基于GPS浮动车的路径行程时间估计系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着道路交通状况的日益恶化,人们对出行决策支持信息的需求愈发迫切,对信息的及时性、可靠性和全面性的要求也越来越高,因此,先进的出行者信息系统(ATIS)的服务水平备受关注。在交通拥挤日趋常态化、交通拥堵日益频繁化、交通路网日渐复杂化的大中城市,无论是熟悉路网的区域内长期固定驾车出行者,还是由于工作需要或旅游娱乐等原因,行驶于陌生区域路网的区域外临时驾车出行者,仅凭出行经验无法应对时变的交通状态。在这种情况下,ATIS能否在出行前和出行中为驾车出行者提供高质量的决策支持关键信息—出行路径行程时间信息,对驾车出行者的出行质量具有重要影响。而目前针对路径行程时间估计的研究较少,且由于估计方法的限制导致路径行程时间信息的质量不足,不能满足出行者的需要。
     针对现代城市交通的严峻现实和驾车出行者对出行路径行程时间的迫切需求,以及GPS浮动车在采集路径行程时间信息方面的优势,本文提出对出租车、物流车、私家车、公交车的车载GPS设备获取的实际GPS数据进行共享和整合,并进行深层次的加工处理,可为区域路网中任意OD出行请求提供合理路径的建议信息及其动态的路径行程时间信息。具体在以下五个方面开展了创新性工作:
     (1)基于GPS浮动车的路径行程时间估计系统(FC-RTTES)的框架构建。针对FC-RTTES涉及多个技术环节,且各技术环节间信息交换频繁的实际情况,在界定系统服务对象和服务内容的基础上,深入分析了系统的功能需求。基于软件工程学理论,利用面向对象的抽象、封装、继承和多态的概念,对系统功能进行了有效的分类与整合,设计了开放式FC-RTTES逻辑结构,同时以低耦合、高内聚为目标设计了功能模块,并提出了相应的物理框架。进而构建了一个能够满足用户需求的、可以实现各功能模块间信息高效共享与交换的FC-RTTES开放式平台。
     (2) FC-RTTES的GPS数据基础性处理技术的研究。针对本文的研究目标,对浮动车GPS基础数据中的异常数据进行了深入分析,设计了一种基于偏移系数的停车点位置修正方法,有效消除了冗余数据对后续各技术环节的不利影响。针对浮动车GPS数据体现的不合理行驶行为,设计了基于数据表现形式的非常规折返行为的识别和标识方法,为提高GPS浮动车合理出行路径的识别和提取效率奠定了信息基础。为了提高FC-RTTES的运行效率,将OD出行咨询请求按照出行约束条件划分为以O为基准和以D为基准的两种类型,并提出了相应的浮动车OD出行路径提取所需GPS数据的时空范围的确定方法。
     (3) FC-RTTES的OD对间合理路径选取方法的研究。为了提高OD对间合理路径的选取效率和路径质量,基于不符合常规出行规律的浮动车OD出行路径的产生原因,将其归纳为时间不连续和空间重复的两种类型,并针对各自的数据特点分别设计了不同的识别和处理方法。为了使所选取的OD合理路径能够更好地满足出行者的出行需求,根据驾车出行者的路径选择行为特点,提出了路径使用率和路径可信度两个评价指标和评价标准,并据此设计了OD对间K条最合理路径的选取方法。
     (4) FC-RTTES的路径行程时间估计方法的研究。为了满足路径行程时间估计对当天和历史路径行程时间数据的质量和数量要求,同时保证系统高效运行,针对用户出行咨询请求中出发/到达时刻的不同情况,分别设计了相应情况下OD路径行程时间估计所需GPS数据的提取时间区域的确定方法,构建了区域路网中基于浮动车GPS数据的任意OD对间路径行程时间的估计模型,与基于路段行程时间直接累加的方法相比,不但有效提高了路径行程时间的估计准确率,而且其结果在满足出行路径选择需要的同时,还可作为出发时间选择的依据。
     (5)FC-RTTES的数据管理方法研究。针对AITS服务的实时性要求高、而基于浮动车GPS数据的路径行程时间估计涉及海量数据的实时在线处理,需要通过优化数据的存储和提取模式提高系统运行效率的实际需求,综合运用数据库技术和面向对象的思想,以优化系统运行模式、提高系统运行效率为目标,在归纳系统所需存储数据类别及其构成元素基础上,设计了层级数据组织方法,以及查询型和控制型两种新型的数据字典,可从数据管理的角度为FC-RTTES的运行效率提供技术保障。
     本文以浮动车GPS数据为基础,针对城市区域路网中任意OD出行咨询请求的合理出行路径选取及其行程时间估计方法进行了研究。针对浮动车的海量GPS数据,提出了浮动车OD出行路径的提取方法及选取OD合理路径的评价指标和评价标准,设计了OD对间路径行程时间的估计方法,提出了以提高系统运行效率为目标的系统应用数据的管理方法,并通过实际数据对所提出的各项技术方法进行了相应的验证。结果表明,与基于路段行程时间直接累加的方法相比,本文提出的路径行程时间估计方法不但有效提高了路径行程时间的估计准确率,而且其结果在满足出行路径选择需要的同时,还可作为出发时间选择的依据。
     本文的研究成果可为ATIS的出行信息服务提供更有力的技术支持,有助于提高ATIS的服务水平和综合效益。
Since traffic conditions in urban is worse and worse day after day, the request of getting traffic support information while traveling is increasing and much more urgent. At the same time, more attentions have been paid to how to get timely, reliable and comprehensive traffic information. So service quality of advanced traveler information system ATIS is the point at issue. In the modern urban area, we always meet heavy congestion traffic with complex network of roads. So even the travelers with long-term experience driving or who will drive for business or tourism cannot deal with varying traffic state when driving in unfamiliar areas. In this situation, ATIS became the key to solve the problem whether the driver can get the traffic information with high quality and veracity.
