超短脉冲强激光在介质中的传输及激光在水下声源中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着激光器技术的不断进步,超短脉冲强激光在介质中的传输、成丝控制以及激光在水下声源中的应用成为领域内的一个研究热点。本文在此基础上,开展超短脉冲强激光传输、成丝控制及激光水下声源应用的研究。
     本文首先研究了超短脉冲强激光在传输介质中传输时所引起的散射、空间-时间散焦、群速度色散、高阶色散、克尔自聚焦、自相位调制、拉曼效应、多光子电离等效应,对超短脉冲强激光在传输介质中的传播过程进行了全面的描述。本文还分析了等离子体与激光的相互作用过程,并综合超短脉冲强激光在传输介质中传输时的各种效应,给出了具体的数学模型。
     随后,本文采用数值仿真计算的方法,对超短脉冲强激光在传输介质中的传输过程进行了二维和三维仿真。在二维仿真中,研究了激光峰值功率、脉冲形状、激光波长、脉宽等因素对激光传输、成丝及产生的电离通道的影响。仿真结果表明,激光峰值功率越高,越有利于形成连续的电离通道;采用贝塞尔形激光脉冲,其产生的电离通道宽度更窄、长度更长、电子密度分布更均匀。改变激光波长为248nm的紫外激光,其产生的电子密度数量级保持不变,而相应的峰值功率密度减小两个数量级。保持激光其它参数不变,增大脉宽将使电离通道中的电子密度分布更均匀。在三维仿真中,研究了椭圆形激光脉冲、圆环形激光脉冲、黑色薄片、幅度盘及相位盘等手段对多丝分布的影响。结果表明,初始激光脉冲形状为椭圆形时,丝沿椭圆长轴方向分布,而在椭圆短轴方向上,丝分布区域被压缩。当初始激光脉冲形状为圆环形时,丝沿圆环轴线排列,从而在空间上形成一管道形电离通道。采用黑色薄片,对激光进行裁切,当激光脉冲被裁切为一维直线形、正方形及椭圆形时,相应形成的多丝也分别排列成直线形、正方形及椭圆形形状。通过采用幅度盘,可对丝的数量进行精确控制,此时,丝排列成规则的几何形状。改用相位盘,丝沿相位改变极大值方向进行排列。
     针对激光在水下声源的应用,本文分别研究了热膨胀机制、汽化机制及击穿机制下激光声源的波形、频谱、指向性等特性。本文还研究了双空泡情况下,激光致空化气泡溃灭及其产生的声波辐射。研究结果表明,通过控制激光光强的时域波形、光斑形状、激光串波形形状、重复频率等参数,可有效控制激光水下声源的时域波形、频谱及指向性。汽化机制下,激光声源产生声波的时域波形、频谱及指向性等随观测点位置、观测频率、光斑位置等不同而不同。击穿机制下,通过建立等离子体柱模型与等离子体椭球模型,研究了两种情况下声波的指向特性。此外,在激光致单空泡运动及其辐射声波的基础上,研究了双空泡运动情况下,空泡运动及其辐射声波。研究发现,空泡间距越小,空泡溃灭时达到的最小半径越小,辐射产生的声压越高。
     最后,本文设计实验,研究了激光水下声源的时域、频谱特性,并分别研究了水下声源辐射声压级与激光能量、水体盐度、颗粒物浓度、聚焦点位置等因素的关系。实验结果表明,激光能量越高,激光产生的声压级越高,两者近似成2次方关系;随水体盐度增加,激光声源辐射声压级呈上升趋势。当观测点位置一定时,聚焦点位置离水面越近,激光致声源辐射声波的声压级越高。激光声源辐射声压随颗粒物浓度的升高并没有明显的上升或下降趋势。预测结果表明,在浑浊海水中,随传输距离增加,激光声源辐射声波的时域波形中的高频振荡部分消失,脉宽展宽,频谱中的高频部分迅速衰减,直至消失。考虑沙质海底影响后,垂直入射时,激光水下声源辐射声波的时域波形、频谱分布并没有发生太大变化,然而其幅度变得更小。
In recent years, with the progress of laser technology, the study of ultrashort intense laser pulse in transparent media, filamentation control and laser induced underwater acoustic source has become a hot research topic. Based on this, this paper will study the propagation of ultrashort intense laser pulse, the control of multifilaments and the application of laser induced underwater acoustic sources.
     First, this paper studied the effects including scattering, the space-time induced defocusing, group velocity dispersion, high order dispersion, Kerr effect induced self-focusing, self-phase modulation, Raman effect, multiphoton ionization, etc. Subsequently, this paper also analyzed the interaction between plasma and laser pulse. A specific mathematical model had been given by combining all these effects.
     The model which described the propagation of ultrashort intense laser pulse in transparent media had been solved numerically. In the two-dimensional simulations, the affections of pulse peak power, pule width, pulse shape, wavelength to the propagation of laser pulse, filamentation and plasma channel had been studied. Simulation results showed that, the higher of pulse peak power, the more favors of the formation of a continuous plasma channel; The Bessel-shaped laser pulse might lead a narrower, longer and more uniform distributed plasma channel. If the laser pulse is a ultraviolet laser pulse (λ=248nm), the plasma density kept at the same order of about1023m-3, while the corresponding peak power intensity would be two orders lower. Keeping the other parameters unchanged, increasing the pulse width would make the plasma more evenly distributed. In the three-dimensional simulations, methods of changing the initial laser pulse to ellipse and ring-like pulse, using black slices, amplitude mask and phase mask had been studied for the control of multifilamentation. The results showed that, when the initial laser was ellipse, the filaments arranged along the major axis, while in the direction of minor axis, the distribution area of filaments was compressed. Filaments located in the shape of a ring during the propagation of a ring-like laser pulse. By using black slices, filaments arranged the same shape with that in the slices. For example, by graving line, square and ellipse shape on the slices would lead to line, square and ellipse distributed filaments. The number of filaments could be controlled accurately by using amplitude mask, and the filaments locations formed a regular geometric pattern. Filaments would arrange along the direction of phase changing axis when phase mask was applied.
