不确定条件下的煤电一体化能源系统规划与管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤炭、电力产业关系日趋紧张的当前,“煤电一体化”已成为缓和两者矛盾,促进能源行业发展的重要架构取向。“煤电一体化”发展战略不仅能够协调煤炭与电力产业链的平衡发展,对于社会的稳定、经济的发展、环境的保护和资源的节约也有重要的贡献。“煤电一体化”实施的关键是对煤炭电力一体化能源系统开展系统研究,实现煤炭和电力的统一规划管理。然而煤电一体化能源系统结构庞杂和组成繁复,具有多组分综合、多时期动态、多系统互动以及多维不确定性等复杂特征,本研究从能源-环境-经济综合系统的角度,构建煤电一体化能源系统优化模型,结合不确定性优化方法,探索复杂、不确定条件下煤电一体化能源系统内部煤电协调发展的运作机制以及污染物减排控制方案,满足煤电联营系统的运行和管理需求,为制定前瞻性、战略性、系统性、科学性的煤电一体化能源系统战略发展规划提供决策支持。
     研究结合能源系统规划的理论和知识,总结煤电一体化能源系统结构和特征,分析电力和煤炭产业不同层次的能源需求、供应、输运、转换、存储等环节和过程,构建煤电一体化能源系统优化模型。深入分析和辨识煤电一体化能源系统的复杂互动和不确定性因素,筛选出目前煤电一体化能源系统管理领域较为突出和典型的问题,结合随机规划、区间规划、混合整数规划等不确定性规划方法,构建一系列不确定条件下的煤电一体化能源系统模型,提高该系统管理与决策的科学性和准确性。在煤电一体化能源系统优化模型的基础上,本文还将二氧化碳减排和煤矿生态修复等环节与煤电一体化能源系统进行耦合,引入模糊强健、区间、随机和整数规划,建立了一系列不确定条件下考虑二氧化碳减排和生态修复的煤电一体化能源系统优化模型,通过情景分析方法,考察大气污染物和温室气体的排放管理政策以及生态环境效应管理政策,探讨不同碳减排技术以及生态修复措施在该系统的适用性和实用性。研究还对典型煤电一体化能源系统——华北地区煤电一体化能源系统开展了案例研究,通过实例研究,验证所提出的能源系统综合优化方法与模型的实用性和可靠性。结果显示提出的不确定条件下煤电一体化能源系统优化模型不仅能够满足煤电联营的运行和管理需求,还能够避免财力、物力的浪费,提高能源系统的可靠性,减少污染物的排放,达到经济和环境效益双赢。
In the face of the special contradictions between the coal and electricity industries in China, coupling coal and power production in an economical and environment-friendly manner is an important way to eliminate the conflicts and promote energy development. Integration of these two industries not only could coordinate and balance development of the coal and electricity industry chain, but also has an important contribution to social stability, economic development, environmental protection and resource saving. Then, planning of coupled coal and power management (CCPM) system through emphasizing the close relationship between China's coal and electricity production is necessary and imperative in this country. However, the composition and structure of this system are complicated with multi-period dynamics and multi-dimensional uncertainties. Therefore, the objective of this study is to develop an inexact coupled coal and power management model through the integration of inexact programming methods to techniques to (a) identify the desired energy policy and pollution control scheme for the coupled coal and power management system under uncertainty;(b) satisfy the requirements for operation and management;(c) provide decision support for making forward-looking, strategic, systematic and scientific strategy for the CCPM system.
     Based on the theories and knowledge of energy systems planning and analysis of the complex composition and structure, an optimization model for the coupled coal and power management system is firstly developed. A great number of factors and processes are considered in this model, such as policy intervention, coal production, electricity generation, transmission, conversion, transportation, as well as the associated environment effects. Facilitate in-depth analysis of the complicated uncertainties and interactive factors, and screen out the prominent and typical management problems in the CCPM system. Then, through an integration of interval linear programming, mixed integer programming and stochastic mathematical programming, a series of inexact coupled coal and power management models are proposed to improve the scientificalness and accuracy of decision-making under uncertainty. Moreover, in terms of tremendous pressure to reduce CO2emissions and protect ecological environment, a series of inexact optimization models are developed for supporting coupled management of coal and power generation with the consideration of CO2emission reduction and ecological restoration under uncertainty. Through integrating mixed-integer programming, interval linear programming and fuzzy linear programming into a general optimization framework, system complexities originated from a number of sectors/processes can be successfully reflected and handled. Scenarios analysis is conducted to examine the optimal CO2emission mitigation and ecological restoration schemes for the coupled coal and power management system which is forced to comply with given CO2emission control and ecological environment protect targets. The developed models have been applied to a case of long-term coupled coal and power management systems planning in north China. The obtained interval solutions can be used for generating decision alternatives and helping decision makers identify desired energy mechanisms for coal production and allocation, power generation, facility capacity installation and expansion and coal blending under various social-economic, environmental and system-reliability constraints with a minimized system cost, a maximized system reliability, a maximized energy security and maximized economic and environmental benefits.
