微波辅助金属卟啉化合物的合成及其与c-myc G4 DNA的分子识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉及金属卟啉类化合物是自然界中分布较为广泛的一类化合物,由于其独特的结构和性能、特别是与肿瘤细胞有特殊的亲和力而在肿瘤细胞内有聚集作用,在临床医学领域具有作为抗肿瘤药物及相关诊断试剂潜在的应用前景。G-四链体DNA是富含鸟嘌呤碱基重复序列的DNA,在金属离子存在条件下4个鸟嘌呤碱基之间通过环状氢键的互联作用循环排列连接而形成的DNA二级结构。端粒及部分可形成四链体的原癌基因序列在细胞生长、增殖、凋亡及肿瘤细胞形成过程中都具有重要的作用,从而成为当下研究最热门的小分子抗肿瘤药物靶点之一。目前已有大量关于卟啉类化合物与各种四链体相互作用的报道,也得到了很多有意义的结论。然而,目前研究的四链体主要集中在端粒四链体,对于也可形成四链体构型的原癌基因序列却鲜有报道。基于此,本文分别用常规及微波辅助合成方法制备了一系列卟啉及金属卟啉化合物,通过体外活性筛选研究了目标化合物对不同肿瘤细胞株及正常细胞株生长的抑制作用,进一步考查了几种金属卟啉和原癌基因c-myc四链体的分子识别机制。具体获得了以下几个方面的结果:
     1.5,10,15,20-四对甲氧基苯基卟啉铜(Ⅱ)的合成及其与c-myc G4DNA的分子识别
     第一步采用对甲氧基苯甲醛和吡咯为原料,以丙酸为溶剂反应制得了5,10,15,20-四对甲氧基苯基卟啉(TMOPP);第二步以TMOPP和乙酸铜为原料,在DMF中反应,粗产物过硅胶柱分离纯化得到5,10,15,20-四对甲氧基苯基卟啉铜(II)(CuTMOPP)。中间产物TMOPP及目标产物CuTMOPP经ESI-MS质谱、’HNMR、13C NMR、紫外-可见光谱、荧光光谱及红外光谱等方法进行了表征。常规与微波辅助合成方法制得的TOMPP的产率分别为21.6%和22.7%,CuTMOPP的产率分别为63.1%和64.1%。微波辅助合成目标化合物的产率略有提高、差别并不明显,但微波辅助合成技术大大缩短了反应时间,特别是第二步中常规方法要反应5h,而微波辅助合成只需要20min,明显提高了反应效率。
     进一步采用紫外-可见光谱、圆二色光谱、FRET熔点实验及PCR-Stop扩增实验等方法研究了该化合物和c-myc G4DNA相互作用的机制。结果发现目标化合物溶液加入c-myc G4DNA以后,紫外-可见光谱当中出现明显的减色和红移,说明CuTMOPP可以结合c-myc G4DNA;从c-myc G4DNA溶液中加入目标化合物前后的圆二色光谱来看,加入目标化合物后,CD信号的强度稍微减弱,表明CuTMOPP对c-myc G4DNA的构型有细微但可以观察到的影响,说明该化合物很可能以静电结合的方式与c-myc G4DNA相互作用;从PCR-Stop扩增实验结果来看,目标化合物可以进一步抑制c-myc相关酶的复制。
     2.5-[4-(4-溴代丁氧基)苯基]-10,15,20-三对甲氧基苯基卟啉铜(Ⅱ)的合成及其与c-myc G4DNA的分子识别
     第一步采用对羟基苯甲醛、对甲氧基苯甲醛及吡咯作为原料,以丙酸为溶剂反应,制得5-对羟基苯基-10,15,20-三对甲氧基苯基卟啉(p-HTMOPP);第二步以p-HTMOPP和1,4-二溴丁烷为原料,以DMF作为溶剂进行反应,制得5-[4-(4-溴代丁氧基)苯基]-10,15,20-三对甲氧基苯基卟啉(p-BrTMOPP);第三步以p-BrTMOPP和乙酸铜为原料,以DMF为溶剂制得目标产物5-[4-(4-溴代丁氧基)苯基]-10,15,20-三对甲氧基苯基卟啉铜(Ⅱ)(p-CuBrTMOPP),各步粗产物均过柱纯化。采用1H NMR、13C NMR、ESI-MS质谱、紫外-可见光谱,荧光光谱及红外光谱等方法对中间产物及目标化合物进行了表征。采用常规方法合成p-HTMOPP、p-BrTMOPP和p-CuBrTMOPP所得到的产率分别为5.1%、84.7%和77.9%;采用微波辅助合成法所得的产率分别为5.73%、89.2%和66.7%。两种合成方法比较,产率差别不大,但微波辅助合成明显简化了反应过程,缩短了反应时间,提高了反应效率。
     采用MTT法对目标化合物p-CuBrTMOPP对不同肿瘤细胞株的生长抑制作用进行了研究。通过IC50值可以看出,以顺铂作为阳性对照,该化合物对于乳腺癌细胞株(MCF-7)有很强的抑制作用,而对于其他几个肿瘤细胞株的抑制作用不明显。
     采用紫外-可见光谱、荧光光谱、圆二色光谱、热变性熔点实验及PCR-Stop扩增实验等研究了目标化合物p-CuBrTMOPP和c-myc G4DNA的分子识别机制。从紫外-可见光谱中加入四链体后化合物吸收峰出现的减色、红移,荧光光谱中出现的荧光强度减弱,说明p-CuBrTMOPP与c-myc G4DNA之间发生了相互结合;加入目标化合物前后,c-myc G4DNA溶液的CD光谱中,CD信号几乎没有变化,表明目标化合物对c-myc G4DNA的构型没有明显的影响。热变性熔点实验发现目标化合物在一定程度上可以稳定c-myc G4DNA的四链体构型,不过效果不是很明显,这也与CD光谱实验结论是一致的。结合几种实验结果说明该化合物可能以静电结合或沟槽结合方式和c-myc G4DNA发生相互作用,最终导致拓扑异构酶的复制受到抑制。
     3.5-[4-(4-溴代丁氧基)苯基]-10,15,20-三对甲氧基苯基卟啉锌(Ⅱ)的合成及其与c-myc G4DNA的分子识别
     5-[4-(4-溴代丁氧基)苯基]-10,15,20-三对甲氧基苯基卟啉锌(p-ZnBrTMOPP)的合成和p-CuBrTMOPP相比,除了第三步中乙酸铜改为乙酸锌以外其他条件完全相同。对p-ZnBrTMOPP进行表征,结果和预期相符。合成目标化合物采用常规方法和微波辅助方法对产率影响较小。
     采用MTT法对目标化合物p-ZnBrTMOPP对不同肿瘤细胞株的抑制作用进行研究,从IC50值可以看出,以顺铂作为阳性对照,该化合物对所筛选的几个肿瘤细胞株的抑制作用并不明显,而对其他肿瘤细胞株是否有抑制作用,还有待于进一步筛选。
     在对目标化合物p-ZnBrTMOPP和c-myc G4DNA的相互作用机制研究发现,此类化合物也可以结合并且稳定c-myc的四链体构型,但是对其构型影响不是很明显,很可能是通过外部碱基堆积发生作用的,功能上来看也可以抑制相关DNA的复制,具体的生物机制影响还在研究中。
Because of its unique structure and property, especially the special affinity with the tumor cells, more and more attentions are focused on the porphyrin and metal porphyrin, a class of nature compounds, which has potential application prospect as antitumor drugs in clinical medicine and correlation diagnostic reagents. In recent years, a series of this type of complexes were designed and synthesized to apply in antitumor, and some entity with high antitumor activity have been reported. On the other hand, G-quadruplex DNA, which has been a potential target for small molecule drugs, will constructed for those G-rich DNA sequences via Hoogsteen hydrogen bonds in the presence of monovalent cations. More recently, quadruplex sequence of telomere and the original cancer gene have been become the most popular small molecule anticancer drug targets of the current research. It's found that the promoter oncogene, which is over-expressed in up to85%of solid tumor, can also form a G-quadruplex conformation in the presence of potassium or sodium ion, and play a key role in the proliferation and apoptosis of tumor cells. Those complexes, which can stabilize the conformation of promoter oncogene G-quadruplex usually exhibit high inhibitory activity against tumor cells. There are a lot of reports about interaction of porphyrins and various G-quadruplex DNA, even some with meaningful conclusions, however, little information was obtained about the proto-oncogene sequence, which also can form quadruplex. As in this mind, in the paper a series of porphyrins and metal porphyrins were prepared under microwave-assisted and characterized by ESI-MS,1H-NMR,13C-NMR spectra and other spectroscopic methods. What's more, as a positive control, those compounds were also synthesized by the conventional method. Furthermore, the inhibitory activity of metal porphyrins against cancer cells were evaluated by using MTT assay after a48h treatment. Besides, the binding behavior of metal porphyrins with c-myc G4DNA has been also investigated. The major results of this paper are listed in the following.1. Synthesis of5,10,15,20-tetra(4-methoxyphenyl) porphyrin with copper(II) and the molecular recognition with c-myc G4DNA