     This paper also studied the applications of laser pulse in the field of underwater acoustic sources. The wave shapes, spectrums and directivities of laser induced underwater acoustic waves had been analyzed theoretically and numerically. The collapse of double bubbles and corresponding induced sound pressures had been studied for the first time. The results showed that, under thermal expansion mechanism, by controlling the time varying pulse intensities, beam shapes, shapes and repletion rates of laser strings, one could effectively control the waveforms, spectrums and directivities of laser induced underwater sources. Under vaporization mechanism, the waveforms, spectrums and directivities of laser induced underwater sources were varied with observation position, detection frequency and beam shape. The directivity characteristics could be studied by using the established plasma column model and plasma ellipsoid model under breakdown mechanism. During double bubbles movement, the nearer of the two bubble, the smaller of the minimum radius they would reach during collapse and the higher sound pressure they radiated.
     Finally, experiments had been designed to research the wave shapes and spectrums of laser induced underwater acoustic sources. Besides, relationships between sound pressure levels and pulse energies, salinities, particle concentration densities and focusing positions were studied. The experiment results showed that, the higher of the pulse energy, the higher sound pressure level it would be generated. With the increasing of salinity, the laser pulse tended to generated higher sound pressure level. At a certain observation point, there would be an exact focusing point that one could get the highest sound pressure. The sound pressure level showed no significant upward or downward trend with the increasing of particle concentration density. The prediction results showed that in turbid seawater, high frequency oscillation of the waveforms disappeared and the waveforms were broadened with the increasing of propagation distances. Also, the high frequency part of the spectrum decayed rapidly with the increasing of propagation distances. Considering the affection of the sandy seabed, the waveforms and spectrums of the acoustic waves did not change much, but their amplitude became smaller.
引文
[1]Koechner W. Solid-state laser engineering[M]. Springer,2006.
    [2]G. A. Moumu, C.P.J Batty, M. D. Perry, Physics Today,1998,1,(22).
    [3]M. D. Perry. Crossing the Petawatt Threshold[J]. Science&Technology Review,1996,4.
    [4]M,D. Perry, The Amazing Power of the Petawatt[J]. Science&Technology Review, 2000,4.
    [5]A. Heller, Science&Technology Review,2000,25.
    [6]Y. Kitagawa, et al, GEKKO XII petawatt module project[J]. Annual Preogress Report,1998,17.
    [7]C.N. Danson, el al, Focused intensities of 1020W/cm2 with the up graded vulan CPA interaction facility. Proceeding of SPIE[C],1998,82:3492.
    [8]Zou J, Descamps D, Audebert P, et al. LULI 100-TW Ti:sapphire/Nd:glass laser:a first step toward a high-performance petawatt facility[C]//Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion. International Society for Optics and Photonics,1999:94-97.
    [9]Strickland D, Mourou G. Compression-of amplified chirped optical pulses[J]. Optics Communications,1985,55(6):447-449.
    [10]J.A Paisner, J.R. Murray, The National Ignition Facility for Internal Confinement Fusion [R]. Lawrence Livermore National Laborary, Livermore CA, UCRL-IZS6S9,1997.
    [11]J.A Paisner, Utility of the National Ignition Facility [R]. Lawrence Livermore National Laborary, Lovermore, CA, NIF-LINL-94-240, UCRL-PROP-117384, 1994
    [12]M. Aoyama, K, Yamakawa, Y. Akahence, et al,0.85-PW,33-fs Ti:sapphire laser, Optic Letters,2003,28,1594-1596.
    [13]楚晓亮.大能量高功率啁啾脉冲传输特性研究[D].四川大学,2005.
    [14]黄小军,彭翰生,魏晓峰,等.百太瓦级超短超强钛宝石激光装置研制[J].中国工程物理研究院科技年报,2005(1):I0008-I0012.
    [15]Peng H, Huang X, Zhu Q, et al.286-TW Ti:sapphire laser at CAEP[C]. Photonics Asia 2004. International Society for Optics and Photonics,2005:1-5.
    [16]Sprangle P, Penano J R, Hafizi B. Propagation of intense short laser pulses in the atmosphere[J]. Physical Review E,2002,66(4):046418.
    [17]Couairon A, Franco M, Mechain G, et al. Femtosecond filamentation in air at low pressures:Part Ⅰ:Theory and numerical simulations[J]. Optics Communications, 2006,259(1):265-273.
    [18]Champeaux S, Berge L, Gordon D, et al. (3+1)-dimensional numerical simulations of femtosecond laser filaments in air:Toward a quantitative agreement with experiments[J]. Physical Review E,2008,77(3):036406.
    [19]Couairon A, Berge L. Modeling the filamentation of ultra-short pulses in ionizing media[J]. Physics of Plasmas,2000,7:193.
