数控机床滚珠丝杠副性能退化机理与评估技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床是加工制造业的关键装备,数控制造技术属于先进制造技术之一,其水平直接反应一个国家制造业的实力。制造业又是关系国计民生和国家安全的支柱产业。滚珠丝杠副是数控机床不可或缺的关键部件,其性能状态直接影响数控机床的加工质量和生产效率。为提高国产数控机床的整体技术水平,保证制造业健康发展,研究滚珠丝杠副的性能退化机理,评估滚珠丝杠副的性能衰退过程显得尤为必要。
     滚珠丝杠副的使用寿命约10年左右,丝杠副工作过程中性能逐渐衰退,传动精度逐渐降低,并最终导致丝杠副故障,甚至报废。为实时准确评估滚珠丝杠副的性能状态,制定智能维护维修方案和备件计划,本文首先研究了滚珠丝杠副的性能退化机理,分析了产生磨损、振动和冲击的影响因素,并建立了滚珠丝杠副性能评估体系,具体工作如下:
     对滚珠丝杠副进行受力分析,首先针对不同结构的滚珠丝杠副分析滚珠和滚道的接触载荷特性、曲率变化、接触区域摩擦特性及滚珠的受力特点分析滚道和滚珠的受力和运动,研究接触应力和摩擦力矩对丝杠副的磨损、疲劳、振动的影响,并对滚珠进行运动分析,揭示滚珠丝杠副性能退化的机理。
     根据滚珠丝杠副的结构、性能退化特点和工作过程,提出丝杠副性能退化评估的目的和性能退化评估原则,系统科学地分析性能退化规律,采用定性分析和定量分析结合的方法实现丝杠副实时性能评估。
     分析丝杠副的精度参数和性能参数与性能的对应关系,建立滚珠丝杠副性能退化评估指标集,采用三层分级评估结构建立滚珠丝杠副性能评估系统结构和性能退化评估体系。
     基于VMC1500等型号的数控机床建立滚珠丝杠副性能退化试验方案,根据信号特点确定振动传感器、电流传感器的型号及采集系统等硬件。
     应用动态模糊神经网络建立滚珠丝杠副性能退化评估模型,实现信号特征与丝杠副性能状态的映射关系,鉴于样本的分布对网络预测精度有很大影响,因此采用正交试验和性能指标试验相结合的试验方法。
     研究表明,滚珠丝杠副性能退化为缓变过程,退化曲线是连续的,为准确提取性能退化特征并解决海量数据问题,建立动态聚类数据简化算法,通过调整动态聚类阈值调整评估精度和系统的动态响应特性。
     通过对信号的时域分析、频域分析及小波分析,采用能量谱分析振动信号、电流信号的能量分布作为性能退化评估模型的输入参数。同时结合指标的定性分析提高了性能退化评估精度。
     为解决数控机床工作过程中无法实时测量摩擦力矩的难题,假设丝杠副空载时,驱动电机输出扭矩全部用来克服摩擦力矩,应用这种方法建立了电流信号和摩擦力矩之间的映射关系。将摩擦力矩作为性能评估模型输入量,提高性能退化评估精度。
     依据性能退化和磨损程度的评估结果,建立了智能维护维修实用模型。根据该模型,可以确定数控机床滚珠丝杠副等关键部件的智能维护维修方案,合理制定备件计划,有利于精简维护维修成本和备件成本,并且有效提高了数控机床的使用效率。
     上述研究对提高滚珠丝杠副的性能,减少维护维修成本和备件成本,有效提高数控机床的加工性能和效率,具有重要的理论意义和工程实用价值。
NC machine tool is the key equipment in manufacturing industry, and NC manufacturing technology is one of advanced manufacturing technology. The developing state of NC manufacturing technology can directly show the manufacturing ability of a country. And the manufacturing industry is also the pillar industry related to people's livelihood and national defense security.
     Ball screw pair (BSP) is the key part of NC machine tool, and its performance states directly affects machining quality and production efficiency of NC machine tool. To research the performance degradation (PD) mechanism of BSP is extremely important for improving the performance of BSP, realizing fault prediction and intelligent maintenance of machine tools.