     Firstly,5,10,15,20-tetra(4-methoxyphenyl) porphyrin (TMOPP) was synthesized from p-methoxybenzaldehyde and pyrrole in propionic acid solution, and then5,10,15,20-tetra (4-methoxyphenyl) porphyrin copper(II)(CuTMOPP) was synthesized from TMOPP and cupric acetate in DMF solution, and purified by using column chromatograph. Both TMOPP and CuTMOPP have been characterized by1H NMR,13C NMR, ESI-MS, UV, AFS and IR spectra. Although there was little obvious difference in both methods in yields, but the reaction time was more shorten for microwave-assisted synthesis technique than that of conventional method, especially in the second step, which could increase the reaction efficiency to around15times.
     The interaction of CuTMOPP with c-myc G4DNA has been studied by using UV-vis, CD spectra, FRET experiments and PCR-Stop experiments, the results showed that CuTMOPP can bind with c-myc G4-DNA with high affinity. This was confirmed by the hypochromism and red shift in electronic spectra, decrease of fluorescence spectra. What's more, the CD signal strength slightly decreased of c-myc G4DNA solution after adding the target compounds, suggesting that it could case little influence on the configuration of c-myc G4DNA. This was also confirmed by the FRET assay. Those results indicated that the target compound CuTMOPP may bind c-myc G4DNA by electrostatic binding mode, as a result, the the replication of Top polymerase was blocked, and an evaluation of biological activity of CuTMOPP is now in progress.
     2. Synthesis of5-[4-(4-bromobutoxy)phenyl]-10,15,20-trimethoxypheny-porphyrin with copper(II) and the molecular recognition with c-myc G4DNA5,10,15,20-tetra (4-methoxyphenyl) porphyrin (p-HTMOPP) was synthesized from p-hydroxy benzaldehyde,p-methoxy benzaldehyde and pyrrole in propionic acid solution. The crude product was purified through silica gel column. And then,5-[4-(4-bromobutoxy)phenyl]-10,15,20-trimethoxyphenyporphyrin (p-BrTMOPP) has been prepared from p-HTMOPP and1,4-dibromobutane in DMF solution. Lastly, the target compound p-CuBrTMOPP was synthesized from p-BrTMOPP and cupric acetate in DMF solution to purify raw product through column chromatography. All those complexes have been characterized by spectroscopy methods, including1H NMR,13C NMR, ESI-MS, UV, AFS and IR spectra. The yield of those target compounds though microwave-assised synthesis were not higher than that conventional synthesis method, but the difference was not significantly.
     The inhibitory activity of the target compound p-CuBrTMOPP against cancer cells were evaluated by using MTT assay after a48h treatment. It's found that p-CuBrTMOPP could selectively inhibit the growth of human breast cancer cells (MCF-7) with inhibitory activity (IC50) about15.6μM, which was better than the positive control cisplatin.
     The interaction mechanism of the target compound p-CuBrTMOPP with c-myc G4DNA was further studied by thermal denaturation melting point and PCR-Stop experiments, as well as spectroscopy methods. Upon adding the target compound solution, obvious hypochro-mism and red shif were observed, which was also obtained in the fluorescence intensity, indicating that p-CuBrTMOPP could bind to c-myc G4DNA. From the CD spectra of c-myc G4DNA solution in the presence of p-CuBrTMOPP and the thermal denaturation melting point assay, it support that p-CuBrTMOPP could bind and stabilize the conformation of c-myc G4DNA vis electrostatic binding or groove binding. The results of PCR-Stop assay was further confirmed, which shows that the replication of DNA was blocked after treatment with the target compound.
     3. Synthesis of5-[4-(4-bromobutoxy) phenyl]-10,15,20-trimethoxypheny-porphyrin with zinc(Ⅱ) and the molecular recognition with c-myc G4DNA
     The synthesis method of5-[4-(4-bromobutoxy) phenyl]-10,15,20-trimethoxy-phenyporphyrin with zinc(Ⅱ)(p-ZnBrTMOPP) and p-CuBrTMOPP are as the same method as above, but with cupric acetate replaced with zinc acetate. The target compounds have been characterized by spectroscopy methods. Besides, the target compounds have been also synthesized by conventional and microwave-assisted methods, with little obvious difference.