    [20]Couairon A. Filamentation length of powerful laser pulses[J]. Applied Physics B, 2003,76(7):789-792.
    [21]Tzortzakis S, Lamouroux B, Chiron A, et al. Nonlinear propagation of subpicosecond ultraviolet laser pulses in air[J]. Optics letters,2000,25(17): 1270-1272.
    [22]Thiyagarajan M, Scharer J E. Experimental investigation of 193-nm laser breakdown in air[J]. Plasma Science, IEEE Transactions on,2008,36(5): 2512-2521.
    [23]Katz N, Egedal J, Fox W, et al. Experiments on the propagation of plasma filaments[J]. Physical Review Letters,2008,101(1):015003.
    [24]. Tzortzakis S. Franco M A, Andre Y B, et al. Formation of a conducting channel in air by self-guided femtosecond laser pulses[J]. Physical Review E,1999,60(4): R3505-R3507.
    [25]Eisenmann S, Pukhov A, Zigler A. Fine structure of a laser-plasma filament in air[J]. Physical Review Letters,2007,98(15):155002.
    [26]Tzortzakis S, Mechain G, Patalano G, et al. Concatenation of plasma filaments created in air by femtosecond infrared laser pulses[J]. Applied Physics B,2003, f 76(5):609-612.
    [27]Theberge F, Liu W. Simard P T. et al. Plasma density inside a femtosecond laser filament in air:Strong dependence on external focusing[J]. Physical Review E, 2006,74(3):036406.
    [28]Vogel A, Noack J, Nahen K,.et al. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales[J]. Applied Physics B:Lasers and Optics, 1999,68(2):271-280.
    [29]Dubietis A, Couairon A, Kucinskas E, et al. Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water[J]. Applied Physics B,2006,84(3):439-446.
    [30]Rodriguez M. Bourayou R. Mejean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E,2004,69(3): 036607.
    [31]Durand M, Houard A, Prade B, et al. Kilometer range filamentation:effects of filaments on transparent and non-transparent materials at long distances[C]//CLEO: Science and Innovations. Optical Society of America,2011.
    [32]Rodriguez M. Sauerbrey R, Wille H, et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments[J]. Optics Letters,2002,27(9): 772-774.
    [33]Zhao X M, Diels J C, Wang C Y, et al. Femtosecond ultraviolet laser pulse induced lightning discharges in gases[J]. Quantum Electronics, IEEE Journal of, 1995,31(3):599-612.
    [34]Kaganovich D, Ting A, Moore C I, et al. High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel[J]. Physical Review E,1999,59(5):R4769-R4772.
    [35]Sugiyama K, Fujii T, Miki M, et al. Laser-filament-induced corona discharges and remote measurements of electric fields[J]. Optics Letters,2009,34(19): 2964-2966.
    [36]Pepin H, Comtois D, Vidal F, et al. Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses[J]. Physics of Plasmas,2001,8:2532.
    [37]Zozulya A A, Diddams S A, Van Engen A G, et al. Propagation dynamics of intense femtosecond pulses:multiple splittings, coalescence, and continuum generation[J]. Physical review letters,1999,82(7):1430-1433.
    [38]Zhao, X.M., Diels, J.-C., How lasers might control lightning strokes. Laser Focus World,1995,29(11):113.
    [39]Diels J C, Bernstein R, Stahlkopf K E, et al. Lightning control with lasers[J]. Scientific American,1997,277(2):50-55.
    [40]Chin S L, Miyazaki K. A comment on lightning control using a femtosecond laser[J]. Japanese journal of applied physics,1999,38(part 1):2011-2012.
    [41]Rairoux P, Schillinger H, Niedermeier S, et al. Remote sensing of the atmosphere using ultrashort laser pulses[J]. Applied Physics B,2000,71(4):573-580.
    [42]Matvienko G G, Veretennikov V V, Krekov G M, et al. Remote sensing of atmospheric aerosols with a white-light femtosecond lidar. Part 1. Numerical simulation[J]. Atomopheric and Ocean Optics C/C of Optika Atmosferyi Okeana, 2003,16(12):1013-1019.
    [43]Kasparian J, Rodriguez M, Mejean G, et al. White-light filaments for atmospheric analysis[J]. Science,2003,301(5629):61-64.
    [44]Shoucri M, Afeyan B. Studies of the interaction of an intense laser beam normally incident on an overdense plasma[J]. Laser and Particle Beams,2010,28(1):129.
    [45]Nakajima H, Yamaura M, Shimada Y, et al. Ground penetrating radar using a microwave radiated from laser-induced plasma[C]. Journal of Physics:Conference Series. IOP Publishing,2008,112(4):042086.
    [46]Mechain G, Mysyrowicz A, Depiesse M, et al. A virtual antenna produced in air by intense femtosecond laser pulses[C]. European Symposium on Optics and Photonics for Defence and Security. International Society for Optics and Photonics, 2005:59890S-59890S-6.
    [47]Couairon A, Sudrie L, Franco M, et al. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses[J]. Physical Review B,2005, 71(12):125435.
    [48]Morikawa J, Orie A, Hashimoto T, et al. Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire[J]. Optics Express,2010,18(8):8300-8310.
    [49]Cheng G, Mishchik K, Mauclair C, et al. Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass[J]. Optics Express,2009,17(12): 9515-9525.
    [50]Watanabe W, Asano T, Yamada K, et al. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses[J]. Optics Letters,2003,28(24):2491-2493.