引文
[1]温家宝.中国坚定走绿色和可持续发展道路[J].建筑节能,2012,40(2):1-2
    [2]国际能源署《世界能源展望2011》[DB/OL].国家重大技术装备网,2012-09-14[2012-09-20]. http://www.chinaneast.gov.cn/zhuanti/2012-09/04/c_131826626.htm.
    [3]BP2030世界能源展望[DB/OL].BP中国,2012-01-10[2012-09-20].http://www.bp.com/productlanding.do?categoryld=9040388&contentld=7073542.
    [4]中国能源研究会.2012中国能源发展报告[M].北京:中国电力出版社,2012:1-10
    [5]刘铁男.中国能源发展报告2011[M].北京:经济科学出版社,2011:1-15
    [6]BP世界能源统计2011[DB/OL].BP中国,2011-06-10[2012-09-20].http://www.bp.com/liveassets/bp_intemet/china/bpchina_chinese/STAGING/local_a ssets/downloads_pdfs/BPenergy2011.pdf.
    [7]曹文晋.煤电产业一体化研究[D].天津:天津大学,2007
    [8]刘满娥.论中国煤炭和电力[J].煤,2009(3):48-49
    [9]张明文.中国煤电产业链协调发展的优化模型研究[D].北京:华北电力大学,2010
    [10]IEA发布《世界能源展望2010》[DB/OL].国家重大技术装备网,2011-01-23[2012-09-20].http://www.chinaneast.gov.cn/zhuanti/2011-01/23/c_13759463.htm.
    [11]许世森,郜时旺.燃煤电厂二氧化碳捕集、利用与封存技术[J].上海节能,2009,9:8-13
    [12]黄国和,陈冰,秦肖生.现代城市“病”诊断、防治与生态调控的初步构想[J].厦门理工学院学报,2006,3:1-10
    [13]刘满平.对煤电价格联动措施的看法和建议[J].中国能源,2005,27(3):42-45
    [14]袁德,张媛敏,杜楠,董全学.从产业关联角度分析煤电联动机制[J].改革与战略,2008,24(4):115-117
    [15]孙文建.关于“煤电一体化”和谐发展的探讨[J].中国煤炭工业,2008,3:52-53
    [16]武丹.基于竞价上网的煤电纵向一体化及其效率[J].产业经济研究,2008,3:20-27
    [17]张国卫.煤电联营在电厂燃料管理方面优势分析[J].山西电力,2008,1:1-3
    [18]张明文,李莉,谭忠富.中国煤电产业链的协调发展及其相关问题分析[J].华东电力,2009,2:213-216
    [19]陈小毅,周德群.关于我国煤电产业布局重构的战略思考[J].科技管理研究,2010,10:201-203+207
    [20]刘冰,张广现.关于我国煤电产业布局重构的战略思考[J].产业经济评论,2010,9(1):11-23
    [21]曾雪峰.基于交易成本理论的发电企业煤电一体化决策研究[J].中国电力教育,2010,16:236-238
    [22]李丽,杨力,韩静.煤电一体化趋势下煤电联营的博弈分析[J].中国煤炭,2011,1:29-32
    [23]赵春光,王艳丽.煤电一体化战略选择、合作模式及运营机制研究[J].煤炭经济研究,2011,3:24-27
    [24]康长安,杨彤.煤电价格联动的讨价还价博弈分析[J].中国煤炭,2012,2:35-37
    [25]桂良军,丛贵霞.煤电一体化收益分配模型[J].山东工商学院学报,2012,5:36-41
    [26]秦阳洋.中国煤电纵向关系研究[D].济南:山东大学,2010
    [27]吴水军.云南电力系统分时电价及煤电联动模型研究[D].昆明:昆明理工大学,2006
    [28]Newbery D. M. Removing coal subsidies:implications for European electricity markets [J]. Energy Policy,1995,23(6):523-533
    [29]Kaminski J. The impact of liberalisation of the electricity market on the hard coal mining sector in Poland [J]. Energy Policy,2009,27(3):925-939
    [30]Wang, B. An imbalanced development of coal and electricity industries in China [J]. Energy Policy,2007,35(10):4959-4968.
