。结果发现,记忆匹配条件下,数字、空间对时间判断的干扰消失;而记忆不匹配条件下,数字、空间对时间判断的影响仍存在。并且时间判断只受记忆匹配而非知觉匹配的影响。这表明工作记忆内容的保持能够引导视觉注意,间接影响时间知觉。
     在研究三的基础上,研究四采用ERP技术考察记忆内容的保持影响时间知觉的时间进程。实验8的实验条件和控制条件分别与实验5a和5b中的匹配条件相同,实验为被试内设计。发现记忆匹配条件下,N1成分的潜伏期更长,P2的潜伏期更短。实验9的刺激材料为阿拉伯数字,程序与实验6a的记忆匹配条件类似。每个被试均需完成记忆任务-时间判断和注意任务-时间判断的双任务,目的是考察基于数字的干扰效应是由记忆还是知觉注意造成的。结果发现,数字和时间一致条件下,N1潜伏期更短;但在P2成分上,记忆匹配条件下,P2在一致条件下的潜伏期短,但注意任务对时间判断的波幅和潜伏期无任何影响。实验8和实验9都发现记忆匹配对CNV无影响。这表明记忆内容的保持对时间信息加工的影响主要发生在知觉的早期阶段。
     研究五采用fMRI技术考察时间信息加工与工作记忆的脑激活模式,结果发现相比工作记忆任务,时间知觉任务激活了额下回、额中回。
     综合本研究的10个实验,得到的结论如下:(1)工作记忆的变化觉察范式与时间加工的方法相结合,能够单独考察保持阶段对时间知觉的影响,以及这种影响的相关因素,为系统地探讨工作记忆在时间加工中的作用提供了有效、可靠的实验范式;(2)时间知觉受到材料类型和保持时间的影响:材料类型影响了信息的编码方式和保持策略;保持时间影响了工作记忆的执行功能;(3)工作记忆内容的保持引起的视觉注意是强劲的,能够改变数字和时间,空间和时间在心理表征上的内在联结,ERP的结果显示,这种影响主要发生在时间知觉的早期阶段,随着目标时间的增加,人们能够抑制这种视觉注意的转移;(4)fMRI结果表明,时间信息加工比言语工作记忆在前额皮层(包括额下回和额中回)有更大的激活,表明时间知觉需要执行控制系统的参与。
     根据国内外关于工作记忆和时间信息加工的探讨及本研究的结果,本文吸取了时间认知分段综合模型的指导思想,提出了基于工作记忆的时间知觉模型,该模型认为时间知觉不仅受到注意资源、编码方式、实验指标等因素的影响,更需要工作记忆的参与。具体来讲包括三方面:第一,时间知觉与记忆任务共享的子系统与记忆材料的类型有关,采用言语策略的记忆与时间知觉共享语音环系统,采用视觉空间策略的保持与时间知觉共享视空间模板。第二,时间知觉需要中央执行功能的参与,信息的保持时间、时间范围与切换和双任务协调功能有关。第三,时间知觉和记忆信息共享的工作记忆资源受到工作记忆容量的调节,工作记忆容量表现在个体差异、年龄、疾病等方面。总结起来,工作记忆的功能主要体现在它的控制力上,能协调、控制记忆信息、注意资源和时间信息加工之间的关系。
     本研究不仅丰富了时间知觉的理论,还为未来从事工作记忆在时间信息加工中的作用提供了有效的方法。研究将工作记忆的变化觉察范式与时间知觉的方法相结合,能够单独考察保持阶段对时间知觉的影响,这满足了认知心理学研究对加工过程明确化的要求。
     由于时间的限制,本研究主要探讨了工作记忆的保持对时间知觉的影响机制,可以推测通过考察不同工作记忆容量的个体在时间知觉上的成绩,可能在筛选优秀的体育运动员、航天员中发挥作用;也可能为老年痴呆症的早期诊断提供心理指标,这些内容将是我们今后进一步探索的课题。
The cognitive resources or energies are limited in human brain. The more complex the stimulus needed to be processed, the more cognitive resources demanded. Attention is a general, universal mental resource. Decreased timing performance could be explained by the shift of attention, or the reduction of allocated attentional resources. However, selective attention to temporal information differs from the selective attention to other nontemporal dimensions such as color or shape of a stimulus. Time information processing not only occupies perceptual attention, it in a greater extent needs intrinsic attention. The ability of time perception or time estimation reflects the extent of consciousness and thoughts.