    [51]Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters,1996,21(24):2023-2025.
    [52]孙刚,张秋菊,武慧春,等.飞秒强激光脉冲在等离子体中的自压缩[J].原 子与分子物理学报,2007,24(6):1161-1165.
    [53]张杰,郝作强,远晓辉,等.超强飞秒激光脉冲在空气中的传输研究[J].量子电子学报,2006,23(3):282-294.
    [54]李玉同,张杰,陈黎明,等.对飞秒激光等离子体中成丝现象的研究[J].物理学报,2001,50(2):204-207.
    [55]卞保民,陈建平,杨玲,等.空气中激光等离子体冲击波的传输特性研究[J].物理学报,2000,49(3):445-448.
    [56]卞保民,陈笑,夏铭,等.液体中激光等离子体冲击波波前传播特性研究及测试[J].物理学报,2005,53(2):508-513.
    [57]GUO-JUN L A I, PEI-YONG J I基于激光等离子体的光子加速[J].物理学报,2000,49(12):2399-2403.
    [58]夏新仁,尹成友.激光等离子体通道天线的电磁散射特性分析[J].核聚变与等离子体物理,2008,28(3):199-204.
    [59]鲁欣,张杰,李英骏.激光等离子体推进在火箭推进技术领域的应用前景[J].物理,2002,31(12):0.
    [60]鄢昌渝.激光等离子体相互作用机理与大气吸气式激光推进数值计算研究[D].国防科学技术大学,2008.
    [61]褚召华.激光等离子体对电子线路的干扰与毁伤研究[D],长春理工大学,2008.
    [62]李玉同,张杰,陈黎明,等.对飞秒激光等离子体相互作用中横向箍缩的观察[J].物理学报,2000,49(7):1400-1403.
    [63]张家泰,刘松芬,胡北来.强激光部分离化等离子体成丝不稳定性[J].物理学报,2003,52(7):1668-1671.
    [64]张喆,张杰,李玉同,等.空气中激光等离子体通道导电性能的研究[J].物理学报,2006,55(1):357-361.
    [65]王兆华,郝作强,张喆,等.激光啁啾对激光等离子体细丝传输的影响[J].物理学报,2007,56(3):1434-1438.
    [66]陈笑,苏玉成,王义全,等.大气中飞秒激光等离子体丝上荧光特性的研究[J].中央民族大学学报(自然科学版),2009,18(1).
    [67]董全力,燕飞,张杰,等.大气中激光等离子体通道寿命的延长及测量分析[J].物理学报,2005,54(7):3247-3250.
    [68]朱佳斌,季忠刚,邓蕴沛,等.外加高压电场下空气中激光等离子体通道寿命研究[J].光学学报,2007,27(6):1059-1062.
    [69]夏新仁,尹成友.有限磁场中激光等离子体通道天线的传播特性[J].强激光与粒子束,2009,21(12):1833-1838.
    [70]夏新仁,尹成友.有限磁场中激光等离子体通道天线的电磁散射分析[J].核 聚变与等离子体物理,2009,2:002.
    [71]卞像民,杨玲,陈奘,等.激光等离子体及点爆炸空气冲击波波前运动方程的研究[J].物理学报,2002,51(4).
    [72]张平,卞保民,李振华.激光等离子体冲击波清洗中的颗粒弹出移除[J].中国激光,2007,34(10):1451-1455.
    [73]郑志远,鲁欣,张杰.激光等离子体推进技术的研究进展[J].物理,2003,32(08):0.
    [74]郑志远,张翼,吴秀文,等.激光等离子体推进技术研究新进展[J].物理,2007,36(03):0.
    [75]崔村燕,洪延姬,陈景鹏,等.激光等离子体微推力器的发展及热点问题①[J].固体火箭技术,2006,29(6).
    [76]郝达福.激光等离子体点燃机理分析与阈值测试研究[D].南京理工大学,2006.
    [77]吴莹,陈建平,倪晓武,等.激光等离子体对微波反射频移影响的实验研究[J].红外与激光工程,2008(S3).
    [78]吴莹,陈建平,倪晓武,等.激光等离子体对反射波频移影响的实验研究[J].强激光与粒子束,2009,21(6):831-834.
    [79]Meyerand Jr R G, Haught A F. Gas breakdown at optical frequencies[J]. Physical Review Letters,1963,11(9):401-403.
    [80]Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics letters,1995,20(1):73-75.
    [81]Nibbering E T J, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air[J]. Optics letters,1996,21(1):62-65.
    [82]La Fontaine B, Vidal F, Jiang Z, et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air[J]. Physics of plasmas,1999,6:1615.
    [83]Mdchain G, Couairon A, Andre Y B, et al. Long-range self-channeling of infrared laser pulses in air:a new propagation regime without ionization[J]. Applied Physics B,2004,79(3):379-382.
    [84]Woste L, Wedekind C, Wille H, et al. Femtosecond atmospheric lamp[J]. Laser und Optoelektronik,1997,29(5):51-53.
    [85]Rodriguez M, Bourayou R, Mejean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E,2004,69(3): 036607.
    [86]Thiyagarajan M, Scharer J. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air[J]. Journal of Applied Physics, 2008,104(1):013303-013303-12.
    [87]Thiyagarajan M, Scharer J E. Experimental investigation of 193-nm laser breakdown in air[J]. Plasma Science, IEEE Transactions on,2008,36(5): 2512-2521.