     The thesis is based on the worse and worse traffic situation in modern urban, and the drivers are eager to get the information for traveling. By considering GPS floating car's advantage of collecting traffic information while driving, the technology of how to make a great quantity of GPS information integrated, shared will be written in this thesis. And through a series of processing, the information about exited path and travel time will be mined. Then we can estimate the efficient travel route and travel time information for any OD. In this paper, the following works have been done already:
     Study on the framework of route travel time estimation system based on GPS floating car (FC-RTTES). On the basic of the system services objects and services content, the system analyzes the functional requirements of FC-RTTES. From the perspective of Application Development and algorithms, based on the software engineering theory, in use of the concepts of object-oriented abstraction, encapsulation, inheritance and polymorphism, it classifies and integrates the systematic functions, and designs the logical structure of open systems of hierarchical object-oriented, at the same time, on the goal of low coupling, high cohesion, it designs the system's function modules. In use of the basic principles and heuristic rules, it puts the FC-RTTES system into daily used and designs the system's physical framework which is object-oriented abstraction. Thus, it designs the public platform of the FC-RTTES which can meet different users'needs, achieve the shares and exchange of the information, integrate and verify algorithms, reasonable, practical, and standardized.
     Research on the based data processing technology of FC-RTTES. To improve the quality of system based data, analyze and process drift data and redundant data of Taxi GPS, and revise the processed GPS positioning point with digital map. In order to lay a data foundation of removing the link of unconventional OD path for next, analyze the unconventional running status which is probably happens during the taxi running, design a method of identification unconventional parking state and exhumation of the state based on manifestations of data, and mark the corresponding situation of data sequence. Also devise the general solutions of getting GPS taxi travel route of any OD in the road network with the use of vehicle tracking technology.
     Research on the selection methods for OD valid path of FC-RTTES. For the purpose of making the system get adequate, less redundant reference Information of OD route efficiently, classify any OD travel requisition into2types according to the standard of requested time, one is on basis of O, and the other is on basis of D. For the situation of these2types, finalize the time zone of extraction of real time and historical GPS data. For the purpose of proving the quality and efficiency of selecting OD valid route for the system, classify them into time-discontinued and space-repeated unconventional OD route based on the mechanism of different kinds of unconventional OD route, and then design different methods of identifying and processing based on their own data characteristics. For the purpose of making OD valid route meet the traveling demand of most people, propose the evaluated indicators of validity of these routes:utilization and reliability, and the definition and calculation methods of their own are given, too. Also, finish the design of selection method of K pieces of OD valid routes based on two evaluation rules.