     The service life of BSP may be10years. During its working condition, performance of BSP declines gradually, so that the precision of transmission is reduced gradually and BSP faults occur, or even scrapped in the end. In order to accurately evaluate the performance of BSP on time, intelligent maintenance plan and spare parts plan, the PD mechanism of BSP is firstly studied in this thesis. And then, the influence factors of wear, vibration and impact and so on are analyzed. Based on above researches, the BSP performance evaluation system is established. Main contents of this thesis are following:
     Force analysis of BSP. Firstly, aimed at BSP with different structures, the contact load characteristic between ball and its rollaway nest, the curvature change of rollaway nest, the friction characteristic of contact area and the loading features of the ball are analyzed. The characteristics of loading and motion between balls and its raceway are also studied. Then, the effects of wear, fatigue and vibration due to contact stress and friction torque are studied and the kinematic analysis of the ball is also carried out. The PD mechanism of BSP is uncovered by above researches.
     On the bases of the structure, PD characteristic and working process of BSP, evaluation goal and evaluation principle on PD of BSP are proposed. Based on sufficiently analysis of whole system PD processing, on time performance evaluation of the BSP is carried out by means of combination of qualitative analysis and quantitative analysis.
     PD evaluation index set of the BSP is set up by correspondence analysis between the performance and the accuracy parameters of BSP. The performance evaluation system structure and the PD evaluating system of BSP are established by means of three layers classification evaluation.
     Test program of BSP PD is built up based on VMC1500and other type NC machine tools.
     In order to realize the mapping relationship of signal characters and performance states, PD evaluating model of BSP is established by dynamic fuzzy neural network. Because the prediction accuracy of network is seriously affected by sample distribution, the test method of orthogonal test conjunted with performance index test is employed.
     The study is shown that the PD of BSP is a gradually reducing process, well the BSP degenerated curve is continuously, the degradation curve of ball screw, therefore, is continuous. In order to obtain PD character and solve the massive data problem, data simplification algorithm with dynamic clustering is established. Evaluation precision and dynamic response characteristics can be adjusted by adjusting the threshold of dynamic clustering.
     The vibration signal of energy spectruml and the energy distribution of current signal are taken as input parameters of PD evaluation model by means of time domain analysis, frequency domain analysis and wavelet analysis for the signals. PD evaluation precision is improved by qualitative analysis of some indexes at the same time.
     In order to solve the difficult problem that the friction torque can not be meassured in real time in NC machine tool working conditions, the hypothes is taken as that the output torque of drive motor is completely used to overcome friction torque while BSP is in no load condition. In this way, mapping relationships between current signals and friction torque is built and PD evaluation precision is also improved by taking friction torque as the input index.
     Intelligent practical model used for NC machine tool preserving and maintenance is proposed according to the BSP evaluation results of PD and attrition rate. On the basis of this model, intelligent maintenance schedules of NC machine tool key parts such as BSP can be confirmed and the spare parts planning can be set out reasonably. These are in favor of reducing the cost of maintenance and the cost of spare parts, and also increasing service efficiency of NC machine tools effectively.
     Above research results have important theoretical significance and engineering practical value for enhancing BSP performance, reducing costs of maintenance and spare parts, and effectively increasing the processability and processing efficiency of NC machine tool.