     The inhibitory activity of the target compounds against cancer cells were evaluated by using MTT assay. It's found that p-ZnBrTMOPP has no inhibiting effect on the screening of tumor cell lines, And whether the activity of other tumor cell lines, still further screening.The binding behavior of p-ZnBrTMOP with c-myc G4DNA has been also investigated, suggesting that this type complex could bind and stabilize the conformation of c-myc G4DNA by electrostatic binding or groove binding mode, as a result, the replication of DNA was blocked, and an evaluation of biological activity is now in progress.
引文
[1]杨建东,王都留.卟啉及金属卟啉化合物的合成及应用研究进展[J].首都师范大学学报(自然科学版),2012,33(4):14-18.
    [2]Jiang X, Du Y L, Liu C, et al. Synthesis and Optical Properties of Hyperbranc-hedPAEKs Containing Porphyrin and Its Metal Derivatives[J]. Chinese J. Polym. Sci.,2014,1:73-83.
    [3]王广途,胥星,张华西,等.氨基磺酸型卟啉及其金属配合物的合成与性质[J].化学研究与应用,2005,17(4):480-483.
    [4]Li X D, Zhu Y C, Yang L J. Crown ether-appended Fe(III) porphyrin:Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen [J]. Chinese Chem. Lett.,2012,23(3):375-378.
    [5]Banfi S, Caruso E, Buccafurni L, et al. Comparison between 5,10,15,20-tetraaryl-and 5,15-diarylporphyrins as photosensi-tizer:synthesis photodynamic activity and quantitative structure activity relationship modeling[J]. J. Med. Chem.,2006,49(11):3293-304.
    [6]Rothmund P. Formation of porphyrins form pyrrol and aldehydes[J]. J. Am. chem. Soc., 1935,57:2010-2016.
    [7]Adler A D, Longo F R, Shergalis W, Mechanistic investigations of Porphyrinsyntheses. I. Preliminary Studies on ms-tetraphenylPorphin[J]. J. Am. Chem. Soc.,1964,86(15): 3145-3149.
    [8]Dolphin D. The Pophyrins[M]. Academic Press:New York,1978; Vols.1-6.
    [9]Shanmugathasan S, Edwards C and Boyle R W. Advances in Modern Synthetic Porphyrin Chemistry [J]. Tetrahedron,2000,56(8):1025-1046.
    [10]童沈阳.高灵敏光度试剂—水溶性卟啉衍生物在分析化学中的应用[J].化学试剂,1979,1(3):32-36.
    [11]Rothemund P. A new Porphyrinsynthesis. The synthesis of Porphin[J]. J. Am. Chem. Soc.,1936,58(4):625-627.
    [12]Rothemund P. PorphyrinStudies:The structure of the Porphine ring system[J]. J. Am. Chem. Soc.,1939,61(10):2912-2915.
    [13]Rothemund P, Menotti A R. Porphyrin studies v, the metal complex salts of α、β、γ、δ-tetraphenylporphine[J]. J. Am. chem. Soc.,1948,70(5):1808-1812.
    [14]Adler A D, Longo F R, Finarelli J D, et al. A simplified synthesis for meso-tetraphenylPorphine[J]. J. Org. Chem.1967,32(2):476-476.
    [15]Adler A D, Sklar L, Longo F R, et al. A Mechanistic Study of the Synthesis of meso-TetraPhenylPorphin[J]. J. Heterocyclic Chem.,1968,5(5):669-678.
    [16]Adler A D, longo F R. On the preparation of metalloporphyrins[J]. Inorg. Nud. chem., 1970,32(7):2443-2445.
    [17]Lindsey J S, Schveiman I C, Hsu H C, et al. Rothemund and Adler-longo Reations Revised:synthesis of Tetraphenylporphyrins under Equililrium conditions [J]. J. Org. Chem., 1987,52(5):827-836.
    [18]Lindsey J S, Wagner R W. Investigation of the synthesis of orthosubstituted tetraphenylporphyrins [J]. J. Org. chem.,1989,54(4):828-836.
    [19]Lindsey J S, Hsu H C. Synthesis of tetraphenyl-porphyrins under very mild conditions [J]. Tetrahedron lett.,1986,27(41):4969-4970.
    [20]Wagner R W, Lawrence D S, Lindsey J S. An improved synthesis of tetramesi porphyrin[J]. Tetrahedron Lett.,1987,28(27):3069-3070.
    [21]Wagner R W, Breakwell B V, Lindsey J S. Synthesis of falially-encumbered porphyrins-an approach to light-harvesting antenna complexes[J]. Tetrahedron Lett.,1991,32(14): 1703-1706.
    [22]Lindsey J S, Kristy A, Maccrum John S T, et al. Investigation of a synthesis of meso-porphyrins employing high concentrations and an electron transport chain for aerobic oxidation[J]. J. Org. Chem.,1994,59(5):579-587.
    [23]Marks G S, Dougall D K, Bulloek E and MacDonal S F. Cytodeuteroporphyrin[J]. J. Am. Chem. Soc,1960,82(12):3183-3188.
    [24]Arsenault G P, Bulloek E, MacDonal S F. Pyrromethanes and Porphyrins therefrom [J]. J. am.Chem.Soc.,1960,82(16):4384-4389.
    [25]Sabine H, Mathias O, Senge. Synthetic access to 5,10-disubstituted porphyrins [J]. Tetrahedron Lett.,2003,44(1):157-160.
    [26]Boudif A and Momenteau M. Synthesis of a Porphyrin-2,3-diaerylic acid using a new '3+1' type procedure[J]. Chem. Commun.,1994, (18):2069-2070.
    [27]Boudif A and Momenteau M. A new convergent method for Porphyrin synthesis Based on a '3+1' condensation[J]. J. Chem. Soc, Perkin Trans.Ⅰ,1996, (11):1235-1242.
    [28]Petit A, Loupy A, Maiuardb P and Momenteaub M. Mierowave irradiation in dry media: A new and easy method for synthesis of tetrapyrrolic compounds[J]. Synthetic Commun., 1992,22(8):1137-2142.
    [29]刘云,徐同宽,肖德宝,等.四苯基卟啉的催化合成和微波合成研究[J].北京轻工业学院学报,1998,16(4):37-44.
    [30]胡希明,梅治乾,刘海洋,等.四苯基卟啉的微波诱导合成研究[J].华南理工大学学报(自然科学版),1999,27(10):11-15.
    [31]骆开均,谢明贵.微波法合成meso-四(对羟基苯)卟啉和酯化衍生物[J].四川师范大学学报(自然科学版),2004,27(2):196-197.