    [88]Tzortzakis S, Berge L, Couairon A, et al. Breakup and fusion of self-guided femtosecond light pulses in air[J]. Physical Review Letters,2001,86(24): 5470-5473.
    [89]Eisenmann S, Pukhov A, Zigler A. Fine structure of a laser-plasma filament in air[J]. Physical review letters,2007,98(15):155002.
    [90]Fujikawa T, Akihama K, Ebina M, et al. Laser-Induced Breakdown of Air with Double-Pulse Excitation[C]//Advanced Solid-State Photonics. Optical Society of America,2008.
    [91]Theberge F, Liu W, Simard P T, et al. Plasma density inside a femtosecond laser filament in air:Strong dependence on external focusing[J]. Physical Review E, 2006,74(3):036406.
    [92]Blonskyi I, Brodyn M, Kadan V, et al. Spatiotemporal dynamics of femtosecond filament induced plasma channel in fused silica[J]. Applied Physics B,2009,97(4): 829-834.
    [93]Minardi S, Gopal A, Couairon A, et al. Physical characterization of light-plasma filaments in water using time resolved shadowgraphy[C]. Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009. European Conference on. IEEE,2009:1-1.
    [94]Minardi S, Gopal A, Couairon A, et al. Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy[J]. Optics letters,2009,34(19):3020-3022.
    [95]Shiffler S, Polynkin P, Moloney J. Self-focusing of femtosecond diffraction-resistant vortex beams in water[J]. Optics letters,2011,36(19): 3834-3836.
    [96]Zvorykin V D, Levchenko A O, Molchanov A G, et al. Microwave energy channeling in plasma waveguides created by a high-power UV laser in the atmosphere[J]. Bulletin of the Lebedev Physics Institute,2010,37(2):60-64.
    [97]Dormidonov A E, Valuev V V, Dmitriev V L, et al. Laser filament induced microwave waveguide in air[C]. International Conference on Lasers, Applications, and Technologies' 07. International Society for Optics and Photonics,2007: 67332S-67332S-6.
    [98]Shneider M N, Zheltikov A M, Miles R B. Long-lived laser-induced microwave plasma guides in the atmosphere:Self-consistent plasma-dynamic analysis and numerical simulations[J]. Journal of Applied Physics,2010,108(3): 033113-033113-8.
    [99]Chateauneuf M, Payeur S, Dubois J, et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters,2008,92(9): 091104-091104-3.
    [100]Le Coq Y, Millo J, Zhang W, et al. Ultra-Low Noise Microwave Generation Using Femtosecond Lasers and Applications[C]//Conference on Lasers and Electro-Optics. Optical Society of America,2010.
    [101]Eisenmann S, Penano J, Sprangle P, et al. Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments[J]. Physical review letters,2008, 100(15):155003.
    [102]Liu W, Theberge F, Arevalo E. et al. Experiment and simulations on the energy reservoir effect in femtosecond light filaments[J]. Optics letters,2005,30(19): 2602-2604.
    [103]Vidal F, Johnston T W. Electromagnetic beam breakup:multiple filaments, single beam equilibria, and radiation[J]. Physical review letters,1996,77(7):1282-1285.
    [104]Dubietis A, Tamosauskas G, Fibich G, et al. Multiple filamentation induced by input-beam ellipticity[J]. Optics letters,2004,29(10):1126-1128.
    [105]Silaeva E P, Shlenov S A, Kandidov V P. Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol[J]. Applied Physics B,2010,101(1-2):393-401.
    [106]Paunescu G, Spindler G, Riede W, et al. Multifilamentation of femtosecond laser pulses induced by small-scale air turbulence[J]. Applied Physics B,2009,96(1): 175-183.
    [107]Champeaux S, Berge L. Long-range multifilamentation of femtosecond laser pulses versus air pressure[J]. Optics letters,2006,31(9):1301-1303.
    [108]Rairoux P, Schillinger H, Niedermeier S, et al. Remote sensing of the atmosphere using ultrashort laser pulses[J]. Applied Physics B,2000,71(4): 573-580.
    [109]Bourayou R, Mejean G, Kasparian J, et al. White-light filaments for multiparameter analysis of cloud microphysics[J]. JOSA B,2005,22(2):369-377.
    [110]Kandidov V P, Militsin V O. Computer simulation of laser pulse filament generation in rain[J]. Applied Physics B,2006,83(2):171-174.
    [111]Comtois D, Chien C Y, Desparois A, et al. Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse[J]. Applied Physics Letters,2000,76(7):819-821.
    [112]Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics letters,1996,21(21):1729-1731.
    [113]Yamada K, Watanabe W, Toma T, et al.< i> In situ observation of photo induced refractive-index changes in filaments formed in glasses by femtosecond laser pulses[J]. Optics Letters,2001,26(1):19-21.
    [114]李宁,陈建峰,黄建国,等.各种水下声源的发声机理及其特性[J].应用声学,2009,29(4):1-8.
    [115]Basov NGFtlsion reaction realized by Irititma and deutemn [A:Proc 3rd Quantum Electron ConfrC]. Paris 1963:1373-1377
    [116]田作喜,耿松,刘彦琼,等.激光引发水下声波[J].激光与光电子学进展,2004,41(11):15-19.
    [117]潘正伟,焦善武,顾晓辉.水下爆炸-高功率宽频带的水声干扰源[J].南京理工大学学报,1999,6.
    [118]李继民.水下连续爆炸声信号对声自导鱼雷的对抗分析与研究[D].南京:南京理工大学,2006.