     Study on the estimation method of the route travel time of FC-RTTES. Concentrating on different kinds of setting off or arriving time requirements of OD travel, this thesis detailedly analyze and ascertain the picking-up zone of the reference database for the time estimation of travel route in different circumstance in order to meet the quality and quantity requirements of the reference database of the time estimation of OD travel route and simultaneously guarantee the high efficiency of the system. By analyzing the basic characteristics of reference database sequence, the estimation model of OD travel route is designed on the basis of OD travel requirements. Focusing on the different circumstances which can refer to historical database in the time repository of OD travel route, methods for applying the database in the repository in the time estimation of travel route are separately designed in order to enhance the system's efficiency of the time estimation of travel route.
     Study on the FC-RTTES data's management method. In order to improve the development and operational efficiency in terms of data organization, it introduces the advanced database technology, on the base of the theory of object-oriented, and on the basics of the former system requirement analysis and the structure framework, we design the flow diagram of the FC-RTTES system, and extract the system and components which are needed in storing the database, it presents a hierarchical data organization method and designs three different types and functions of the data dictionary. It classifies the database, and manages the data in different layers from the point of the applied systems, which forms the data logical models of simple, reasonable and intuitive, as well as the data access mode which occupies the attribute information with dynamic, as a result, it makes the system of data management maintenance, and program development more flexible, convenient and fast.
     Aiming at the road network in the cities, this thesis studies the method to access the effective travel route of random OD travel requirements and time. To establish the floating car'time estimation system of travel route on the basis of GPS and in allusion to the large amount of GPS floating cars, the thesis brings forward system application database management methods to advance the efficiency of operation and running of the system. It also puts forwards the common effective selecting ways and evaluation standards and designs the time estimation model of travel route. This thesis validates the theory by using the practical data. The result shows that the FC-RTTES system can provide required travel route and time effectively and accurately.
     This thesis provides timely, accurate and reliable basis of database on travel route for the ATIS travel information service and improve the ATIS service and synthetical efficiency.
引文
[1]Statewide Planning Scenario Synthesis:Transportation Congestion Measureme-nt and Management[R]. Kentucky Transportation Center, Report No.KTC-05-32/SPR303-05-IF, Sept.2005.
    [2]陆化普,李瑞敏,朱茵.智能交通系统概论[M].北京:中国铁道出版社,2004.
    [3]美国智能交通信息发展及现状[R].北京交管局赴美智能交通管理培训组技术报告,2002.
    [4]国务院参事:15座城市因交通拥堵每天损失近10亿[EB/OL].http://news.sina.com.cn/c/sd/2010-10-27/005921357208.shtml.
    [5]黄卫,陈里得.智能运输系统(ITS)概论[M].北京:人民交通出版社,2006.
    [6]Boyce D, Kirson A, Schofer J. Design and Implementation of ADVANCE[C]. IEEE Proceeding of 3rd International Conference on Vehicle Navigation and Information Systems. Ottawa:1993:415-426.
    [7]Piao J. and McDonald M. Analysis of Stop&Go Driving Behavior through a Floating Vehicle Approach[C]. Proc. of the IEEE Intelligent Vehicles Symposium,2003:9-11.
    [8]Kenneth Cowan etc. Floating Vehicle Data System-Realization of a commercial system[C]. Road Transport Information and Control, Conference Publication No.486. IEEE,2002:187-189.
    [9]Xiao Wen Dai, Martin A, Ferman, and Robert P, Rosser. A Simulation Evaluation of a Real-time Traffic Imformation system using Probe Vehicles[C]. Intelligent Transportation systems Proceedings,2003:475-480.
    [10]Stefan Lorkowski, Peter Mieth, German Aerospace Center. New ITS applications based on FCD[C].Young Researchers Seminar 2005. The Hague: 2005:4-8.