    [32]王征远,江桂英.微波催化合成四苯基卟啉[J].精细化工中间体,2004,34(1):38-39.
    [33]刘红涛,周丹华,周桂菊,等.微波辐射催化合成四苯基卟啉[J].化工技术与开发,2009,38(1):9-11.
    [34]黄兴强,樊艳玲,吴天骄,等.微波辐射下催化合成四(对硝基苯基)卟啉[J].江西师范大学学报(自然科学版),2009,33(6):721-724.
    [35]陈年友,赵胜芳,廖学红,等.四苯基卟啉的微波合成[J].武汉大学学报(理学版),2004,50(2):169-172.
    [36]赵胜芳,陈年友,陈国安.一种新型卟啉一蒽醌化合物的微波合成及其光诱导电子转移性质[J].化学试剂,2013,35(1):24-26.
    [37]陈年友,赵胜芳,汪娟丽,等.一种新型尾式卟啉的微波合成与表征[J].武汉理工大学学报,2009,31(6):36-38.
    [38]赵胜芳,陈年友,夏静平,等.四(2-羟基苯基)卟啉及系列金属配合物的微波合成和光谱性质[J].武汉理工大学学报,2013,35(11):43-46.
    [39]郭灿城,何兴涛,邹纲要.合成四苯基卟啉及其衍生物的新方法[J].有机化学,1991,11(4):416-419.
    [40]雷裕武,郭灿城,曾德璋.取代四苯基卟啉的催化合成[J].化学试剂,1994,16(2): 105-106.
    [41]李忠芳,王素文,宋文生,等meso-5,10,15,20-四[取代-2-噻吩基]卟啉及其配合物的合成与表征[J].有机化学,2003,23(6):588-594.
    [42]高德,郑国栋,杨国昱,等.几种吓啉及其配合物合成方法的改进[J].有机化学,1994,14(3):310-313.
    [43]Gouterman M, The Porphyrins[J]. Academic Press:New York:1978,3:p1.
    [44]Suslick K S, Watson R A. The Photochemistry of Chromium, Manganese, and Iron Porphyrin [J]. New. J. Chem.,1992,16(10):633-642.
    [45]Baum S J, Plane R A. Kinetics of the incorporation of magnesium(II) intoporphyrins[J]. J. Am. Chem. Soc.,1966,88(5):910-913.
    [46]陈永熙,周立娟,徐钿.T(4-TAP)P分光光度法测定瓷餐具铜溶出量[J].武汉理工大学学报,2002,24(3):7-9.
    [47]丁静,孙舒婷,张诺,等.卟啉类显色剂在重金属离子分析中的研究及应用[J].分析测试技术与仪器,2008,14(1):3-9.
    [48]姜沛灵,李德良,李科林.四对磺酸苯基卟啉的微波合成及其在高效液相色谱法分离测定铜、铬、镍的应用[J].冶金分析,2009,29(5):16-19.
    [49]郭明,孔亮,历欣,等.微波衍生-离子对高效液相色谱-磺化四苯基卟啉光度法同时测定痕量镍、铜、锰和锌[J].色谱,2002,20(2):137-139.
    [50]Lee J Y, Kang N S, Kang Y K. Binding free energies of inhibitors to iron porphyrin complex as a model for Cytochrome P450 [J]. Biopolymers,2012,97(4):219-228.
    [51]Hu B C, Sun C G, Deng Q Z, et al. Synthesis and catalytic properties of a series of cobalt porphyrins as cytochrome P450 model:the effect of substituents on the catalytic activity[J]. J. Incl. Phenom. Macro.,2013,76(3-4):345-352.
    [52]Collman J P, Decreau R A and Zhang C. Synthesis of cytochrome c oxidase models bearing aTyr244 Mimic [J]. J. Org. Chem.2004,69(10):3546-3549.
    [53]Ruzie C, Even-Hemandez P and Boitrel B. Efficient and versatile synthesis of new porphyrins bearing an N3O moiety:ligands for mimicking cytoehrome coxidase[J]. Org. Lett.,2008,10(13):2673-2676.
    [54]Oae S, Watanabe Y and Fujimori K. Biomimetic oxidation of organic sulfides with TPPFe(III)Cl immidazole/hydrogen Peroxide[J], Tetrahedron Lett.1982,23(11):1189-1192.
    [55]Lai T S, Zhang R, Cheung K K, et al. Aerobic enantioselective alkene epoxidation by a chiral trans-dioxo(D4-porphyrinato)ruthenium(VI) complex[J]. Chem. Cornmun.,1998, 98(15):1583-1584.
    [56]Rosenthal J, Luckett T D, Hodgkiss J M and Nocera D G. Photocatalytic oxidation of hydrocarbons by a bis-iron(Ⅲ)-μ-oxo pacman porphyrin using O2 and visable light[J]. J. Am. Chem. Soc,2006,128(20):6546-6547.
    [57]Maeda D, Shimakoshi H, Abe M and Hisaeda Y. Synthesis and photophysical behavior of porphyrin isomer Sn(IV) complexes [J]. Inorg. Chem.,2009,48(20):9853-9860.
    [58]Ellison M K and Scheidt W R. Structural distortion in five-coordinate nitrosyl iron porphyrins. Axial ligand tilting and its effect on equatorial geometry [J]. J. Am. Chem. Soc, 1997,119(31):7404-7405.
    [59]Kadish K M, Fremond L, Ou Z, et al. Cobalt(Ⅲ) Corroles as eleetrocatalysts for the reduction of dioxygen:reactivity of a monocorrole, biscorroles, and porphyrin-corrole dyads[J]. J. Am. Chem. Soc,2005,127(15):5625-563.
    [60]李雅,韩士田,刘彦钦,等.卟啉化合物的应用研究进展[J],河北工程大学学报(自然科学版),2007,24(3):56-59.
    [61]Meunier B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage[J]. Chem. Rev.,1992,92:1411-1456.
    [62]何宏山.金属卟啉核酸定位断裂剂的设计及氧化断裂研究[J].化学进展,2001,13(3):216-224.
    [63]Rudkevich D M, Verboom W, Reinhoudt D N. Capped Biscalix[4]arene-Zn-Porphyrin: Metalloreceptor with a Rigid Cavity[J]. J. Org. Chem.,1995,60(20):6585-6587.
    [64]Sun D Y, Tham F S, Reed C A, et al. Suprarnolecular Fullerene-Porphyrin Chemistry. Fullerene Complexation by Metalated"JawsPorphyrin" Hosts[J]. J. Am. Chem. Soc,2002, 124(23):6604-6612.