    [119]莫喜平,刘建国,崔政,等800Hz Terfenol-D鱼唇式弯张换能器[J].应用声学,2002,21(2):12-15.
    [120]Berktay H O. Possible exploitation of non-linear acoustics in underwater transmitting applications[J]. Journal of Sound and Vibration,1965,2(4):435-461.
    [121]Westervelt P J. Parametric acoustic array [J]. The Journal of the acoustical society of America,1963,35:535.
    [122]路斌,关继腾,张建国,等.高声强流体动力式声源的研究现状与展望[J].石油机械,2002,30(4):45-48.
    [123]刘春奎,张叔英,凌鸿烈.电磁脉冲声源系统的分析和测量[J].声学学报,1966.
    [124]Niemz M H. Laser-tissue interactions:fundamentals and applications[M]. Springer,2007.
    [125]陈清明,程祖海.激光在液体中的声效应研究[J].激光与红外,2006,36(8):623-626.
    [126]Egerev S V. In search of a noncontact underwater acoustic source[J]. Acoustical Physics,2003,49(1):51-61.
    [127]Teslenko V S. Shock-acoustic breakdown in a liquid. The kinetics of stimulated acoustic scattering in the focusing of shock waves[J]. Technical Physics Letters, 1994,20:199-201.
    [128]Qingming C, Zuhai C, Haihong Z. Theoretical Study on Influence of Laser Pulse Shape on Characteristics of Acoustics Thermoelastically Induced by CO2 Pulsed Laser in Water[C]. Photonics and Optoelectronics,2009. SOPO 2009. Symposium on. IEEE,2009:1-4.
    [129]Chen Q, Cheng Z, Zhu H. Laser acoustics in water induced by high power CO2 pulsed laser[C]. Photonics and Optoelectronics Meetings. International Society for Optics and Photonics,2008:727611-727611-7.
    [130]Zhu H, Chen Q, Cheng Z, et al. Influence of the salinity on the characteristics of acoustic signal in salt water generated by pulsed CO2 laser[J]. Journal of Applied Physics,2010,107(2):023106-023106-5.
    [131]宗思光,王江安,王雨虹.不同盐度海水的光击穿声辐射特性研究[J].激光杂志,2009,4:041.
    [132]宗思光,王江安,蒋兴舟,等.液体激光聚焦击穿声辐射特性研究[J].激光技术,2009,33(3):269-272.
    [133]王雨虹,王江安,宗思光,等.激光致声过程研究[J].激光与红外,2008,38(11):1077-1079.
    [134]宗思光,王江安,王雨虹.脉冲激光击穿水介质特性的实验研究[J].光电工程,2008,35(11):68-72.
    [135]戚诒让,许龙江,张德勇,等.水下光击穿所激发的声场的方向特性[J].声学学报(中文版),1991,2:008.
    [136]高立民,曹辉,郭建中.液体中光击穿所激发声场的方向性研究[J].光子学报,2010,39(8):1447.
    [137]高立民,曹辉,何温,等.液体中光击穿阈值的研究[J].光子学报,2012,41(8):946-948.
    [138]余扬,王江安,蒋兴舟.激光致声水中辐射声场的方向性研究[J].激光与红外,2007,37(1).
    [139]宗思光,王江安,马明奎,等.水下目标探测的激光声特性[J].中国激光, 2010(5):1332-1337.
    [140]宗思光,王江安,王雨虹,等.高功率激光空化气泡声辐射特性研究[J].激光与红外,2008,38(8):757-761.
    [141]李胜勇,黄高明,刘晓然,等.液体中激光等离子体声波声谱特性研究[J].光电子.激光,2007,18(4):495-497.
    [142]李胜勇,饶德虎,沈中华,等.液体中激光等离子体声波特性研究 [J].光子学报,2010,39(12):2263-2267.
    [143]陈清明.脉冲激光在液体中激发的声波特性研究[J].光学与光电技术,2006,4(3):28-31.
    [144]秦慧平,周田华,张德琨.水下声信号激光探测技术研究[J].红外,2005,8:25-28.
    [145]Ostrovskaya G V, Komissarova I I, Philippov V N, et al. Shock waves induced by pulsed CO2 laser radiation focused on the free surface of a liquid[C]. Nonresonant Laser-Matter Interaction. International Society for Optics and Photonics,1997:146-151.
    [146]Kudryashov S I, Lyon K, Allen S D. Near-field thermal radiative transfer and thermoacoustic effects from vapor plumes produced by pulsed CO2 laser ablation of bulk water[J]. Journal of applied physics,2006,100(12):124908-124908-4.
    [147]Casavola A, De Giacomo A, Dell'Aglio M, et al. Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(7):975-985.
    [148]Pirez-Gutierrez F G, Camacho-Lopez S, Aguilar G. Experimental study of mechanical response of artificial tissue models irradiated with Nd:YAG nanosecond laser pulses[C]. European Conference on Biomedical Optics. Optical Society of America,2011.
    [149]Kovalchuk T, Toker G, Bulatov V, et al. Laser breakdown in alcohols and water induced by λ=1064nm nanosecond pulses[J]. Chemical Physics Letters,2010, 500(4):242-250.
    [150]Milas S M, Ye J Y, Norris T B, et al. Acoustic characterization of microbubble dynamics in laser-induced optical breakdown[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2003,50(5):517-522.