     In normal work and life, even though outside stimulus does not disrupt timing processing, subjective time can be affected by the information stored into human brain. This interfering information might be related to memory, or derive from imagining further scene. In this way, attention model of time perception can not account for the findings, implying that temporal information processing might demand more complex mental resources.
     Recent years, more researches have pointed out that, time information processing and nontemporal information processing share not only the general attention resources, but also they compete for limited resources within working memory. Working memory (WM) refers to a limited energy system in which a person temporarily stores and manipulates information. In essence, it is an attentional control system of limited capacity, being as the basis for conducting higher cognitive activity. Basing on the effect of working memory on time perception, we could explore the nature of time information as well as its affecting factors from broad areas. Working memory is extremely complex, whose subsystems depend on distinct classification. This study mainly investigates the impact of maintaining working memory on time perception. Time perception is limited to the perception of duration within three seconds.
     This research included five successive studies, divided into ten experiments, In Experiment1, adopting a dual task paradigm of Sternberg short-term memory and time production, we used magic cube as memory materials, and asked subjects to produce a2500-ms duration during retention of memory information. The results demonstrated that produced time increased with the memory-object size, revealing the impact of maintaining objects on timing, In Experiment2, we combined change detection paradigm and time production task to explore the time course that working memory load and memory materials affected estimated time through ERP technology. The results showed that the amplitude of N1, N470as well as CNV were more negative under low memory load when the stimuli were irregular figures, showing that the WM-based interference were attributed to not only information load as well as material types.
     We further investigated the impact of maintaining memory information on perceived duration in short time range during study2. We adopted time bisection as time perception task. Besides manipulating memory load, we also changed the interstimuli interval (ISI) from memory task to the onset of timing task. The results demonstrated that working memory load affected the response times. Moreover, when the ISI became shorter, perceived duration decreased and response time was lengthened. This suggests that shift function plays important role In the relationship between maintaining memory information and time perception.
     During study1and study2, we requested subjects to memorize several stimuli, and manipulated memory load as well as the interstimuli interval to test the impact of working memory on timing. In study3, we would further investigate when the stimuli in time judgment task were relevant with the WM content, whether the attentional orientation derived from WM content could influence time judgment. In Experiment5a, using a dual task paradigm, we made the stimulus in time judgment task match the WM content or not; in Experiment5b, subject were only requested to complete time judgment. The results revealed that the stimulus matching WM content prolonged response times, while perceptual stimulus matching WM content did not generate similar effect. In Experiment6and Experiment7, we explored whether the WM content-based interfering effect was so robust that it changed the internal mental association between time and number, or between time and space. Experiment6b and Experiment7b were taken as control conditions. The results showed that, under memory-matching condition, retention of WM content eliminated the mental link among this magnitude, making the impact of numerical magnitude or spatial dimension on time judgment be not significant. However, under memory-mismatching condition, the impact of number and space on time judgment still existed. Besides, time judgment was affected by memory matching but not perceptin matching stimulus. These results imply that the WM content could guide visual attention, and indirectly disrupted perceived duration.
     Based on the result from study3, we conducted study4by ERP technology to inspect the time course of maintaining WM content affecting time perception. The experimental and control task were the same to the matching condition of Experiment5a and Experiment5b respectively. Every subject had to complete two tasks in random order. The result showed that memory-matching stimulus prolonged the latency of Nl component and shortened the latency of P2component. The stimuli in Experiment9were Arabic number. The procedure was similar to matching condition in Experiment6a. In order to explore the interfering effect based on WM content was due to retention or perception of the WM digits, we required each subject to conduct two dual tasks which included working memory-time judgment and attention task-time judgment. The results showed that on time-number consistent condition, the latency of Nl component was shorter. However, only memory-matching stimuli shortend the latency of P2when time and number was constent. The amplitude and latency of CNV were not affted by any factors. The results reflected the interfering effect occurred at earlier stage of perceptual processing during timing.
     In study5, we tested the activation of the brain during working memory and time perception. We found that compared with verbal working memory, time perception mainly activated frontal regions such as inferior frontal gyrus and middle frontal gyrus.