引文
[1]2010-2015年中国机床行业研究与市场发展预测分析报告,中商情报网http://www.askci.com,2010
    [2]THK公司.直线运动系统产品说明书.www.thk.com/cn/
    [3]张营佐.高速滚珠丝杠副动力学性能分析及其实验研究[D].山东大学.2008
    [4]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础[M].北京:机械工业出版社.1987.8
    [5]白迪,赵志国,刘佳慧.滚珠丝杠常见故障分析[J].山东鲁南机床有限公司
    [6]魏德耀.滚珠丝杠副及其热处理[J].山西启益精密机械有限公司
    [7]冯虎田等.滚珠丝杠副综合性能测量方法与技术[M].北京:机械工业出版社,2011
    [8]Brusa E., Lemma L., Benasciutti D. Vibration analysis of a Sendzimir cold rolling mill and bearing fault detection [J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2010:224(8):1645-1654
    [9]Al-Raheem Khalid F., Roy Asok, Ramachandran K.P. et al. Application of the Laplace wavelet combined with ANN for rolling bearing fault diagnosis[J] Journal of Vibration and Acoustics, Transactions of the ASME,2008,130(5)
    [10]M Behzad, A R Bastami, D Mb a. Rolling bearing fault detection by short-time statistical features[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering 2012:229-237
    [11]B. Sreejith, A.K. Verma, A. Srividya. Fault diagnosis of rolling element bearing using time-domain features and neural networks[J]. IEEE Region 10 Colloquium and 3rd International Conference on Industrial and Information Systems, ICIIS 2008,409:1-6
    [12]陈仁祥.振动谱表征空间滚动轴承寿命状态方法研究[D].重庆大学.2012
    [13]夏庆观.数控机床故障诊断.北京:机械工业出版社[M],2007
    [14]康献民,傅卫平,王大承,等.预紧力对滚珠丝杠副摩擦力矩波动的影响分析及试验[J].机械传动,2011,34(6):46-50
    [15]张佐营,宋现春,姜洪奎,等.精密滚珠丝杠副丝杠滚道磨损异常的原因分析[J].工具技术.2008,42(1):44-47
    [16]康献民,王大承,王天雷,等.精密丝杠副中滚珠冲击及其影响因素研究[J].五邑大学学报(自然科学版),2009,23(4):1-6
    [17]李醒飞,董成军,陈诚,等.单热源作用下滚珠丝杠的温度场建模与热误差预测[J].光学精密工程.2012,20(2):337-343
    [18]Jan Braasch, Dr. Ing.海德汉进给传动精度系列讲座.第4讲滚珠丝杠长度方向温度 分布的影响
    [19]Pin WANG,Zengfeng JIN, Yilin ZHENG. Artificial Neural Network-based Thermal Error Modelling in Ball Screw[J]. Symposium on Electrical and Electronics Engineering, 2012:67-70
    [20]Z.Z. Xu, X.J. Liu. H.K. Kim, et al. Thermal error forecast and performance evaluation for an air-cooling ball screw system[J]. International Journal of Machine Tools and Manufacture, 2011,51:605-611
    [21]Guohua Feng, Yilu Pan. Embedded temperature and vibration sensing system for monitoring ball screw preload[J]. Proceedings of 2011 8th Asian Control Conference (ASCC), 2011,5:15-18
    [22]毕国兴,刘爱丽.滚珠丝杠副反相器空间曲线设计[J].组合机床与自动化加工技术,2001.07:33-34
    [23]宋现春,姜洪奎,许向荣,等.高速滚珠丝杠副弹性变形的有限元分析[J].北京工业大学学报,2009,35(5):582-586
    [24]宋现春,张刚,厉超.滚珠丝杠副摩擦力矩测量系统的研制[J].山东建筑大学学报,2007,23(3):240-242
    [25]宋现春,刘剑.高速滚珠丝杠副综合性能试验台的研制开发[J].工具技术,2005(3):34-36
    [26]许向荣,宋现春,姜洪奎,等.单螺母滚珠丝杠副轴向刚度的分析研究[J].武汉理工大学学报,2009,24(12):54-57
    [27]牟世刚,冯显英.高速滚珠丝杠副动态特性分析[J].湖南大学学报,2011,38(12):25-29
    [28]Guo-Hua Feng,Yi-Lu Pan. Investigation of ball screw preload variation based on dynamic modeling of a preload adjustable feed-drive system and spectrum analysis of ball-nuts sensed vibration signals[J]. International Journal of Machine Tools and Manufacture,2012,52:85-96
    [29]张会端.机床进给系统的动力学分析[D],吉林大学,2009
    [30]吴沁,芮执元,杨建军.考虑非线性弹性力的滚珠丝杠系统分叉与混沌特性分析[J].西安交通大学学报,2012,46(1):70-75
    [31]陈雪峰,曹宏瑞,何正嘉.数字化制造装备的主轴服役性能监测与诊断[J].机械工程学报,2009,45(5):140-146