    [11]Richard Bishop. Floating Car Data Projects Woldwide:a selective review[EB/OL]. http://ivsource. net/archivep/2004/apr/.2004.
    [12]唐克双,姚恩建.日本ITS开发和运用的实例—名古屋基于浮动车信息的P-DRGS简介[J].城市交通,4(3),2006:74-76.
    [13]森川高行.P-DRGS的特点[EB/OL].http://www.p- drgs.com.2006.
    [14]北京市优先发展公共交通、加快智能交通建设、缓解交通拥堵新闻发布会[EB/OL]. http://blog.sina.com.cn/s/blog_4c71634f01007shv.html,2007.
    [15]陆化普.智能交通系统[M].北京:人民交通出版社,2003.
    [16]景玲.城市动态路径诱导系统框架及最优路径选择算法研究[D].重庆大学,2002.
    [17]王川久,杨兆升.城市交通流诱导系统的框架研究[J].吉林大学学报(工学版),2003,33(3):14-18.
    [18]刘冬梅.智能交通系统(ITS)体系框架开发方法研究[D].北京工业大学,2004.
    [19]许焱,杨孝宽,荣建,刘小明.奥运智能交通系统体系框架开发方法研究[J].公路交通科技,2005,22(6):139-142.
    [20]孙建平,温慧敏,郭继孚.浮动车交通信息采集系统建设框架研究[C].第一届中国智能交通年会论文集,2005.
    [21]王卓,王艳辉,贾利民,李平.铁路智能运输系统体系框架结构化方法应用研究[J].铁路计算机应用,2005,14(1):1-3.
    [22]杨兆升,林赐云,龚勃文.公交信号优先系统框架研究[C].第二届中国智能交通年会论文集,上海,2007.
    [23]高博.车辆导航系统中数据处理、地图匹配和路径规划的研究[D].中国人民解放军信息工程大学,2001.
    [24]储浩,吴志周,杨晓光.基于城市公交探测车数据的分析和处理方法[J].系统工程,2006,24(8):113-118.
    [25]徐彬,施闻明,罗晓东.一种GPS定位信息可用性的实时判定方法[J].航天电子对抗,2006(3):12-13.
    [26]刘培.基于浮动车数据的地图匹配算法研究[D].北京交通大学,2007.
    [27]张存保,杨晓光,严新平.移动交通检测系统中探测车的样本数量[J].中国公路学报,2007,20(1):96-101.
    [28]钱寒峰,林航飞,杨东援.浮动车车速处理分析系统中的数据融合技术[J].计算机工程与应用,2007,43(31):230-232.
    [29]张周强,杜豫川,孙立军.基于GPS/G IS的交通数据采集方法[J].交通与计算机,2007,25(1):119-121.
    [30]Berry, Donald S. and F. H. Green. Techniques for measuring over-all speeds in urban areas[J]. Highway Research Board Proceedings,1952.
    [31]Abours S. Estimation of Travel Time from Occupancy on an Urban Network[C]. Second International Conferences on Road Traffic Control, Insitution of Engineers, London UK:1986.
    [32]Van Aerde M., Hellinga B., Yu L., and Rakha H. Vehicle probes as realtime ATMS sources of Dynamic O-D and travel time data Large urban systems-Proc[J]. Atms Conf.,1993:207-230.
    [33]Nam Do. H. and Drew Donald R. Method for Estimation Freeway Travel Time in Real Time from Flow Measurements[J]. Journal of Transportation Engineering,1996:185-191.
    [34]Mammar S., Messmer A., Jensen P., Papageorgiou M., Haj-salem H, and Jensen L. Automatic control of variable message signs in Aalborg[C]. Transportation Research,1996:131-150.
    [35]Cesar A. Quiroga, Darch Bullock. Travel Time Studies with Global Position and Geographic Information Systems:an Integrated Methodology[J]. Transportation Research Part C,1998,6(6):101-127.
    [36]Fu L, Rilet LR. Expected Shortest Paths in Dynamic and Stochastic Traffic Networks[J]. Transportation Research,1998,32B(7):499-516.