     Together with the10experiments in the present study, the results indicated that, firstly, the dual task paradigm combing change detection and time perception is a valid method for investing the impact of working memory on time information processing, because it could alone test the role of maintaining stage on perceived duration as well as other interfering factors. Secondly, time perception is affected by stimuli pattern and time interval of memory content. Specifically, stimuli pattern is related to encoding and retention strategies, while the time interval is involved the executive function of working memory system. Thirdly, the attentional orientation derived from the WM content is so robust that it could change the mental association among number, space and time. The results from ERP show the disruption occurs at the early stage of perception. As the target duration is prolonged, the role of inhibition function is heightened. Fourthly, time information processing mainly activated frontal regions such as inferior frontal gyrus and middle frontal gyrus, suggesting time perception demands executive function resources.
     According to the discussion at home and abroad and the results from this study, we put forward time perception model based on working memory. This model assimilated the range-synthetic models of temporal cognition, stating that time perception is affected not only by attentional resources, encoding pattern, experimental index, but involving in working memory. In particular, firstly, the shared resource between time perception and working is related to stimuli pattern, with that phonological loop is shared by time perception and memory retention required by verbalizable strategy, visuospatial sketchpad is shared by time perception and memory retention required by visupspatial strategy. Secondly, time perception demands central executive function, with that the duration of retention and time range involving in shift and coordination function. Thirdly, time perception is controlled by working memory capacity that have individual, aged and disease difference. In conclusion, the role of working memory is reflected by its control function, coordinating memory, attention and time perception processing.
     This study enriches time perception model, and provides a value paradigm for further researches engaging in the role of working memory on time perception. We integrate change direction paradigm of working memory and time judgment method to explore the impact of retention information on time perception as well as its other relevant factors, which meet the unambiguous demands on differ mental processing stage.
     Limited to the time, this study only explores the impact of retention of working memory information on time perception. We might speculate the performance of time perception within different working memory capacity make effect on selecting excellent astronauts, sport player, or early diagnosing, evaluating Parkinson's disease. These issues will be our research subjects in further.
引文
白学军,尹莎莎,杨海波,吕勇,胡伟,罗跃嘉.(2011).视觉工作记忆内容对自上而下注意控制的影响:一项ERP研究.心理学报,43(10),1103-1113.
    毕翠华,黄希庭,陈有国,刘霞.(2010).计时和计数的相似与差异.心理科学进展,18(3),403-411.
    毕翠华,黄希庭.(2011).非语言情境中时间加工与空间距离加工的关系.心理科学进展,19(3),346-354.
    毕翠华,黄希庭.(2012).工作记忆对时间加工的影响.心理科学进展,20(12),1952-1961.
    毕翠华,陈有国,黄希庭.(2010).数目和呈现方式对时距估计的影响.心理与行为研究,8(3),161-165.
    毕翠华,黄希庭.(2013).数目及其呈现方式在不同范围内对时间知觉的影响.心理与行为研究,1,16-23.
    陈有国.(2010).时间知觉白动加工与受控加工的神经机制[博士学位论文]西南大学,重庆.
    陈有国,黄希庭,尹天子,张锋.(2011).时间知觉的理论模型与展望.西南大学学报(社会科学版),37(5),26-33.
    凤四海,&黄希庭.(2004).时间知觉理论和实验范型.心理科学,27(5),1157-1160.
    黄希庭.(2014).探究心理时间.北京:商务印书馆.
    黄希庭.(2001).时间理学的若干研究.见中国心理学会(编).当代中国心理学(pp.19-23).北京:人民教育出版社.
    黄希庭.(2011).谈科研、学习与修养.西南大学学报(社会科学版),37(5),21-25.
    黄希庭,徐光国.(1999).对变化/分割模型的验证(Ⅱ).心理学报,31(2),135-141.
    黄希庭,李伯约,张志杰.(2003).时间认知分段综合模型的探讨.西南师范大学学报(人文社科版),29.5-9.
    黄希庭.(2006).时间与人格心理学探索.北京:北京师范大学出版社.
    罗良,林崇德.(2006).客体工作记忆任务总大脑皮层活动的记忆负荷效应.心理学报,38(6),805-814.
    罗琳琳,周晓林.(2004).执行功能与数量加工:回顾与展望.心理科学进展,12(5),714-722.
    马清霞,杨林霖,张志杰.(2011).数量对时间知觉的影响-来自汉语数字的证据.心理科学,34(1),38-42.
    潘毅.(2011).基于言语工作记忆内容的视觉注意捕获.浙江大学学报(理学版),38(6),727-732.