    [151]Takita A, Hayasaki Y. Acoustic pressure wave emissions by multiple femtosecond laser-induced breakdowns in water[C]. Lasers and Electro-Optics-Pacific Rim,2007. CLEO/Pacific Rim 2007. Conference on. IEEE, 2007:1-2.
    [152]Schaffer C B, Nishimura N, Glezer E N, et al. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds[J]. Opt. Express,2002,10(3):196-203.
    [153]Vogel A, Linz N, Freidank S, et al. Femtosecond-laser-induced nanocavitation in water:implications for optical breakdown threshold and cell surgery[J]. Physical review letters,2008,100(3):038102.
    [154]Aglyamov S R, Karpiouk A B, Bourgeois F, et al. Ultrasound measurements of cavitation bubble radius for femtosecond laser-induced breakdown in water [J]. Optics letters,2008,33(12):1357-1359.
    [155]HayoronbhblX Л,冯绍松译.激光声源[J].声学技术,1983,2:010.
    [156]李荣福,崔桂华,桑国明,等.水中激光声脉冲特性及其传输损失[J].舰船科学技术,2002,24(1):41-45.
    [157]冯绍松.激光在液体中发声及其在海洋开发中的应用[J].声学技术,1992,11(1):17-22.
    [158]Marburger J. Self-focusing:theory[J]. Progress in Quantum Electronics,1975,4: 35-110.
    [159]Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letters,1964,13(15):479-482.
    [160]Dawes E L, Marburger J H. Computer studies in self-focusing[J]. Physical Review,1969,179:862-868.
    [161]Fibich G, Eisenmann S, Ilan B, et al. Self-focusing distance of very high power laser pulses[J]. Opt. Express,2005,13(15):5897-5903.
    [162]Stolen R H, Gordon J P, Tomlinson W J, et al. Raman response function of silica-core fibers[J]. JOSA B,1989,6(6):1159-1166.
    [163]Stolen R H, Tomlinson W J. Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers[J]. JOSA B,1992,9(4): 565-573.
    [164]DeMartini F, Townes C H, Gustafson T K, et al. Self-steepening of light pulses[J]. Physical Review,1967,164(2):312.
    [165]Feit M D, Fleck J A. Effect of refraction on spot-size dependence of laser-induced breakdown [J]. Applied Physics Letters,1974,24(4):169-172.
    [166]Yablonovitch E. Self-phase modulation and short-pulse generation from laser-breakdown plasmas[J]. Physical review A,1974,10(5):1888.
    [167]Yablonovitch E. Self-phase modulation of light in a laser-breakdown plasma[J]. Physical Review Letters,1974,32(20):1101-1104.
    [168]Raizer Y P. Heating of a gas by a powerful light pulse[J]. Soviet Journal of Experimental and Theoretical Physics,1965,21:1009.
    [169]Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters,1973,23(11):628-630.
    [170]Campillo A J, Shapiro S L, Suydam B R. Relationship of self-focusing to spatial instability modes[J]. Applied Physics Letters,1974,24(4):178-180.
    [171]Berge L, Couairon A. Nonlinear propagation of self-guided ultra-short pulses in ionized gases[J]. Physics of Plasmas,2000,7:210.
    [172]Kolesik M, Moloney J V. Self-healing femtosecond light filaments [J]. Optics letters,2004,29(6):590-592.
    [173]Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B,2000,71(6):877-879.
    [174]Becker A, Akozbek N. Vijayalakshmi K, et al. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas[J]. Applied physics B,2001,73(3):287-290.
    [175]张家泰,激光技术.激光等离子体相互作用物理与模拟[M].河南科学技术 出版社,1999.
    [176]宋丰华,霍启峰.超短脉冲激光与固体靶相互作用[J].指挥技术学院学报,2001,6:025.
    [177]Xi T T, Lu X, Zhang J. Interaction of light filaments generated by femtosecond laser pulses in air[J]. Physical review letters,2006,96(2):025003.
    [178]Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Tenth Printing[J].1972.
    [179]Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics reports,2007,441(2):47-189.
    [180]Abdollahpour D, Panagiotopoulos P, Turconi M, et al. Long spatio-temporally stationary filaments in air using short pulse UV laser Bessel beams[J]. Opt. Express,2009,17(7):5052-5057.
    [181]L.V.Burmistrova, A.A.Karabutov, A.I.Portnyagin, O.V.Rudenko, and.B.Cherepetskaya,. Influence of thermal nonlinearity on the thermooptical generation of sound. Sov. Phys. Acoust.,1979,24(4):348-350.
    [182]Karabutov, A.A., Matrosov, M.P., Podymova, N.B., et al. Acoustic pulse spectroscopy using a laser sound source. Soviet Physics-Acoustics,1991, 37(2):157-163.
    [183]Chen Q, Cheng Z, Zhu H. Laser acoustic energy conversion efficiency induced by pulse laser in water[J]. Chinese Journal of Lasers,2007,34(3):341.
    [184]任新敏,戚诒让.液体中光声信号吸收衰减的研究[J].青岛海洋大学学报:自然科学版,1995,25(4):529-534.
    [185]许龙江,戚诒让.液体中声吸收对光声信号波形的影响[J].青岛海洋大学学报:自然科学版,1996,26(1):64-70.
    [186]Qingming C, Zuhai C, Haihong Z. Spectra of laser acoustic signals in water[C]//Electric Information and Control Engineering (ICEICE),2011 International Conference on. IEEE,2011:758-761.