    [37]SANWAL K K, WALRAND J. Vehcles as probes[R]. Report No.UCB-ITS-PW P-95-11, California PATH Program, Institute of Transportation Studies, University of California, Berkeley:1995:34-36.
    [38]YIM Y B, CAYFORD R. Investigation of Vehicles as Probes Using Global Positioning System and Cellular Phone Tracking:FieM Operational Test[R]. Re-port No.UCB-TTS-PW-2001-9, California PATH rogram, Institute of Transpor-tation Studies, University of California, Berkeley:2001:43-48.
    [39]Draijer, Kalfs and Perdok, Global positon system as data collection method for travel research[D]. Transportation research record 1791,2000.
    [40]H. Rakha, F. Dion and H. Sin. Using global position system data for field evaluation of energy and emission impact of traffic flow improvement projects[D]. Transportation research record 1768,2001.
    [41]Hussein Dia. An Object-Oriented Neural Network Approach To Short-Term Traffic Forecasting[J]. European Journal Of Operational Research,2001: 253-261.
    [42]W. Cathey and D. J. Dailey. Transit vehicles as traffic probe sensors [D]. Transportation research record 1804,2002.
    [43]Bruce R. Hellinga and Liping Fu. Assessing Expected Accuracy of Probe Vehicle Travel Time Reports[J]. Journal of Transportation Engineering,1999, 11(2):101-106.
    [44]Bruce R. Hellinga and Liping Fu. Reducing bias in Probe-based Arterial Link Travel Time Estimation for ITS Applications [J]. Transportation Research Part C,2002,27B(11):257-273.
    [45]John Rice and Erik van Zwet. A Simple and Effective Method for Prediction Travel Times on Freeways[R]. the Department of Statistics of the University of California at Berkeley,2002.
    [46]F. W. Cathey, D. J. Dailey. A prescription for transit arrival/departure prediction using automatic vehicle location data [J]. Transportation Research Part C,2003.
    [47]Dai, Ferman. A Simulation Evaluation of a Real-time Traffic Information System Using Probe Vehicles[J]. General Motors Research Publication,2003.
    [48]Matin A. Ferman, Dennis E. Blumenfeld and Xiaowen Dai. A Simple Analytical Model of a Probe-Based Traffic Information System[C]. IEEE,2003.
    [49]Xiaoyan Zhang and John A. Rice. Short-term travel time prediction [J]. Transport-ation Research Part C,2003:187-210.
    [50]Eui-Hwan Chung, Amer Shalaby. Development of a trip reconstruction tool to identify traveled links and used modes for gps-based personal travel surveys[C]. Transportation Research Board 83rd Annual Meeting, Washington D.C.:2004.
    [51]Lei Yu, Xiugang Li, Weijie Zhuo. A genetic algorithm-based approach to the calibration of VIS SIM using GPS data[C]. Applications of Advanced Technologies in Transportation Engineering, Beijing:2004.
    [52]S. Schonfelder, J. Wolf, M. Oliveira and U. Samaga. Eighty weeks of GPS traces:approaches to enriching trip information[C]. The 83th Transportation Research Board Meeting,2004.
    [53]Hainan Li. Randall Guensler. An analysis of morning commute route choice patterns using GPS based vehicle activity data[C]. Transportation Research Board 84th Annual Meeting, Washington D.C.:2005.
    [54]Takashi Fujita, Enjian Yao, Yasuhiro Sugisaki et. Travel Time Prediction Using Probe-Car Data[C]. Proceeding of the 13th ITS World Congress, London:2006.
    [55]杨兆升,朱中.基于BP神经网络的路径行程时间实时预测模型[J].系统工程理论与实践,1999,(8):59-64.
    [56]杨兆升,孙喜梅.实时动态路段行程时间预测的一种实用方法[J].公路交通科技,2001:44-46.
    [57]杨兆升,于悦,杨薇.基于固定型检测器和浮动车的路段行程时间获取技术[J].吉林大学学报(工学版),2009:168-171.
    [58]杨先平.城市道路行程时间预测方法研究[D].吉林大学,2005.
    [59]杨立娟.基于浮动车的城市道路行程时间采集与预测方法研究[D].吉林大学,2007.