    王益文,林崇德.(2004).信息保持、短时存贮与执行控制的脑模型.心理科学进展,12(5),661-671.
    尹华站,黄希庭,李丹,苏琴,李波.(2012).时距加工的记忆负荷效应.心理与行为研究,10(1),7-11.
    尹华站,李丹,黄希庭.(2011).工作记忆影响时距加工的初步研究.心理学探新,31(4),308-313.
    尹华站,黄希庭,李丹,张莹.(2008).标量计时模型中的神经机制.心理科学进展,16(1),59-64.
    袁祥勇,陈有国,毕翠华,刘培朵,黄希庭.(2013).时序知觉:中枢计时与分布计时.科学通报,58,2895-2905.
    赵鑫,周仁来.(2011).工作记忆中央执行系统不同子功能评估方法.中国临床心理学杂志,19(6),748-752.
    张豹,金志成,陈彩琦.(2008).视觉工作记忆对前注意阶段注意定向的调节.心理学报,40(5),552-561
    张明,王爱君.(2012).视觉搜索中基于工作记忆内容的注意捕获与抑制.心理科学进属20(12),1899-1907.
    张志杰,尹华站,黄希庭.(2007).时间知觉和关联负变化.心理科学进展,15(2),308-312.
    张义芳.(2012).工作记忆内容对时间知觉影响的实验研究.[硕士学位论文]杭州师范大学,杭州.
    Attneave, F., & Amoult, M. D. (1956).The quantitative study of shape and pattern perception. Psychological Bulletin,53,452-471.
    Baddeley, A. D. (2003). Working memory:Looking back and looking forward. Nature Review Neuroscience,4(10),829-839.
    Baddeley, A. D. (2012). Working memory:Theories, Models, and Controversies. Annual Review of Psychology,63,1-29.
    Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science,18,89-94.
    Baudouin, A., Vanneste, S., Isingrini, M., & Pouthas, V. (2006). Differential involvement of internal clock and working memory in the production and reproduction of duration:A study on older adults. Acta Psychologica,121, 285-296.
    Baudouin, A., Vanneste, S., Pouthas, V., & Isingrini, M. (2006). Age-related changes in duration reproduction: Involvement of working memory processes. Brain and Cognition,62,17-23.
    Bi. C. H., Yuan. X. Y, & Huang. X. T. (2013). The impact of object working memory on timing. Journal of Cognitive Psychology,25,390-399.
    Block, R. A., Hancock, P. A., & Zakay, D. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica,134,330-343.
    Broadway, J. M., & Engle, R. W. (2011a). Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychologica,137,115-126.
    Broadway, J. M., & Engle, R. W. (2011b). Individual differences in working memory capacity and temporal discrimination. Plos One,6,1-9.
    Brown, S. W. (2013). Involvement of shared resources in time judgment and sequence reasoning tasks. Acta Psychologica,147,92-96.
    Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception and Psychophysics,59,1118-1140.
    Brown, S. W. (2006). Timing and executive function: Bidirectional interference between concurrent temporal production and randomization tasks. Memory & Cognition,34,1464-1471.
    Brown, S. W. (2008). Time and attention: Review of the literature. In S. Grondin (Ed.), Psychology of time (pp.111-138). Bingley, England:Emerald.
    Brown, S.W., Collier, S. A., & Night, J. C. (2013). Timing and executive resources: Dual-task interference patterns between temporal production and shifting, updating, and inhibition tasks. Journal of Experimental Psychology:Human Perception and Performance,39 (4),947-963.
    Brown, S. W., & Merchant, S. M. (2007). Processing resources in timing and sequencing tasks. Perception & Psychophysics,69,439-449.
    Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience,6,755-765.
    Buhusi, C. V., & Meck, W. H. (2009). Relative time sharing:New findings and an extension of the resource allocation model of temporal processing. Philosophical Transaction of The Royal Society B:Biological Sciences,364 (1525),1875-1885.
    Carelli, M. G., Forman, H., & Mantyla, T. (2008). Sense of time and executive functioning in children and adults. Child Neuropsychology,14,372-386.
    Carlisle, N. B., & Woodman, G. F. (2011). Automatic and strategic effects in the guidance of attention by working memory representations. Acta Psychologica,137 (2),217-225.
    Carretie,1., Mercado, F., Tapia, M., & Hinojosa, J. (2001). Emotion, attention, and the 'negativity bias, studied through event-related potentials. International journal of psychophysiology,41,75-85.