    [31]Maurice B., Frischknecht R., Coelho-Schwirtz V., Hungerbiihler K. Uncertainty analysis in life cycle inventory--Application to the production of electricity with French coal power plants [J]. Journal of Cleaner Production,2000,8(2):95-108
    [32]Zhao L., Gallagher K. S. Research, development, demonstration, and early deployment policies for advanced-coal technology in China [J]. Energy Policy, 2007,35(12):6467-6477.
    [33]Steenhof P. A., Fulton W. Factors affecting electricity generation in China:Current situation and prospects [J]. Technological Forecasting and Social Change, 2007,74(5):663-681
    [34]Mabr D. Coal blending at power plant [J]. Power Engineering,1981,85(6):86-89.
    [35]Jin H., Xu G., Han W., et al. Sustainable development of energy systems for western China [J]. Energy,2009,35(11):4313-4318.
    [36]McNerney J., Doyne Farmer J., Jessika E. Trancik Historical costs of coal-fired electricity and implications for the future [J]. Energy Policy,2011,39(6):3042-3054
    [37]Zhao X., Lyon T. P., Wang F., et al. Why do electricity utilities cooperate with coal suppliers?--A theoretical and empirical analysis from China [J]. Energy Policy, 2012,46(6):520-529
    [38]Babbitt C. W., Lindner A. S. A life cycle inventory of coal used for electricity production in Florida [J]. Journal of Cleaner Production,2005,13(9):903-912
    [39]He Y. X., Zhang S. L., Yang L. Y, et al. Economic analysis of coal price-electricity price adjustment in China based on the CGE model [J]. Energy Policy, 2010,38(11):6629-6637
    [40]Zhang V. Y, Chen Y Vertical relationships in China's electricity industry:The quest for competition [J]? Utilities Policy,2011,19(3):142-151
    [41]Wang Y, Zhang D., Lian D., et al. Environment cumulative effects of coal exploitation and its assessment [J]. Procedia Earth and Planetary Science, 2009,1(1):1072-1080
    [42]Fan W. D., Lin, Z. C, Li Y. Y, et al. Effect of Temperature on NO release during the combustion of coals with different ranks [J]. Energy & Fuels,2010,24:1573-1583
    [43]Morfeld P., Noll B., Buchte S. F., et al. Effect of dust exposure and nitrogen oxides on lung function parameters of German coalminers:a longitudinal study applying GEE regression 1974-1998 [J]. International Archives of Occupational and Environmental Health,2010,83(4):357-371.
    [44]Rufaut C. G, Craw D. Geoecology of ecosystem recovery at an inactive coal mine site, New Zealand [J]. Environmental Earth Sciences,2010,60(7):1425-1437.
    [45]Terhorst J., Berkman M. Effect of coal-fired power generation on visibility in a nearby national park [J]. Atmospheric Environment,2010,44(21-22):2524-2531.
    [46]赵金平,李少军,魏保平,胡永利,院玉枝.浅谈平煤二矿煤矸石环境污染的治理[J].煤矿现代化,2010,2:51
    [47]王锐.煤化工行业主要环境污染物来源及防治[J].广东化工,2011,4:192
    [48]王淑霞,鲁孟胜,邱法林,刘冬梅,郝启勇.固体废弃物的生态环境效应分析——以兖济滕矿区煤矸石为例[J].中国煤炭地质,2009,9:48-51
    [49]Li G. C., Huang G H., Lin Q. G., et al. Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management. Energy,2011,36: 3388-3398.