    [32]潘玉娜,陈进.基于二代小波包-支持向量数据描述的轴承性能退化评估研究[J].振动与冲击,2008,27(s):299-301
    [33]万海波.数控机床主轴系统性能分析及误差补偿研究[D],浙江大学,2011
    [34]王思明.风力发电机变桨轴承微动磨损研究[D].西南交通大学,2010
    [35]周仲荣,钱林茂.摩擦学尺寸效应及相关问题的思考[J].机械工程报,2003,39(8):22-26
    [36]Teruyuki Izumi, Zuowei Li, I Zhou. Minimization of Energy Dissipated in a Ball Screw-nut with All Kinds of Friction. International Conference on Advanced Intelligent Mechatronics [J],2008:1302-1307
    [37]Chinchung Wei, Rueisyuan Lai. Kinematical analyses and transmission efficiency of a preloaded ball screw operating at high rotational speeds [J]. Mechanism and Machine Theory 46(2011):880-898
    [38]Nakagawa Hiroyuki,Matsukawa Koei. Friction and wear properties of tin plated sliding contacts under oil lubricated condition [J].Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts,2002:151-155
    [39]王思明,许明恒,周海军.滚动轴承微动磨损研究[J].轴承,2011,4:55-58
    [40]McCarthy M., Hanrahan B., Zorman C..RolIing friction in mems ball bearings:The effects of loading and solid film lubrication [J].2007 Proceedings of the ASME/STLE International Joint Tribology Conference, IJTC 2007,PART B,2007:827-829
    [41]Cousseau Tiago, Graca Beatriz, Campos Armando,et al.Experimental measuring procedure for the friction torque in rolling bearings[J].Lubrication Science,2010,22(4):133-147
    [42]吴军,邓超,熊强强,等.基于Bootstrap与SVM集成的可靠性评估方法[J].计算机集成制造系统,2013,19(5):1058-1063
    [43]刘占生,窦唯,王东华,王晓伟.基于遗传算法的旋转机械故障诊断方法融合[J].机械工程学报.2007(10):227-233
    [44]刘雨,陈进,潘玉娜,等.基于SVDD与信息融合技术的设备性能退化评估[J].振动与冲击,2009,29(9):21-24/211
    [45]郭磊,陈进.设备性能退化评估与预测研究综述[J].振动与冲击.2008.27(S):139-142
    [46]潘玉娜,陈进.基于二代小波包-支持向量数据描述的轴承性能退化评估研究[J].振动与冲击,2008,27(S):299-301
    [47]吴军.基于性能参数的数控装备服役可靠性评估方法与应用[D].华中科技大学,2008
    [48]Stack Jason R.,Habetler Thomas G..Effects of machine speed on the development and detection of rolling element bearing faults[J].IEEE Power Electronics Letters,2003, 1(1):19-21
    [49]Yujing Wang, Shouqiang Kang, Yicheng Jiang.Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine[J], Mechanical Systems and Signal Processing,2012,29:404-414
    [50]Halme J., Andersson P.. Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics-State of the art[J].Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2010,224 (4):377-393
    [51]肖文斌.基于耦合隐马尔可夫模型的滚动轴承故障诊断号性能退化评估研究[D].上海交通大学,2011
    [52]Zhang Lei,Cao Qixin,Jay Lee,Frank L. Lewis. PCA2CMAC based machine performance degradation assessment.Journal of Southeast University (English Edition),2006,21(3):299-303
    [53]王玉静,姜义成,康守强,等.基于优化集合EMD的滚动轴承故障位置及性能退化程度诊断方法[J].仪器仪表学报,2013,43(8):1834-1840
    [54]钟鑫,刘文彬,杨剑锋.基于逻辑回归的滚动轴承性能退化评估[J].科技信息,2010,16:504-505
    [55]五十岚昭南,德长靖,大熊一成Studise on the Sound and Vibration of a Ball Screw(lst Report,Sound Characteristics of a Ball Screw).Transactions of the Japan Society of Mechanical Enhineers,Part C,1987:617-622(In Japanese)
    [56]五十岚昭南,德长靖,德嵩敬浩.Studise on the Sound and Vibration of a Ball Screw(4th Report, Effect of Various Factors on Sound of a Ball Screw).Transactions of the Japan Society of Mechanical Enhineers,Part C,1993:3907-3913(In Japanese)