    [65]Chang C J, Loh Z H, Deng Y Q, et al. The pacman Effeet:A Supramolecular Strategy for Controlling the Excited-State Dynamics of Pillared Cofacial Bisporphyrins[J]. Inorg. Chem.,2003,42(25):8262-8269.
    [66]ZhangY, Yang R H, Liu F, et al. Fluorescent Sensor for Imidazole Derivatives Based on Monomer-Dimer Equilibrium of a ZinePorphyrin Complex in a Polymeric Film[J]. Anal. Chem.,2004,76(24):733-734.
    [67]Angelini N, Micali N, Mineo P, et al. Uncharged Water-Soluble Co(II)-Porphyrin:A Receptor for Aromatic a-Amino Acids[J]. J. Phys. Chem. B,2005,109(39):18645-18651.
    [68]Mita H, Ohyama T, Tanaka Y, et al. Formation of a Complex of 5,10,15,20-Tetrakis(N-methylpyridinium-4-yl)-2IH,23H-Porphyrin with G-Quadruplex DNA[J]. Biochem.,2006, 45(22):6765-6772.
    [69]Saha S, Flood A H, Stoddari J F, et al. A Redox-Driven Multicomponent Molecular Shuttle[J]. J. Am. Chem. Soc,2007,129(40):12159-12171.
    [70]Li Z T, Hou J L, Li C. Peptide Mimics by Linear Arylamides:A Structural and Functional Diversity Test[J]. Aee. Chem. Res.,2008,41(10):1343-1353.
    [71]Oliveri C G, Ulmann P A, Wiester M J, et al. Heteroligated Supramoleeular Coordination Complexes Formed via the Halide-Induced Ligand Rearrangement Reaction[J]. Aee. Chem. Res.,2008,41(12):1618-1629.
    [72]Burrows P E, Forrest S R, Sibley S P and Thompson M E. Color-tunable organic light-emitting devices[J]. Appl. Phys. Lett.,1996,69(20):2959-2961.
    [73]Baldo M A, Brien D F, Forrest S R. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature,1998,395,151-154.
    [74]Cleave V, Yahioglu, Goghan, et al. Harvesting singlet and triplet energyin polymer LEDs[J]. Adv. Mate.,1999,11(4):285-288.
    [75]Lidzey D G, Bradley D D C, Skolnick M S.et al. Strong exciton-photon coupling in an organic semiconductor microcavity [J]. Nature,1998,395(6697):53-56.
    [76]Tyler B N, Neil R B. Axially Coordinated Porphyrinic Photochromes for Non-destructive Information Processing. [J]. Adv. Mater.,2001,13(5):347-349.
    [77]David G, Mark P, Niemczyk, et al. Picosecond Molecular Switch Based on Bidirectional Inhibition of Photoinduced Electron Transfer Using Photogenerated Electric Fields[J]. J. Am. Chem. Soc.,1998,120 (20):5118-5119.
    [78]Aida T, Inoue S, Living polymerization of epoxides with metalloporphyrin and synthesis of block copolymers with controlled chain lengths[J]. Macroraolecules,1981,14(5):1162-1166.
    [79]Webster O W. Living polymerization methods[J]. Science,1991,251(25):887-892.
    [80]曹维孝.新型开环聚合催化剂-四苯基卟啉铝化合物[J].化学通报,1991,(8):25-29.
    [81]Brune A, Jeong G, Liddell P A, et al. Porphyrin-sensitized nanoparticulateTiO2 as the photoanode of a hybrid Photoelectrochemical biofuel cell[J]. Langmuir,2004,20(19): 8366-8371.
    [82]Gust D, Moore T A and Moore A L. Solar Fuels via Artifieial Photosynthesis[J]. Ace. Chem. Res.,2009,42(12):1890-1898.
    [83]Winkelmann C B, Ionica I, Chevalier X, et al. Optical switching of porphyrin-coated silicon nanowire field effect transistors [J]. Nano Lell.,2007,7(6):1454-1458.
    [84]Imahori H, Umeyama T and Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells[J]. Acc. Chem. Res.,2009,42(11):1809-1818.
    [85]Maruyama J and Abe I. Carbonized hemoglobin functioning as a cathode catalyst for polymer relectrolyte fuel cells[J]. Chem. Mater.,2006,18(5):1303-1311.
    [86]Maruyama J, Okamura J, Miyazaki K and Abe I. Two-step carbonization as a method of enhancing catalytic properties of hemoglobin at the fuel cell cathode[J]. J. Phys. Chem. C, 2007,111(18):6597-6600.
    [87]陈勇,李婉婉,周江蛟,等.光动力疗法分子机制研究进展[J].中南大学学报(医学版),2014,24(1):102-108.
    [88]张丹丹,李文娜,梅文杰,等.以卟啉类衍生物为光敏剂的光动力疗法的靶点研究进展[J].中国现代应用药学,2013,30(4):445-449.
    [89]M6nica M B, Nubia B, Ana T P C, et al. The Use of Porphyrins in Photodynamic Therap-y of Cutaneous Leishmaniasis[J]. Revista Virtual de Quimica,2012,4(3):257-267.
    [90]Liu J J, Zhang L Ci, Du X J. PEG Encapsulation of Porphyrins for Cell Imaging and Photodynamic Therapy [J]. Lett. Org. Chem.,2013,10(5):342-347.
    [91]Detty M R, Gibson S L and Wagner S J. Current clinical and preclinical photoSensitizers for use in photodynamic therapy[J]. J. Med. Chem.,2004,47(16):3897-3915.
    [92]Weyergang A, Berg K, Kaalhus O, et al. Photodynamic therapy targets the mTOR signali -ng network in vitro and in vivo[J]. Mol. Pharmaceutics.2009,6(1):255-264.
    [93]Umemura S, Kimura K. Synergistic effect of ultrasound and Hematoporphyrin on S180 [J]. Jpn. J. Cancer. Res.,1990,65(3):962-966.
    [94]Umemura S, Yumita N, Nishigaki R, et al. Sonodynamically induced anti-tumor effect of pheophorbidea[J]. Cancer Lett.,1996,38(1-2):151-157.
    [95]Jeffer R J. Sonodynamic therapy:Activation of anticancer agents with ultrasound [J]. Ultrasonic Symposium Proc.,1991,16(6):1367-1370.
    [96]Tachibana K, Kimura N, Okumura M, et al. Enhancement of cell killing of HL-60 cells by ultrasound in the present of the photosensitizing drug Photofrin-I.I[J]. Cancer Lett.,1993, 32(3):195-199.
    [97]Kessel D, Jeffers R, Fowlkes J B, et al. Effects of sonodynamic and photodynamic treatment on cellular thiol levels[J]. J. Photoch. Photobio. B:Bio.,1996,20(32):103-106.