    [50]Pudasainee D., Kim J. H., Seo Y. C. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea [J]. Atmospheric Environment,2009,43(39):6254-6259
    [51]Zaugg S. D., Blackham A. U., Hedman P. O., et al. Sulphur pollutant formation during coal combustion [J]. Fuel,1989,68(3):346-353
    [52]Wang C., Wu Y, Liu Q., et al. Analysis of the behaviour of pollutant gas emissions during wheat straw/coal cofiring by TG-FTIR [J]. Fuel Processing Technology, 2011,92(5):1037-1041
    [53]李长明.经济增长、能源与生态环境[J].中国工业经济,1997(8):15-19
    [54]张坤民,温宗国.能源效率、能源多样化和实现可持续发展[J].上海环境科学,2000,19(2):47-49
    [55]魏一鸣,范英,韩智勇.中国能源报告(2006)战略与政策研究[M].北京:科学出版社,2006:180
    [56]方凤满,陈文娟.中国煤中汞的环境行为及效应研究[J].能源环境保护,2009,1:20-23
    [57]朱声宝.华能绿色煤电:创新与超越[J].中国电力企业管理,2010,5:137-139
    [58]党晋华,贾彩霞,徐涛,徐世柱.陕西省煤炭开采环境损失的经济核算[J].环境科学研究,2007,4:155-160
    [59]曹金亮.陕西省煤炭资源开发对生态环境损害评估[J].地址通报,2009,5:685-689
    [60]智静,高吉喜.北京市能源结构调整过程中生态环境压力的专业[J].生态经济,2009,8:80-84
    [61]Kwon O. S., Yun W. C. Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector [J]. Energy Economics, 1999,21(6):547-560
    [62]Cohan D. S., Douglass C. Potential emissions reductions from grandfathered coal power plants in the United States [J]. Energy Policy,2011,39(9):4816-4822
    [63]杜晓光,马筠,吴颖庆,郭孟狮,毛翕.火电厂燃煤及固体产物中危害元素的测定方法、迁移规律及对环境影响研究[J].热力发电,2010,11:16-21
    [64]彭秀红,倪师军,张成江,王全涛,方敏.城市工业用煤X荧光分析及重金属元素污染研究[J].生态环境,2007,3:883-886
    [65]杨俊峰,付永胜.煤矿环境污染评价及“三废”资源化探讨[J].环境科学与管理,2006,7:179-182
    [66]宋世杰.煤炭开采对煤矿区生态环境损害分析与防治对策[J].煤炭加工与综合利用,2007,4:44-48
    [67]潘玲颖,麻林巍,周喆,李政,倪维斗.2030年中国煤电SO2和NOx排放总量的情况研究[J].动力工程学报,2010,5:378-383
    [68]邸玉英.选煤厂环境污染及其防治[J].陕西煤炭,2007,2:58-59+49
    [69]李洪伟,颜事龙,崔龙鹏,史永红.煤电工业固废堆积对土壤重金属元素污染调查[J].能源环境保护,2008,4:47-50+58
    [70]雒昆利,李会杰,牛彩香.滇黔“燃煤污染型”氟中毒重症区粮食氟和砷污染的主要途径[J].地址评论,2010,2:289-298
    [71]张东强,蓝俊康,刘宝剑.煤的开采与加工对地下水的污染及防治措施[J].地下水,2008,6:87-90
    [72]韦朝海.煤化工中焦化废水的污染、控制原理与技术应用[J].环境化学,2012,10:1465-1472
    [73]Zhao Y., Wang S., Duan L., et al. Primary air pollutant emissions of coal-fired power plants in China:Current status and future prediction [J]. Atmospheric Environment,2008,42(36):8442-8452
    [74]Weng Z., Mudd G M., Martin T., et al. Pollutant loads from coal mining in Australia: Discerning trends from the National Pollutant Inventory (NPI) [J]. Environmental Science & Policy,2012,(19-20):78-89
    [75]Meij R., Winkel H. T. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations [J]. Atmospheric Environment, 2007,41(40):9262-9272
    [76]Czarnowska L., Frangopoulos C. A. Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity [J]. Energy,2012,41(1):212-219
    [77]Shealy, M., Dorian, J.P.,2010. Growing Chinese coal use:Dramatic resource and environmental implications [J]. Energy Policy 38(5),2116-2122.