    Casasanto, D. (2003). Hemispheric specialization in prefrontal cortex:effects of verbalizability, imageability and meaning. Journal of Neurolinguistics, 16,361-382.
    Casini, L. & Macar, F. (1996). Can the level of prefrontal activity provide an index of performances in human? Neuroscience Letters,219,71-74.
    Chang, A.Y., Tzeng, O. J., Hung, D. L., & Wu, D. H. (2011). Big time is not always long:numerical magnitude automatically affects time reproduction. Psychology Science,22,1567-1573.
    Chen,Y. G., Huang, X. T.,Yang,B., Jackson,T., Peng, C. H., Yuan, H., et al. (2010). An event-related potential study of temporal information eneoding and decision making. Neuroport,21 (2),152-155.
    Cicchini, G. M., & Morrone, M. C. (2009). Shifts in spatial attention affect the perceived duration of events. Journal of Vision,9 (1),1-13.
    Correa A, Lupianez J, Madrid E., & Tudela, P. (2006). Temporal attention enhances early visual processing: a review and new evidence from event-related potentials. Brain Research,1076(1),116-128.
    Coull, J. T., Vidal, F., Nazarlan, B., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estmation. Science,303 (5663), 1506-1508.
    Coull, J. T., Nazarian, B., & Vidal, F. (2008). Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. Journal of Cognitive Neuroscience,20,2185-2197.
    Desimone, R., & Duncan, J. (1995). Neural mechanism of selective visual attention. Annual Review of Neuroscience,18,193-222.
    D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature,378(10),279-281.
    Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psycholgical Science,11 (6),467-473.
    Dutke, S. (2005). Remembered duration: Working memory and the reproduction of intervals. Perception & Psychophysics,67,1404-1422.
    Eagleman, D. M., & Pariyadath, V. (2009a). Is subjective duration a signature of coding efficiency? Philosophical Transactions of the Royal Society B,364, 1841-1851.
    Eagleman, D. M., & Pariyadath, V. (2009b). Is subjective duration a signature of coding efficiency? Philosophical Transactions of the Royal Society B: Biological Sciences,364,1841-1851.
    Elvevag, B., Brown, G. D. A., McCormack, T., Vousden, J. I., & Goldberg, T. E. (2004). Identification of tone duration, line length, and letter position: An experimental approach to timing and working memory deficits in schizophrenia. Journal of Abnormal Psychology,113,509-521.
    Field, D. T., & Groeger, J. A. (2004). Temporal interval production and short-term memory. Perception and Psychophysics,5,808-819.
    Fortin, C. (1999). Short-term memory in time interval production. International Journal of Psychology,34,308-316.
    Fortin, C., & Breton, R. (1995). Temporal interval production and processing in working memory. Perception and Psychophysics,57,203-215.
    Fortin, C., Champagne, J., & Poirier, M. (2007). Temporal order in memory and interval timing:An interference analysis. Acta Psychologica,126,18-33.
    Fortin, C., Cherif, L., & Neath, I. (2005). Time and memory. Psychologie Francaise, 50(1),81-98.
    Fortin, C., & Couture, E. (2002). Short-term memory and time estimation:Beyond the 2-second, "critical" value. Canadian Journal of Experimental Psychology, 56,120-127.
    Fortin, C., & Masse, N. (1999). Order information in short-term memory and time estimation. Memory & Cognition,27,54-62.
    Fortin, C., & Neath, I. (2003). Is the interference between memory processing and timing specific to the use of verbal material? Memory,13,395-402.
    Fortin, C., & Rousseau, R. (1998). Interference from short-term memory processing on encoding and reproducing brief durations. Psychological Research,61, 269-276.
    Fortin, C., Rousseau, R., Bourque, P., & Kirouac, E. (1993). Time estimation and concurrent nontemporal processing:Specific interference from short-term-memory demands. Perception & Psychophysics,53,536-548.
    Fortin, C., Schweickert, R., Gaudreault, R., & Viau-Quesnel, C. (2010). Timing is affected by demands in memory search but not by task switching. Journal of Experimental Psychology: Human Perception and Performance,36 (3), 580-595.
    Fraisse, P. (1984). Perception and estimation of time. Review of Psychology,35,1-36.
    Franssen, V., Vandierendonck, A.,& van Hiel, A. (2006). Duration estimation and the phonological loop:Articulatory suppression and irrelevant sounds. Psychological Research,70,304-316.
    Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition:From reals to integers. Trends in Cognitive Sciences,4(2),59-65.
    Gibbon, J., Church, R. M. & Meck, W. H. (1984). Scalar timing in memory. Animals of the New York Academy of Sciences,423,52-77.
    Grondin, S. (2012). Violation of the scalar property for time perception between 1 and 2 seconds:Evidence from interval discrimination, reproduction, and categorization. Journal of Experimental Psychology: Human Perception and Performance,8,880-890.
    Gruber O. (2001). Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cerebral Cortex, 11,1047-1055.
    Harrington, D. L., Haaland, K. Y., & Knight, R. T. (1998). Cortical network underlying mechanisms of time perception. Journal of Neuroscience,18, 1085-1095.
    Harrington, D. L., Zimbelman, J. L., Hinton, S. C., & Rao, S. M. (2010). Neural modulation of temporal encoding, maintenance, and decision processes. Cerebral Cortex,20,1274-1285.
    Huang, L., & Pashler, H. (2007). Working memory and the guidance of visual attention: Consonance-driven orienting. Psychonomic Bulletin & Review,14,148-153.
    Ivry, R. B., & Spencer, R. M. C. (2004). The neural representation of time. Current Opinion in Neurobiology,14(2),225-232.
    Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in cognitive science,12,273-280.
    Javadi, A. H., & Aichelburg, C. (2012). When Time and Numerosity Interfere:The Longer the More, and the More the Longer. Plos One,7, e41496.
    Kagerer, F. A.,Wittmann, M., Szelag, E., & Steinbuchel, N. (2002). Cortical involvement in temporal reproduction:evidence for differential roles of the hemispheres. Neuropsychologia,40 (3),357-366.
    Kannarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: encoding time in neural network states. Neuro,53 (3),427-438.
    Kumar, S., Soto, D., & Humphreys, G. W. (2009). Electrophysiological evidence for attentional guidance by the contents of working memory. European Journal of Neuroscience,30(2),307-317.
    Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review,12,107-112.
    Kristjansson, A., Vuilleumier, P., Malhotra, P., Husain, M., & Driver, J. (2005). Priming of color and position during visual search in unilateral spatial neglect. Journal of Cognitive Neuroscience,17,859-873.
    Kristjansson, A., Vuilleumier, P., Schwartz, S., Macaluso, E., & Driver, J. (2007). Neural basis for priming of pop-out revealed with fMRI. Cerebral Cortex,17, 1612-1624.
    Lewis, P. A., & Miall, R. C. (2003). Brain activation patterns during measurement of sub-and supra-second intervals. Neuropsychologia,41,1583-1592.
    Lewis, P. A. & Miall, R. C. (2009). The precision of temporal judgement:milliseconds, many minutes, and beyond. Philosphical Transaction of The royal society biological sciences,364,1897-1905.
    Lewis, P. A., & Miall, R. C. (2006). Remembering the time:A continuous clock. Trends in Cognitive Sciences,10,401-406.
    Livesey, A.C., Wall, M. B., & Smith, A. (2007). Time perception:manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia,45,321-331.
    Logan, G. D. (1985). Executive control of thought and action. Acta Psychologica, 60,193-210.
    Luck, S. J., Fan, S. L., & Hillyard, S. A. (1993). Attention-related modulation of sensory-evoked brain activity in a visual search task. Journal of Cognitive Neuroscience,5,188-195.
    Luck, S. J., & Hillyard, S. A. (1995). The role of attention in feature detection and conjunction discrimination:An electrophysiological analysis. International Journal of Neuroscience,80,281-297.
    Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in cognitive sciences,4 (11),432-440.
    Lustig, C., Matell, M. S., & Meck, W. H. (2005). Not "just" a coincidence: Frontal-striatal interactions in working memory and interval timing. Memory, 13,441-448.
    Macar, F., Grondin, S., & Casini, L. (1994). Controlled attention sharing influences time estimation. Memory & Cognition,22,673-686.
    Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F., & Maquet, P. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142,475-485.
    Macar, F., & Vidal, F. (2009). Timing processes: an outline of behavioural and neural indicies not systematically considered in timing models. Canadian Journal of Experimental Psychology,63,227-239.
    Macar, F., Vidal, F., & Casini, L. (1999). The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Experimental Brain Research,125,271-280.