    [98]彭健新,马玉英.利用声化学激活血卟啉抗肿瘤效应研究[J].声学技术,1993,18(2):31-35.
    [99]石焕文,尚志远,郭敏,等.复频超声声化学激活血卟啉抗肿瘤效率的研[J].西北大学学报,2003,39(5):519-524.
    [100]Chen Y, Gryshuk A, Aehilefu S, et al. A novel approach to a bifunctional Photosensitiz-er for tumor imagingand Phototherapy [J]. Bioconjugate Chem.,2005,16(5):1264-1274.
    [101]Sibrian-Vazquez M, Jensen T J, Hammer R P, et al. Peptide-mediated cell transport of water soluble porphyrin conjugates [J]. J. Med. Chem.,2006,49(4):1364-1372.
    [102]Barnard P J and Bemers-Priee S J, Targeting the mitochondrial cell death pathway with gold compounds[J]. Coordin. Chem. Rev.,2007,251(13-14):1889-1902.
    [103]Asayama S, Kasugai N, Kubota S, et al. Superoxide dismutase as a target enzyme for Fe-porphyrin-induced cell death[J]. J. Inorg. BioChem.,2007,101(2):261-266.
    [104]Kralova J, Kejik Z, Briza T, et al. Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy[J]. J. Med. Chem.,2010,53(1): 128-138.
    [105]Ward B, Skorobogaty A and Dabrowiak J C, DNA cleavage specificity of a group of cationic metalloporphyrins[J]. Biochem.,1986,25(22):6875-6883.
    [106]Ward B, Skorobogaty A and Dabrowiak J C. DNA Binding Specificity of a series of Cationic Metalloporphyrin Complexes[J]. Bioehem.,1986,25(24):7827-7833.
    [107]Dabrowiak J C, Ward B and Goodisman J. Quantitative footprinting analysis using a DNA-cleaving metalloporphyrin complex[J]. Biochem.,1989,28(8):3314-3322.
    [108]Sari M A, Battioni J P, Dupri D, et al. Interaction of Cationic Porphyrins with DNA: Importance of the Number and Position of the Charges and Minimum Structural Requiremen-ts for Intercalation[J]. Biochem.,1990,29(17):4205-4215.
    [109]Zupan K, Herenyi L, Toth K, et al. Binding of Cationic Porphyrin to Isolated and Encapsidated Viral DNA Analyzed by Comprehensive Spectroscopic Methods[J]. Biochem., 2004,43(28):9151-9159.
    [110]Zupan K, Herenyi L, Toth K, et al. Binding of Cationic Porphyrin to Isolated DNA and Nucleoprotein Complex:Quantitative Analysis of Binding Forms under various Experimenta-1 Conditions[J]. Biochem.,2005,44(45):15000-15006.
    [111]Shelton A H, Rodger A and Memillin D R. DNA binding studies of a new dicationic porphyrin. Insights into interligand interactions [J]. Biochem.,2007,46(31):9143-9154.
    [112]Mahaderam S, Palaniandavar M. Electrochemical study of the enantio selective interac-tion of tris(phen)Ru(II) with calf thymus DNA [J]. Inorg. Biochem.,1995,59(2):161-165.
    [113]刘杰,许东晖,黄锦汪,等.水溶性卟啉及其系列金属配合物的合成、抗癌作用及其作用机制研究[J].高等学校化学学报,2001,22(9):1446-1449.
    [114]Liu J, Zhou X H, Ji L N. Synthesis, characterization and antitumor activity of a series of polypyridyl complexes [J]. Metal Based Drugs,2000,7(6):343-348.
    [115]Kumar C V, Barton J K, Turro N J. Photophysics of ruthenium complexes bound to double helical DNA [J]. J. Am. Chem. Soc.,1985,107(19):5518-5523.
    [116]Barton J K, Goldberg J M, Kumar C V, et al. Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids:tuning the stereoselectivity [J]. J. Am. Chem. Soc.,1986,108(8):2081-2088.
    [117]康敬万,吴海霞,卢小泉,等.水溶性锌卟啉配合物的合成、表征及其与CT DNA的作用[J].高等学校化学学报,2005,26(6):997-1001.
    [118]Mei H Y, Barton J K. Chiral probe for A-form helixes of DNA and RNA:Tris (tetrame -thylphenanthroline)ruthenium(Ⅱ) [J]. J. Am. Chem. Soc,1986,108(23):7414-7416.
    [119]Bhattacharya S, Mandal G and Ganguly T. Detailed spectrosceopic investigations to reveal the nature of interaction of anionic porphyrin with calf thymus DNA[J]. J. Photochem. Photobio. B:Bio.,2010,101(1):89-96.
    [120]刘颂豪,孟耀勇.血卟啉单甲醚对DNA损伤的拉曼光谱研究[J].光学学报,2000,20(4):529-532.
    [121]Pasternack A P, Caccam M, Keogh B, et al. Long-rang fluorescence quenching of ethidiumion by cationic porphyrins in the presence of DNA [J]. J. Am. Chem. Soc,1991, 113(18):6835-6840.
    [122]Barton J K, Dannenberg J J, Raphael A L. Enantiomeric selectivity in binding tris (phenanthroline)zinc(Ⅱ) to DNA [J]. J. Am. Chem. Soc,1982,104(18):4867-4869.
    [123]Brown R S, Dervan J C, Klug A. Crystallographic and biochemical investigation of the lead(Ⅱ)-catalyzed hydrolysis of yeast phenylalanine tRNA [J]. Biochem.,1985,24(18): 4785-4801.
    [124]Pyle A M, Rehmann J P, Meshoyer R, et al. Ligand complexes of ruthenium(II):factors governing binding to DNA [J]. J. Am. Chem. Soc.,1989,111(8):3051-3057.
    [125]沈同,王镜岩,赵邦悌.生物化学[M],北京,人民教育出版社,1983.
    [126]Kim N W, Pialyszek M A, Prowse K R, et al. Specific association of human telomerase activity with immortal cells and cancer [J]. Science,1994,266(5193):2011-2015.
    [127]Zakin A W, Kobayashi T. Structure and function of Telomerase [J]. Annu Rev. Genet, 1998,23(45):574-580.
    [128]Wheelhouse R T, Sun D, Han H, et al. Cationic porphyrins as telomerase inhibitors:the interaction of tetra-(N-methyl-4-pyridyl)porphyrin with G-quadruplex DNA[J]. J. Am. Chem. Soc.,1998,120(13):3261-3262.
    [129]Buscaglia R, Jameson D V and Chaires J B. G-quadruplex structure and stability illumi-nated by 2-aminopurine phasor plots[J]. Nucl. Acids Res.,2012,40(9):4203-4215.