    [78]Querol X., Zhuang X., Font O., et al. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs:A review and new experimental data International [J]. Journal of Coal Geology, 2011,85(1):2-22
    [79]Zhong L., Cao Y., LI W. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants [J]. Journal of Fuel Chemistry and Technology,2010 38(6):641-646
    [80]Chen J., Liu G., Kang Y., et al. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China [J]. Chemosphere, 2013,90(6):1925-1932
    [81]Zhao Y, Wang S., Nielsen C. P., et al. Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants [J]. Atmospheric Environment,2010,44(12):1515-1523
    [82]Blesl M., Das A., Fahl U., et al. Role of energy efficiency standards in reducing CO2 emissions in Germany:An assessment with TIMES [J]. Energy Policy, 2007,35(2):772-785
    [83]Chen B., Chen G Q. Resource analysis of the Chinese society 1980-2002 based on exergy-Part 4:fishery and rangeland [J]. Energy Policy,2007,35(4):2079-2086
    [84]Backstrand K., Meadowcroft J., Oppenheimer M. The politics and policy of carbon capture and storage:Framing an emergent technology [J]. Global Environmental Change,2011,21:275-281
    [85]Kraines S. B., Ishida T., Wallace D. R. Integrated environmental assessment of supply-side and demand-side measures for carbon dioxide mitigation in Tokyo, Japan [J]. Journal of Industrial Ecology,2010,14(5):808-825
    [86]Jonghe D. C., Delarue, E., Belmans, R., et al. Interactions between measures for the support of electricity from renewable energy sources and CO2 mitigation [J]. Energy Policy,2009,37:4743-4752
    [87]Shrestha R. M., Rajbhandari S. Energy and environmental implications of carbon emission reduction targets:Case of Kathmandu Valley, Nepal [J]. Energy Policy, 2010,38:4818-4827.
    [88]李延兵,廖海燕,张金升,王慧芳.基于富氧燃烧的燃煤碳减排技术发展探讨[J].神华科技,2012,2:87-91+96
    [89]胡秀莲,刘强,姜克隽.中国减缓部门碳排放的技术潜力分析[J].中外能源,2007,4:1-8.
    [90]夏德建.煤电链边际碳排放的演化情景估算[J].科技和产业,2012,9:58-62.
    [91]李辉,刘建民,朱法华,季峻峰,薛建明,赵良.我国电力行业CO2减排技术及应用前景分析电力[J].科技与环保,2011,1:9-13
    [92]Liu Q., Shi M., Jiang K. New power generation technology options under the greenhouse gases mitigation scenario in China [J]. Energy Policy, 2009a,37(6):2440-2449
    [93]Lee M. Potential cost savings from internal/external CO2 emissions trading in the Korean electric power industry [J]. Energy Policy,2011,39(10):6162-6167
    [94]Dagher L., Ruble I. Challenges for CO2 mitigation in the Lebanese electric-power sector [J]. Energy Policy,2010,38:912-918
    [95]Zwaan B., Tavoni M. Coal-based power generation with CCS versus nuclear energy: Two competitive base-load climate control options [J]. Energy Procedia, 2011,4:5830-5837
    [96]Zhang X., Gundersen T., Roussanaly S., et al.Carbon chain analysis on a coal IGCC —CCS system with flexible multi-products [J]. Fuel Processing Technology, 2013,108:146-153
    [97]Cai W., Wang C., Chen J. Revisiting CO2 mitigation potential and costs in China's electricity sector [J]. Energy Policy,2010,38:4209-4213
    [98]Liu H., Gallagher K. S. Preparing to ramp up large-scale CCS demonstrations:An engineering-economic assessment of CO2 pipeline transportation in China [J]. International Journal of Greenhouse Gas Control,2011,5(4):798-804
    [99]Gerbelova H., Andre A., Casimiro S., et al. Assessment of carbon capture and storage opportunities:Portuguese case study [J]. Energy Procedia,2011,4:6109-6116