    Matell, M. S., & Meek,W. H. (2004). Cortieo-striatal circuits and interval timing: coincidence detection Of oscillatory proeesses. Cognitive Brain Research, 21(2),139-170.
    Matell, M. S., Meek, W. H., & Nicolelis, M. A. L. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behavioral Neuroscience,117(4),760-773.
    McCabe, D. P., Roediger, H. L. Ⅲ, McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010). The Relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology,24(2),222-243.
    Meek, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology,18(2), 145-152.
    Mecklinger, A., & Pfeifer, E. (1996). Event related potentials reveal topographical-spatial visual working memory activate separate neural systems in spatial and object working memory. Cognitive Brain Research,4, 211-224.
    Merchant, H., Harrington, D. L., & Meek, W. H. (2013). Neural Basis of the Perception and Estimation of Time. Annual Review of Neuroscience,36, 313-366.
    Miyake, A., Friedman, N. P., Emerson, M. T., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks:A latent variable analysis. Cognitive Psychology,41,49-100.
    Mohr, H. M., Goeble, R., & Linden, D. E. J. (2006). Content-and task-specific dissociations of frontal activity during maintenance and manipulation in visual working memory. The Journal of Neuroscience,26,4465-4471.
    Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., et al. (2012). A meta-analysis of executive components of working memory. Cerebral Cortex,23(2),264-282.
    Nge, K., Tobin, S., & Penney, T. (2011). Temporal accumulation and decision processes in the duration bisection task revealed by contingent negative variation. Frontiers In Integrative Neuroscience,5,1-10.
    Ogden, R. S., Salominaite, E., Jones, L. A., Fisk, J. E., & Montgomery, C. (2011). The role of executive functions in human prospective interval timing. Acta Psychologica,137,352-358.
    Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5),1243-1265.
    Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., et al. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438,308-311.
    Olson, I. R., Moore, K. S., & Drowos, D. B. (2008). The contents of visual memory are only partly under volitional control. Memory and Cognition,36 (7), 1360-1369.
    Pan, Y., & Luo, Q. Y. (2012). Working memory modulates the perception of time. Psychonomic Bulletin and Review,19,46-51.
    Papagno, C., Allegra, A., & Cardaci, M. (2004). Time estimation in Alzheimer s disease and the role of the central executive. Brain and Cognition,54(1),18-23.
    Penhune, V. B., Zatorre, R. J., & Evans, A. C. (1998). Cerebellar contributions to motor timing:a PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience,10,752-765.
    Penney, T. B., & Vaitilingam, L. (2008). Imaging time. In: Grondin, S. (Ed.), Psychology of Time. Emerald, Bingley, UK, pp.261-294.
    Pfeuty, M., Ragot, R., & Pouthas, V. (2003). Processes involved in temporal perception: An CNV analysis. Psychophysiology,40,69-76.
    Pfeuty, M., Ragot, R., & Pouthas, V. (2009). Brain activity during interval timing depends on sensory structure. Brain Research,1204,112-117.
    Phillips, I. B. (2012). Attention to the passage of time. Philosophical Perspectives, 26(1),277-308.
    Phillips, S., & Takeda, Y. (2009). An EEG/ERP study of efficient versus inefficient visual search. Proceedings of the 31st Annual Conference of the Cognitive Science Society, Amsterdam, The Netherlands.
    Pouthas, V., Garnero, L., Ferrandez, A. M. & Renault, B. (2000). ERPs and PET analysis of time perception: Spatial and temporal brain mapping during visual discrimination tasks. Human Brain Mapping,10,49-60.
    Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics,50,565-574.
    Rammsayer, T., & Ulrich, R. (2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychologica,120, 141-171.
    Rammsayer, T., & Ulrich, R. (2011). Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds. Acta Psychologica,37(1),127-133.
    Rattat, A. C. (2010). Bidirectional interference between timing and concurrent memory processing in children. Journal of Experimental Child Psychology,106, 145-162.
    Rattat, A. C., & Picard, D. (2012). Short-term memory for auditory and visual durations:Evidence for selective interference effects. Psychological Research,76,32-40.
    Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience,4,317-323.
    Rowe, J. B., Toni, J., Josephs, O., Frackowiak, R. S., & Passingham, R. E. (2000). The prefrontal cortex:response selection or maintenance within working memory? Science,288(6),1656-1660.