    [130]Christopher J L, Brahim H and Anh T P. Guanine base stacking in G-quadruplex nuclei-c acids[J]. Nucl. Acids Res.,2013,41(3):2034-2046.
    [131]Randzzo A, Spada G P and da Silva M W. Circular dichroism of quadruplex structures [J]. Top. Curr. Chem.,2013,330(1):67-86.
    [132]Erica S, Pasquale Z, Angela R. Evidence for G-quadruplex in the promoter of vegfr-2 and its targeting to inhibit tumor angiogenesis[J]. Nucl. Acids Res.,2014,42(5):2945-2957.
    [133]Shay J W, Wright W E, Werbin H. Telomerase in the early detection of cancer [J]. J. Clin. Pathol.,1997,50:106-109.
    [134]Counter C M, Avilion A A, Lefeuvre C E, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity [J]. J. Embo.,1992,11(5):1921-1929.
    [135]Harley C B, FutcherA B, Greider CW. Telomeres shorten during ageing of human fibro-blasts [J]. Nature,1990,345(6274):458-460.
    [136]褚彬,袁谷,周江,等.二酞亚胺类G一四链体配体抑制白血病细胞增殖及其分子机制[J].中国实验血液学杂志,2009,1(1):43-48.
    [137]Kang C, Zhang X, Ratliff R, et al. Crystal structure of four stranded Oxytricha telo-meric DNA [J]. Nature,1992,356(105):126-131.
    [138]Wang Y, Patel D J. Solution structure of a parallel-stranded G-Quadruplex DNA [J]. J. Mol. Biol.,1993,234(4):1171-1183.
    [139]Wang Y, Patel D J. Solution structure of the Oxytricha telomeric repeat d[G4(T4G4)3] G-tetraplex[J]. J. Mol. Biol.,1995,251(1):76-94.
    [140]Sun D, Thompson B, Cathers B E, et al. Inhibition of human telomerase by a G-quadru-plex interactive compound[J]. J. Med. Chem.,1997,40(14):2113-2116.
    [141]Li D H, Diao J L, Yu K G, et al. Synthesis and anticancer activities of porphyrin induce-d anticancer drugs [J]. Chin. Chem. Lett.,2006,98(18):1331-1334.
    [142]Gedye R N, Smith F E, Westaway K C. The rapid synthesis of organic compounds in microwave ovens[J]. Can. J. Chem.,1986,27(3):279-282.
    [143]刘红涛,周丹华,周桂菊,等.微波辐射催化合成四苯基卟啉[J].化工技术与开发,2009,38(1):9-12.
    [144]陈祖林,杨桦,廖海洋,et al. level induced by ALA诱导结肠癌细胞内PPIX产生和光动力疗法杀伤效应研究[J].重庆医学,2009,38(5):512-514.
    [145]张红芬,潘景浩.卟啉及金属卟啉的应用[J].化学教育,2005,4:3-6.
    [146]Rodriguez Bailey V M, LaChance2Galang K J, Doan P E.1H and 31P NMR and EPR of Pentaammineruthenium(III) Complexes of Endocyclically Coordinated Nucleotides, Nucleosides, and Related Heterocyclic Bases. Autoxidation of [(GuoN7)(NH3)5RuⅢ] (Guo =Guanosine). Crystal Structure of [7MeGuaN9(NH3)5Ru]Cl3·3H2O[J]. Inorg. Chem.,1997, 36(9):1873-1883.
    [147]LaChance Galang KJ, Maldonado I, Gallagher M L, et al. Terpsichorean Movements of Pentaammineruthenium on Pyrimidine and Isocytosine Ligands[J]. Inorg.Chem.,2001,40(3): 485-492.
    [148]Allenmark S. Induced Circular Dichroism by Chiral Molecular Interaction[J]. Chirality 2003,15(5):409-422.
    [149]Haider S M, Parkinson G N and Neidle S. Structure of a G-Quadruplex-Ligand Complex[J]. J.Mol.Biol.,2003,326(1):117-125.
    [150]Phillips K, Dauter Z, Murchie A I H, et al. The Crystal Structure of a Parallel-Stranded Guanine Tetraplex at 0.95 A Resolution[J]. J. Mol. Biol.,1997,273(1):171-182.
    [151]Sun D, Thompson B, Cathers B E, et al. Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound[J]. J. Med. Chem.,1997,40(14):2113-2116.
    [152]Parkinson G N, Lee M P H and Neidle S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA[J]. Nature,2002,417(6891):876-880.
    [153]Gupta G, Garcia A E, Guo Q, et al. Structure of a Parallel-Stranded Tetramer of the Oxytricha Telomeric DNA Sequence of dT4G4[J]. Biochem.,1993,32(28):7098-7103.
    [154]Grand C L, Han H, Munoz R M, et al. The Cationic Porphyrin TMPyP4 Down-Regulates c-myc and Human Telomerase Reverse Transcriptase Expression and Inhibits Tumor Growth in ViVo[J]. Mol. Cancer Ther.,2002,1(8):565-573.
    [155]Haq I, Trent J O, Chowdhry, B Z and Jenkins T C. Intercalative G-Tetraplex Stabilization of Telomeric DNA by a Cationic Porphyrin[J]. J. Am. Chem. Soc.,1999,121(9): 1768-1779.
    [156]Hudson B P, Sou J, Berger D J and McMillin D R. Luminescence Studies of the Intercalation of Cu(TMpyP4) into DNA[J]. J. Am. Chem. Soc.,1992,114(23):8997-9002.
    [157]Keating L R, Veronika A, Szalai V A. Parallel-Stranded Guanine Quadruplex Interactions with a Copper Cationic[J]. Biochem.,2004,43(50):15891-15900.
    [158]胡愁然,刘金龙.以G-四联体为靶点的卟啉类及其金属配合物抗肿瘤作用的研究进展[J].医学综述,2013,19(15):2749-2751.
    [159]王周锋,邓文礼.卟啉化合物的合成[J].化学进展,2007,19(4):520-526.
    [160]Cui W B, Zhou J, Chen L, et al. A Convenient Synthetic Method of Metal Dendritic Porphyrins[J]. Chinese Cheml. Lett.,2006,17(8):999-1001.
    [161]王淇,王成蹊,孙福强,等.碳化硅管中微波辅助制备甲硝唑半抗原[J].广东药学院学报,2012,28(1):17-20.
    [162]杨晓杰,沈阳,张莹,等Meso-取代卟啉及其金属配合物的合成进展[J].广州化工2011,39(16):13-16.
    [163]师同顺,孙浩然,曹锡章,等.四(对-硝基)苯基卟啉锰配合物的光谱电化学性质[J].高等学校化学学报,1994,15(7):966-969.