    [100]Kara M., Syri S., Lehtila A., et al. The impacts of EU CO2 emissions trading on electricity markets and electricity consumers in Finland [J]. Energy Economics, 2008,30(2):193-211
    [101]袁顺全,千怀遂.气候对能源消费影响的测度指标及计算方法[J].资源科 学,2004,26(6):125-130
    [102]王金南,曹东.减排温室气体的经济手段:许可证交易和税收政策[J].中国环境科学,1998,1:17-21
    [103]魏涛远,格罗姆.斯洛德.征收碳税对中国经济与温室气体排放的影响[J].世界经济与政治,2002(8):47-49
    [104]王淑芳.碳税对我国的影响及其政策响应[J].生态经济,2005(10):66-69
    [105]陈文颖,高鹏飞,何建坤.用MARKAL-MACRO模型研究碳减排对中国能源系统的影响[J].清华大学学报(自然科学版),2004,44(3):342-346
    [106]张占安,蔡兴国.考虑碳排放权交易的短期节能调度[J].电网与清洁能源,2012,28(1):60-66
    [107]李江荣,孙明超,郭家秀,尹华强.燃煤电厂的碳减排技术[J].资源开发与市场,2011,5:400-402
    [108]王金南,严刚,姜克隽,刘兰翠,杨金田,葛察忠.应对气候变化的中国碳税政策研究,中国环境科学,2009,1:101-105
    [109]朱永彬,刘晓,王铮.碳税政策的减排效果及其对我国经济的影响分析[J].中国软科学,2010,4:1-9+87
    [110]卢志刚,夏明昭,张晓辉.基于多阶段减排规划的发电厂碳捕集系统优化配置[J].中国电机工程学报,2011,35:65-71
    [111]许世森,郜时旺.燃煤电厂二氧化碳捕集、利用与封存技术[J].上海节能,2009,9:8-13
    [112]田牧,安恩科.燃煤电站锅炉二氧化碳捕集封存技术经济性分析[J].锅炉技术,2009,3:36-41
    [113]Huang G. H., Baetz B. W., Patry G. G. A grey linear programming approach for municipal solid waste management planning under uncertainty [J]. Civil Engineering and Environmental System,1992,9:319-335
    [114]Huang G. H., Baetz B.W., Patry G. G. Grey dynamic programming for solid waste management planning under uncertainty [J]. Journal of Urban Planning and Development-ASCE,1994,120(3):132-156
    [115]Huang G. H., Baetz B. W., Patry, G. G. Grey integer programming:an application to waste management planning under uncertainty [J]. European Journal of Operational Research,1995,83:594-620
    [116]Huang G. H., Baetz B. W., Patry G. G. Capacity planning for an integrated waste management system under uncertainty:A North American case study [J]. Waste Management and Research,1997,15(5):523-546
    [117]Pickens J. B., Hof J. G. Fuzzy goal programming in forestry:an application with special solution problems [J]. Fuzzy Sets and Systems,1991,39:239-246
    [118]Kindler J. Rationalizing water requirements with aid of fuzzy allocation model [J]. Journal of Water Resources Planning and Management-ASCE,1992,118 (3):308-318
    [119]Huang G. H., Baetz B. W., Patry G G A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty [J]. Civil Engineering and Environmental System,1993,10:123-146
    [120]Chanas S., Zielinski P. On the equivalence of two optimization methods for fuzzy linear programming problems [J]. European Journal of Operational Research, 2000,121(1):56-63
    [121]Huang G. H., Sae L. N., Liu L., et al. An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning [J]. Environmental Modeling and Assessment,2001,6:271-283
    [122]Datta B., Dhiman S. D. Chance-constrained optimal monitoring network design for pollutants in groundwater [J]. Journal of Water Resources Planning and Management,1996,122(3):180-188
    [123]Gali V. J., Brown C.G. Assisting decision-making in Queensland barley production through chance constrained programming [J]. The Australian Journal of Agricultural and Resources Economics,2000,44 (2):267-287
    [124]Ferrero R. W., Rivera J. F., Shahidehpour S. M. A dynamic programming two-stage algorithm for long-term hydrothermal scheduling of multireservoir systems [J]. IEEE Transactions on Power Systems,1998,13:1534-1540
    [125]Huang G. H. A hybrid inexact-stochastic water management model [J]. European Journal of Operational Research,1998,107:137-158
    [126]He L., Huang G. H., Lu, H.W. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty [J]. Advances in Water Resources,2008,31:1622-1635