    [60]于德新,高学英,杨兆升.基于GPS数据及车辆运行特性分析的单车路段行程时间估计[J].吉林大学学报(工学版),2010,40(4):965-970.
    [61]李天雷.基于GPS数据的公交行程时间计算与预测系统[D].吉林大学,2009.
    [62]童小华,陈建阳.基于GIS和GPS的交通状态参数估计与仿真模型[J].同济大学学报(自然科学版),2005,33(12):1604-1607.
    [63]陈小鸿,冯均佳,杨超等.基于浮动车数据的行程时间可靠度特征研究[J].城市交通,2007,5(5):37-45.
    [64]胡小文,杨东援,王孝坤.GPS在行程时间调查中的应用[J].计算机应用,2008:355-357.
    [65]张永强.浮动车交通信息采集系统研究[D].东南大学,2005.
    [66]孙晋麟.基于浮动车GPS/GIS的车辆行驶路径优化研究[D].北京交通大学,2006.
    [67]陈思.基于GPS/GIS浮动车技术的旅行时间预测模型[D].北京交通大学,2006.
    [68]张和生,张毅,温慧敏,胡东成.利用GPS数据估计路段的平均行程时间[J].吉林大学学报(工学版),2007,37(3):533-537.
    [69]方志伟.基于浮动车数据的城市路段行程时间预测研究[D].北京交通大学,2007.
    [70]朱爱华.基于浮动车数据的路段旅行时间预测研究[D].北京交通大学,2007.
    [71]李明珠.基于浮动车数据的出租汽车OD分布及运营特点研究[D].北京交通大学,2009.
    [72]姚丽亚,关宏志,魏连雨,孙立山.基于实时交通信息的行程时间估算及路径选择分析[J].公路交通科技,2006,23(11):86-89.
    [73]翁剑成,荣建,于泉,任福田.基于浮动车数据的行程速度估计算法及优化[J].北京工业大学学报,2007,33(5):459-464.
    [74]傅惠,徐建闽.基于卡尔曼滤波的路径行程时间预测方法[J].微计算机信息,2007,23(8):290-292.
    [75]计会凤.基于浮动车GPS数据的动态交通预测与诱导模型研究[D].辽宁工程技术大学,2009.
    [76]武小云.基于GPS浮动车的城市交通路段行程时间实时估算方法研究[D].华南理工大学,2010.
    [77]沙云飞,曹瑾鑫,史其信.基于GPS的路段旅行时间和速度估计算法研究[J].ITS通讯,2006:145-151.
    [78]关明.路径行程时间可靠性及其在交通分配方面的应用研究[D].哈尔滨工业大学,2006.
    [79]梁亚莉.行程时间可靠性在交通规划中的应用研究[D].长沙理工大学,2006.
    [80]张文胜,殷倩,吴立新,徐磊,志刚.基于模糊综合评判的动态路径行程时间预测模型[J].地理与地理信息科学,2006,22(4):25-27.
    [81]邹亮,徐建闽,朱玲湘,温惠英.基于浮动车移动检测与感应线圈融合技术的行程时间估计模型[J].公路交通科技,2007,24(6):114-117.
    [82]陈青.基于GPS浮动车的城市道路交通状态判别技术研究[D].长安大学,2009.
    [83]Randolph W. Hall. The Architecture of Transportation Systems [J]. Transpn. R-es. C.,1995(3):129-142.
    [84]Adel W Sadek, Robert Chamberlin, Perter R keating. Use of the National Architecture to Develop an Intelligent Transportation Systems Strategic Plan [C]. Washington D. C., USA:TRB,2001.
    [85]杨晓光.中国交通信息系统基本框架体系研究[J].公路交通科技,2000,17(5):50-55.
    [86]张海藩.软件工程导论[M].北京:清华大学出版社,2003.
    [87]Dan S, Hossny E. Real-Time Navigation Using the Global Positioning System[J]. IEEE AES Systems Magazine,1995.
    [88]刘基余.GPS卫星导航定位原理与方法[M].北京:科学出版社,2003.
    [89]易鸣镝,顾洪夫,陈广飞.GPS定位原理浅析及误差分析[J].中国数据通信,2005:25-27.