    [187]Sodha M S, Konar S, Verma M P, et al. Generation of ultrasonic waves in water by an elliptical Gaussian laser beam[J]. Pramana,1994,42(2):141-148.
    [188]LM Lyamshev etc. Optical sources of sound[J]. Soy. Phys.Usp. Vol.24, p. 977-995,1981
    [189]Stepanishen P R. Transient radiation from pistons in an infinite planar baffle[J]. The Journal of the Acoustical Society of America,1971,49:1629.
    [190]Yadav L L, Sayal V K, Maheshwari K P. Thermal non-linear effects on underwater sound generation by laser radiation[J]. Journal of sound and vibration, 1998,212(3):481-498.
    [191]Berthelot Y H, Busch-Vishniac I J. Laser-induced thermoacoustic radiation[J]. The Journal of the Acoustical Society of America,1985,78:2074.
    [192]Berthelot Y H. Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers[J]. The Journal of the Acoustical Society of America, 1989,85:1173.
    [193]Egerev S V, Morozov A K, Lyamshev L M. Laser sound technique for the remote control of underwater oceanographic instrumentation[J]. Acta Acustica united with Acustica,2004,90(2):263-271.
    [194]曹辉,张小凤,尚志远,等.液体光击穿激发的辐射声场[J].陕西师范大学学报(自然科学版),1999,27(2):43-47.
    [195]Quan K M, MacKenzie H A, Hodgson P, et al. Photoacoustic generation in liquids with low optical absorption[J]. Ultrasonics,1994,32(3):181-186.
    [196]Diaci J, Mozina J. Measurement of energy conversion efficiency during laser ablation by a multiple laser beam deflection probe[J]. Ultrasonics,1996,34(2): 523-525.
    [197]Docchio F, Regondi P, Capon M R C, et al. Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses.1: Analysis of the plasma starting times[J]. Applied optics,1988,27(17):3661-3668.
    [198]尚志远,李争光.激光在水中产生超声波的实验研究[J].陕西师大学报:自然科学版,1995,23(2):41-44.
    [199]杜功焕,朱哲民,声学,等.声学基础[M].南京大学出版社,2001.
    [200]Kudryashov S I, Lyon K, Allen S D. Photoacoustic study of relaxation dynamics in multibubble systems in laser-superheated water[J]. Physical Review E,2006, 73(5):055301.
    [201]王雨虹,王江安,李海涛,等.激光空泡溃灭过程的数值计算[J].激光与红外,2009,39(8):821-824.
    [202]李胜勇,胡生亮,刘晓然,等.激光空泡溃灭辐射声波声谱特性研究[J].激光技术,2007,31(3).
    [203]徐荣青,赵瑞,沈中华,等.固壁面附近激光产生空泡脉动过程的实验研究[J].光学学报,2006,26(4):571-575.
    [204].戚定满,鲁传敬.单空泡演化及辐射噪声[J].上海交通大学学报,1998,32(12):50-54.
    [205]Bell C E, Landt J A. LASER-INDUCED HIGH-PRESSURE SHOCK WAVES IN WATER[J]. Applied Physics Letters,1967,10(2):46-48.
    [206]Ross D. Mechanics of underwater noise[R]. TETRA TECH INC PASADENA CA,1976.. Mechanics of underwater noise translating group. Beijing Ocean Press, 1983.
    [207]Brennen C E. Cavitation and bubble dynamics [M]. New York Oxford University Press,1995:80.
    [208]Fujikawa S, Takahira H. A theoretical study on the interaction between two spherical bubbles and radiated pressure waves in a liquid[J]. Acta Acustica united with Acustica,1986,61(3):188-199.
    [209]聂建栋,苏永生,杨光明.单空泡溃灭及其空化噪声的数值模拟[J].兵工自动化,2009,28(9):23-24.
    [210]Wen D S, Wei Y D, Li Z N, et al, Engineering Fluid Mechanics (Hydraulics) [M], Higher Education Press, Beijing,2001.
    [211]Richards S D, Leighton T G, Brown N R. Sound absorption by suspensions of nonspherical particles:Measurements compared with predictions using various particle sizing techniques[J]. The Journal of the Acoustical Society of America, 2003,114:1841.
    [212]Brown N R, Leighton T G, Richards S D, et al. Measurement of viscous sound absorption at 50-150 kHz in a model turbid environment[J]. The Journal of the Acoustical Society of America,1998,104:2114. [213]. H. Lamb,Hydrodynamics(Dover Publications,New YOrk,1945), sixth edition,pp361·363.
    [214]Urick R J. The absorption of sound in suspensions of irregular particles[J]. The Journal of the acoustical society of America,1948,20:283. [215]. Sheng and A. E. Hay,J. Acoust. Soc. Am,83,598-610(1988).
    [216]汪德昭,尚尔昌.水声学[M].科学出版社,1981.
    [217]Plona T J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[J]. Applied Physics Letters,1980,36(4): 259-261.
    [218]布列霍夫斯基赫.分层介质中的波[M].科学出版社,1985.
    [219]. Stoll R D, Bryan G M. Wave attenuation in saturated sediments [J]. The Journal of the Acoustical Society of America,1970,47:1440.
    [220]Stoll R D. Acoustic waves in saturated sediments[M]//Physics of sound in marine sediments. Springer US,1974:19-39.
    [221]Stoll R D. Sediment acoustics[R]. Lamont-Doherty Earth Observatory Palisades NY,2001.