    [127]Huang G. H., Loucks D. P. An inexact two-stage stochastic programming model for water resources management under uncertainty [J]. Civil Engineering and Environmental Systems,2000,17:95-118
    [128]Maqsood I., Huang G. H., Yeomans, J. S. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty [J]. European Journal of Operational Research,2005,167:208-225
    [129]Luo B., Li J. B., Huang G. H., et al. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement [J]. Science of the Total Environment,2006,361:38-56
    [130]Huang G. H., Qin X. S. Environmental systems analysis under uncertainty [J]. Civil Engineering and Environmental,2008,25(2):77-80
    [131]Liu Z. F., Huang G H., Li N. A dynamic optimization approach for power generation planning under uncertainty [J]. Energy Sources, Part A, 2008,30(14):1413-1431
    [132]Cai Y. P., Huang G. H., Yang Z. F., et al. Identification of optimal strategies for energy management systems planning under multiple uncertainties [J]. Applied Energy,2009,86(4):480-495
    [133]邵景力,崔亚莉,李慈君.包头市地下水-地表水联合调度多目标管理模型[J].资源科学,2003,25(4):49-55
    [134]王霞,唐德善,赵洪武,李晓明.太子河流域水资源优化配置供水模型[J].水利水运工程学报,2005,2:46-52
    [135]王艳艳,颜振元,李文华.北方中小城市供水水源优化选择[J].山东农业大学学报(自然科学版),2004(03):418-424
    [136]黄昉,徐文斌,郑建青.多水源多用户大型水资源系统优化模型[J].水利学报,2002(03):91-96
    [137]赵微,黄介生,姜海等.面向生态的水资源协调优化配置模型[J].水电能源科学,2006,24(3):11-13
    [138]马伟芳,赵新华.王洪云再生水与天然水资源农田灌溉的模糊优化配置[J].农业环境科学学报,2004(4):770-773
    [139]郭广寨,沈海英.多目标规划在城市生活垃圾处理决策系统中的应用[J].上海工程技术大学学报,2005,19(3):254-257
    [140]胡治飞,郭怀成.城市生活垃圾管理规划优化研究[J].环境工程,2004(4):45-49+4
    [141]王成山,王赛一.市场条件下电力系统规划工作的探讨[J].电力系统自动化,2005(9):28-34
    [142]张文泉,李彦斌,靳昶,赖清平.电力系统规划建模问题探讨[J].现代电力,2002(3):41-48
    [143]谭忠富,陈广娟.我国能源发展的风险影响因素与预警系统分析[J].中国能源,2007,29(5):40-44
    [144]谭忠富.电力成本综合优化的系统学方法研究-优化规划[J].现代电力,2001(02):98-103
    [145]Koroneos C., Zairis N., Charaklias P., et al. Optimization of energy production system in the dodecanese islands [J]. Renewable Energy.2005,30:195-210
    [146]Hennin D., Amiri S., Holmgren K. Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility [J]. European Journal of Operational Research,2006,175:1224-1247
    [147]Avetisyan M., Bayless D., Gnuni, T. Optimal expansion of a developing power system under the conditions of market economy and environmental constraints [J]. Energy Economics,2006,28:455-466
    [148]Akella A. K., Sharma M. P., Saini R. P. Optimum utilization of renewable energy sources in a remote area [J]. Renewable and Sustainable Energy Reviews, 2007,11(5):894-908.
    [149]Zehar K., Sayah S. Optimal power flow with environmental constraint using a fast successive linear programming algorithm:Application to the algerian power system [J]. Energy Conversion and Management,2008,49(11):3362-3366
    [150]Gebremedhin A., Karlsson B., Bjornfot K. Sustainable energy system-A case study from Chile [J]. Renewable Energy,2009,34(5):1241-1244
    [151]Ren H., Zhou W., Nakagami K., et al. Integrated design and evaluation of biomass energy system taking into consideration demand side characteristics [J]. Energy, 2010,35(5):2210-2222
    [152]Catalao J. P. S., Mariano S. J. P. S., Mendes V. M. F., et al. Parameterisation effect on the behaviour of a head-dependent hydro chain using a nonlinear model [J]. Electric Power Systems Research,2006,76(6):404-412
    [153]Ko A. S., Chang N. B. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model [J]. Journal of Environmental Management,2008,88(1):11-27