    [90]吴超腾.基于3GS浮动车的城市路段单车行程时间提取技术研究[D].吉林大学,2008.
    [91]陈炼红.基于GPS浮动车采集数据的出租车运行特点研究[D].同济大学,2008.
    [92]常安德.基于GPS浮动车的路段行程时间采集方法研究[D].吉林大学,2009.
    [93]刘志德,陈家斌等.地图误差对地图匹配质量的影响[J].测绘科学技术学报,2008,25(5):340-343.
    [94]夏州.GPS车辆导航中的数据处理与地图匹配研究[D].北京交通大学,2009.
    [95]孙棣华,张星霞,张志良.地图匹配技术及其在智能交通系统中的应用[J].计算机工程与应用,2005,20(4):225-228.
    [96]杨新勇,黄圣国.基于拓扑结构/自适应模糊决策的地图匹配算法[J].上海交通大学学报,2004,38(8):1389-1393.
    [97]许志海,张昭云,陈应东.车辆导航系统中定位数据处理和地图匹配技术[J].测绘学院学报,2003,20(4):247-250.
    [98]Mengyin Fu, Jie Li, Meiling Wang. A hybrid map matching algorithm based on fuzzy comprehensive[C]. Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems,2004:613-617.
    [99]Winter M., Taylor G., Modular neural networks for map-matched GPS positioning[C]. Proceedings of Fourth International Conference on Web Information Systems Engineering Workshops,2003:106-111.
    [100]常菲,浦争艳,李明禄,李治洪.综合地图匹配定位技术研究[J].计算机工程与应用,2004,(19):200-202.
    [101]彭飞,柳重堪.基于模糊逻辑的GPS/DR组合导航系统地图匹配算法[J].遥测遥控,2000,22(1):32-36.
    [102]Chen, H K. Dynamic travel choice models:a variational inequality approac[J]. Berlin·Heidelberg:Springer-Verlag,1999:201-227.
    [103]任华玲,高自友.瞬时动态用户最优问题的统一模型及算法研究[J]. 土木工程学报,2003,37(7):95-99.
    [104]Hamdouch Y, Marcotte P, Nguyen S. A strategic model for dynamic traffic assignment[J]. Networks & Spatial Economics,2004,4(3):291-315.
    [105]Giuseppe B, Guido G.Natale P. A within-day dynamic traffic assignment model for urban road networks[J]. Transportation Research B,2005,39:1-29.
    [106]李志瑶.基于活动的出行需求预测模型研究[D].吉林大学,2006.
    [107]罗剑,王树盛等.出行方式选择行为的个体时间感知差异性建模分析[J].公路交通科技,2007,24(2):114-117.
    [108]伍卫国,万群,张辉等译.数值方法和MATLAB实现与应用[M].北京:机械工业出版社,2004.
    [109]姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社,2002.
    [110]刘学军,徐鹏.交通地理信息系统[M].北京:科学出版社,2006.
    [111]杨兆升,刘红红,张春子.城市交通流诱导系统电子地图的研制及功能实现[J].公路交通科技,2001,18(3):46-48.
    [112]张小文,刘勇,潘小多等.交通地理信息系统应用研究[J].兰州大学学报(自然科学版),2002,38(5):95-99.
    [113]席玉峰.交通地理信息系统的数据组织和处理方式[D].长安大学,2003.
    [114]施伯乐,丁宝康等.数据库系统教程[M].北京:高等教育出版社,1999.
    [115]徐洁磐,张剡,封玲.现代数据库系统实用教程[M].北京:人民邮电出版社,2006.
    [116]Zhang Wei, Jiang Gui-yan, Chang An-de. Data Dictionary Design for Travel Time Acquiring System Based on 3GS[C]. Proceedings of the 2nd International Conference on Transportation Engineering,2009, v345:2566-2571.
    [117]姜桂艳,张玮,常安德.基于GPS浮动车的交通信息采集系统的数据组织方法[J].吉林大学学报(工学版),2010,40(2):397-401.
    [118]张可.车辆导航系统关键技术研究[D].北京工业大学,2001.