    Ruchkin, D. S., Johnson, R., Grafman J. et al. (1992). Distinctions and similarities among working memory processes:an event-related potentials study. Cognitive Brain Research,1,53-56.
    Ruchkin, D. S., Johnson Jr., R., Grafman, J., Canoune, H., & Ritter, W. (1997). Multiple visuospatial working memory buffers:Evidence from spatiotemporal patterns of brain activity. Neuropsychologia,35(2),195-209.
    Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage,9,216-226.
    Salillas, E., Yagoubi, R. E. I., & Semenza, C. (2000). Sensory and cognitive processes of shifts of spatial attention induced by numbers:An ERP study. Journal of Cognitive Neuroscience,12,840-847.
    Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science,283(12),1657-1661.
    Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance,31(2), 248-261.
    Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research,46,1010-1018.
    Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences,12, 342-348.
    Soto, D., Wriglesworth, A., Bahrami-Balani, A., & Humphreys, G. W. (2010). Working memory enhances visual perception:Evidence from signal detection analysis. Journal of Experimental Psychology: Learning Memory and Cognition,36 (2),441-456.
    Telling, A. L., Kumar, S., Meyer, A. S., & Humphreys, G. W. (2010). Electrophysiological evidence of semantic interference in visual search. Journal of Cognitive Neuroscience,22(10),2212-2225.
    Thomas, E. A. C., & Weaver, W. B. (1975). Cognitive processing and time perception. Perception & Psychophysics,17,363-367.
    Troche, S. J., & Rammsayer, T. H. (2009). The influence of temporal resolution power and working memory capacity on psychometric intelligence. Intelligence,37, 479-486.
    Ulbrich, P., Chuzan, J., Fink, M., & Wittmann, M. (2007). Temporal reproduction: Further evidence for two processes. Acta Psychologica,125,51-65.
    Ullen, F., Forsman, L., Blom,O., Karabanov, A., & Madison, G. (2008). Intelligence and variability in a simple timing task share neural substrates in the prefirontal white matter. The Journal of Neuroscience,28(16),4238-4243.
    Vallesi, A., Binns, M.A., & Shallice, T. (2008). An effect of spatial-temporal association of response codes: understanding the cognitive representations of time. Cognition,107 (2),501-527.
    Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE,3, e1716.
    Walsh, V. (2003). A theory of magnitude:Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences,7,483-488.
    Wiener, M. Turkeltaub, P., & Coslett, H. B. (2010). The image of time:A voxel-wise meta-analysis. Neurolmage,49,1728-1740.
    Wearden, J. H., & Culpin, V. (1995). Exploring scalar timing theory with human subjects. In M. Richelle, V. De Keyser, G. D'Ydewalle, & A. Vandierendonck (Eds.), Time and the dynamic control of behavior (pp. 21-33). Liege, Belgium:University of Liege Press.
    Wittmann, M. (2013). The inner sense of time: how the brain creates a representation of duration. Nature Review Neuroscience,14,217-223.
    Wiener, M., Matell, M. S., & Coslett, H. B. (2011). Multiple mechanisms for temporal processing. Frontiers in integrative neuroscience,5,31.
    Woehrle, J. L., & Magliano, J. P. (2012). Times flies faster if a person has a high working-memory capacity. Acta Psychologica 139,314-319.
    Woodman, G. F, Vogel, E. K, & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science,12(3),219-224.
    Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual ssearch? Journal of Experimental Psychology: Human Perception and Performance,33(2), 363-377.
    Xuan, B., Chen, X., He, S., & Zhang, D. (2009). Numerical magnitude modulates temporal comparison: An ERP study. Brain Research,1269,135-142.
    Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. Journal of Vision 7(10),1-5.
    Zakay, D., & Block, R. A. (1997). Temporal cognition. Current Directions in Psychological,6(1),12-16.
    Zakay, D., & Block, R. A. (2004). Prospective and retrospective duration judgments: An executive-control perspective. Acta Neurobiologiae Experimentalis,64, 319-328.
    Zelanti, P. S., & Droit-Volet, S. (2011). Cognitive abilities explaining age-related changes in time perception of short and long durations. Journal of Experimental Child Psychology,109,143-157.
    Zhang, B., Zhang, J. X., Kong, L., Huang, S., Yue, Z., & Wang, S. (2010). Guidance of visual attention from working memory contents depends on stimulus attributes. Neuroscience Letters,486 (3),202-206.