    [154]Di W., Sun B., Xu L. Dynamic simulations of nonlinear multi-domains Systems based on genetic programming and bond graphs [J]. Tsinghua Science & Technology, 2009,14(5):612-616
    [155]Liu Y., Huang G. H., Cai Y. P., et al. Development of an inexact optimization model for coupled coal and power management in North China [J]. Energy Policy, 2009,37(11):4345-4363
    [156]Turang A-O., Vigerske S., Nowak I., et al. Optimizing the design of complex energy conversion systems by Branch and Cut [J]. Computers & Chemical Engineering,2010,34(8):1226-1236
    [157]Nigel L., Dimitrios P. Electricity planning under uncertainty risks, margins and the uncertain planner [J]. Energy Policy,1982,10(2):143-152
    [158]Lopez J., Ponnambalam K. Long-term uncertainty evaluation of pool electricity markets [J]. Energy Policy,2010,38:840-849
    [159]Sadeghi M., Hosseini H. M. Energy supply planning in Iran by using fuzzy linear programming approach:regarding uncertainties of investment costs [J]. Energy Policy,2006,34:993-1003
    [160]Muelaa E., Schweickardtb G., Garces F. Fuzzy possibilistic model for medium-term power generation planning with environmental criteria [J]. Energy Policy,2007,35:5643-5655
    [161]Chen W. T., Li Y. P., Huang G. H., et al. A two-stage inexact-stochastic programming model for planning carbon dioxide emission trading under uncertainty [J]. Applied Energy,2010,87(3):1033-1047
    [162]Li Y. F., Huang G. H., Li Y. P., et al. Regional-scale electric power systems planning under uncertainty-a multistage interval-stochastic integer linear programming approach [J]. Energy Policy,2010,38:475-490
    [163]梁巧梅,Norio Okada,魏一鸣.能源需求与二氧化碳排放分析决策支持系统[J].中国能源,2005,27(1):45-47+52
    [164]黄伟,吴三燕,郭文晓.2007年“中国能源安全问题研究—法律与政策分析”国际研讨会综述[J].法学评论,2007(6):154-157
    [165]杨妍,孙涛.电力能源生产可持续发展的政策分析[J].科学管理研究,2008(6):50-53
    [166]袁旭梅,郭秀莉.我国风电产业政策分析与思考.科学管理研究,2009(6):1-7
    [167]万磊,郑季良.基于IPAT方程的云南省能源消耗分析及情景预测[J].昆明理工大学学报(理工版),2009(5):93-96
    [168]万文军.优化算法及火电厂若干优化问题的研究[D].南京:东南大学学位论文,2005
    [169]王化兰,任艳.基于改进型遗传算法的能源模糊优化的研究[J].计算机工程与设计,2007,28(15):3652-3655
    [170]李华林,陈文颖,吴宗鑫.用内生技术学习曲线对西部能源系统的分析[J].清华大学学报:自然科学版,2007(12):2192-2195
    [171]王晓雨,张旭.北方两典型村镇能源系统分析及优化[J].可再生能源,2007,25(6):92-97
    [172]华贲.中国炼油企业节能降耗—从装置到全局能量系统优化[J].石油学报(石油加工),2009(4):463-471
    [173]邱大雄.能源规划与系统分析[M].北京:清华大学出版社,1995:19-50
    [174]焦艳军.能源发展与经济、环境关系研究[D].武汉:武汉理工大学,2006
    [175]张晓萱.考虑环境约束的不确定性城市能源系统优化模型[D].北京:华北电力大学,2010
    [176]《煤》[DB/OL].互动百科,2013-01-18[2013-02-20].http://fun.hudong.com/edmclick.do?senderid=91&pici=19&nexturl=http://www.hud ong.com/wiki/%e7%85%a4
    [177]刘博.区域市场煤电联营的产业效应分析[D].成都:西南交通大学,2006
    [178]牛彦涛,黄国和,杨勇平,张晓萱.基于不确定性优化模型的北京市能源系统规划研究[J].华东电力,2010,38(7):1012-1018
    [179]黄国和,张晓萱,徐鸿,席北斗,牛彦涛.电力负荷分配与配煤优化耦合模型的研究[J].华东电力,2009,37(7):1202-1206
    [180]Charnes A., CooPer W. W. Response to deeision Problems under risk and chance constrained programming:dilemmas in the transitions [J]. Management Scienee,1983,29:750-753
    [181]张建峰,徐华,王信.谈华北电网结构的总体构思[Z].中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集:513-517
    [182]徐凤刚.电力行业节能减排形势与对策[J].环境保护,2007,18:38-40
    [183]《碳捕集与封存》[DB/OL].百度百科,2012-10-21[2013-01-20].http://baike.baidu.com/view/2308925.htm
    [184]古濑村纯一.二氧化碳排放权交易市场与排放权价格分析[D].北京:对外经济贸易大学,2007
    [185]Miao Z., Marrs R. Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China [J]. Journal of Environmental Management, 2000,59:205-215
    [186]汤惠君《土地复垦与生态重建》[DB/OL].国土资源政策法律网,2009-09-18[2013-01-20]. http://gtzyzcfl.com.cn/news.asp?id=1642