    [164]Shi S, Yao T M, Geng X T, et al. Synthesis, characterization and DNA-binding of chiral complexes Λ-and △-[Ru (bpy)2 (pyip)]2+[J]. Chirality,2009,21(2):276-283.
    [165]Jenkins T C. Targeting multi-stranded DNA structures [J]. CurrMed. Chem.,2000,7(1): 99-115.
    [166]Cech T R. Beginning to understand the end review of the chromosome [J]. Cell,2004, 116(44):273-279.
    [167]Blasco M A. Mammalian telomeres and telomerase:why they matter for cancer and aging[J]. Eur. J. Cell Biol.,2003,82(9):441-446.
    [168]Qin Y, Hurley L H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions[J]. Biochimie,2008,90(8):1149-1171.
    [169]De Cian A, Lacroix L, Douarre C, et al. Targeting telomeres and telomerase [J]. Biochimie,2008,90:131-155.
    [170]李燕梅,沈晓燕.具有抑制端粒酶活性的G-四链体小分子配体研究进展[J].中国药理学通报,2010,26(1):17-20.
    [171]Mikami-Terao Y, Akiyama M, Yuza Y, et al. Antitumor activity of G-quadruplex-interactive agent TMPyP4 in K562 leukemic cells[J]. Cancer Lett.,2008,261(2):226-234.
    [172]Micheli E, Lombardo C M, Ambrosio D, et al. Selective G-quadruplex ligands:The significant role of side chain charge density in a series of perylene derivatives [J]. Bioorg. Med. Chem. Lett.,2009,19(14):3903-3908.
    [173]Shin-ya K, Wierzba K, Matsuo K, et al. Telomestatin, a novel telomerase inhibitor from streptomyces anulatus[J]. J. Am. Chem. Soc,2001,123(6):1262-1263.
    [174]Pennarun G, Granotier C, Gauthier LR, et al. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruple-xligands[J]. Oncogene,2005,24(18):2917-2928.
    [175]Gomez D, O'Donohue M F, Wenner T, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells[J]. Cancer Res.,2006,66(14):6908-6912.
    [176]Sun D, Thompson B, Cathers B E, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound[J]. J. Med. Chem.,1997,40(14):2113-2116.
    [177]Anantha N V, Azam M, Sheardy R D. Porphyrin binding to quadrupled T4G4[J]. Biochemistry,1998,37(9):2709-2714.
    [178]孙静,陈嘉,陈伙炎,等.金属配合物与G-四链体作用的研究进展[J].中国药理学通报,2012,28(4):469-472.
    [179]Ma D L, Che C M, Yan S C. Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA [J]. J. Am. Chem. Soc,2009,131(5):1835-1846.
    [180]Georgiades S N, Abd Karim N H, Suntharalingam K, et al. Interaction of metal comple-xes with G-quadruplex DNA [J]. Angew. Chem. Int. Ed. Engl,2010,49(24):4020-4034.
    [181]夏钰,邢飞跃.靶向作用G-四链体DNA的金属配合物的研究进展[J].生物医学工程与临床,2013,17(3):300-304.
    [182]Keating L R, Szalai V A. Parallel-stranded guanine quadruplex interactions with a copper cationic porphyrin[J]. Biochemistry,2004,43(50):15891-15900.
    [183]Sargsyan G, Balaz M. Porphyrin-DNA conjugates:porphyrin induced adenine-guanine homoduplex stabilization and interduplex assemblies [J]. Org.& Biom. Chem,2012,10(29): 5533-5540.
    [184]Kovaleva O A, Tsvetkov V B, Shchyolkina A K. The role of carboxymethyl substituents in the interaction of tetracationic porphyrins with DNA[J]. Eur. Biophys. J. Biophy.,2013,41(9):723-732.
    [185]Brewer A, Siligardi G, Neylon C, et al. Introducing structural flexibility into porphyrin-DNA zipper arrays[J]. Org.& Biom. Chem.,2011,9(24):8505-8506.
    [186]Kang, Jingwan, Wu, Haixia, Lu, Xiaoquan, et al. Study on the interaction of new water-soluble porphyrin with DNA[J]. Spectroch. Acta. Part A:Molecul. Biom. Spectro,2005, 16(9):2041-2048.
    [187]Murashima T, Hayata K, Saiki Y, et al. Synthesis, structure and thermal stability of fully hydrophobic porphyrin-DNA conjugates [J]. Tetra. Lett.,2007,48(48):8514-8517
    [188]Young R K, Lindan G, Park J J, et al. Systematic Investigation on the Central Metal Ion Dependent Binding Geometry of M-meso-Tetrakis(N-methylpyridinium-4-yl)porphyrin to DNA and Their Efficiency as an Acceptor in DNA-Mediated Energy Transfer[J]. J. Phys. Chem. B,2012,112(7):2330-2337.
    [189]Chen S M, Lu M F, Lin K C. The interaction of water-soluble manganese porphyrins with DNA films and their electrocatalytic properties with hydrazine[J]. Electroanalysis,2005,17(10):847-856.
    [190]Tadeusz S, Marian W, Maria H. Radiolysis of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-porphyrin or 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin in aqueous solution in the presence and in the absence of DNA or human serum albumin[J]. Radiat. Phys. Chem., 2013,91:156-165.
    [191]Gina M, Carolina C, Eugen R. Synthetic porphyrins in experimental photodynamic therapy induce a different antitumoral effect[J]. J. Porphy. Phthalocy.,2007,11(1):58-65.
    [192]Pietzyk B, Frohlich L, Gober B. Characterization and Stability of Synthetic Porphyrins [J]. Pharmazie,1995,50(11):747-750.
    [193]Tamiaki H, Kumon K, Shibata R. Synthetic hydroxymethyl-porphyrins for protection of carboxy group[J].J. Porph.& Phthal.,2007,11(5-6):434-441.
    [194]Zhang Z J, Gao W Y, Lukasz W. Post-Synthetic Modification of Porphyrin-Encapsulating Metal-Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO2/CH4 Selectivity[J]. Angew. Chem. Int. Edit.,2012,124(37):9464-9468.
    [195]Jonathan S, Lindsey. Synthetic Routes to meso-Patterned Porphyrins[J]. Accounts Chem. Res.,2010,41(2):300-311.
    [196]Antara G, Purnendu N, Woormileela S. A new synthetic protocol for the preparation of 5-cyano-10,15,20-tris(alkoxyphenyl)porphyrins[J]. Polyhedron,2013,56:18-23.
    [197]Giuntini F, Alonso C M, Boyle R W. Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins[J]. Photochem Photobiol Sci., 2011,10(5):759-791.