    [57]五十岚昭南,德长靖,上村尚司.Studise on the Sound and Vibration of a Ball Screw(5th Report, Sound Caused by Random Waviness on Flank Surface).Transactions of the Japan Society of Mechanical Enhineers,Part C,1995:3369-3374(In Japanese)
    [58]德长靖,五十岚昭南,杉浦哲郎.Studise on the Sound and Vibration of a Ball Screw(2nd Report,Characteristics and Generating Mechanism of Pulse Sound).Transactions of the Japan Society of Mechanical Enhineers,Part C,1989:2945-2950(In Japanese)
    [59]德长靖,五十岚昭南,桥爪一宏.Studise on the Sound and Vibration of a Ball Screw(3rd Report,Sound Caused by Waviness on Flank of Screw Shaft).Transactions of the Japan Society of Mechanical Enhineers,Part C,1991:1874-1879(In Japanese)
    [60]Yoshida T,Tozaki Y,Matsumoto S. Study on load distribution and ball motion of ball screw[J] Journal of Japanses Society of Tribologists.2003,48(8):659-666(In Japanese)
    [61]Shimoda. H. Stiffness analysis of ball screw[J]. International Journal of the Japan Society for Precision Engineering,1999,33(3):168-172
    [62]Shimoda. Hirokazu. Estimation of resistance force generated in ball circulating unit of end-cap type ball screw[J] Journal of Japanses Society of Tribologists.1994,39(6):533-540
    [63]Murase Z. Statical friction of ball screw[J].Japan society of Precision Engineering Bulletin,1965,1 (2):52-57
    [64]M.C. Lin,B.Ravani,S.A. Velinsky. Kinematics of the ball screw mechanism. Journal of Mechanical Design[J]. Transactions of the ASME,1994,116(3):849-855
    [65]M.C. Lin. Design and mechanics of the ball screw mechanism [D].The University of Wisconsin-Madison,1989
    [66]Hual-Te T. Huang.B.Ravani. Contact stress analysis in ball screw mechanism using the tubular medial axis representation of contacting surfaces [J]. Transactions of the ASME,1997,119(1):8-14
    [67]Won Soo Yun,Soo Kwan Kim,Dong Woo Cho. Thermal error analysis for a CNC lathe feed drive system[J]. International Journal of Machine Tools and Manufacture.1999,39(7):1087-1101
    [68]Belayev V.G., Turavinov V.P. Effect of the lubricant on the performance characteristics of a ball screw drive[J]. Soviet Engineering Research,1983,3(12):62-64
    [69]Kim S.K, Cho D.W. Real-time estimation of temperature distribution in a ball-screw system[J]. International Journal of Machine Tools and Manufacture,1997,37(4):451-464
    [70]姜洪奎.大导程滚珠丝杠副动力学性能及加工方法研究[D].山东大学.2007
    [71]邱明,陈龙,李迎春.轴承摩擦学原理及应用[M].北京:国防工业出版社,2012
    [72]Belyaev V.G, Kogan A.I. Effect of geometrical errors on contact angle in ball screw transmission. Machines and Tooling(English translation of Stanki I Instrument),1973,44(5):25-29
    [73]罗继伟,罗天宇.滚动轴承分析计算与应用[M],北京:机械工业出版社,2009
    [74]谢友柏,张嗣伟.摩擦学科学及工程应用现状与发展战略研究[M],北京:高等教育出版社,2009
    [75]赵训贵,平舜娣.滚珠丝杠副产生弹性接触变形时实际接触角的计算[J].机床,1989(10):22-26
    [76]Dzhilavdari I.Z. Investigation of the elasticity and elastic hysteresis of surfaces based on the dynamics of the physical pendulum motion with a rolling-contact bearing[J].Trenie i Iznos,2003,24(1):42-48 (In Russian)
    [77]张蓓,宋西平.利用光杠杆法测量金属丝的弹性滞后环[J].大学物理,2007,26(3):38-40
    [78]陈明秋.弹性滞后效应在齿轮降噪中的应用研究[J].机械科学与技术,1995(6):16-17
    [79]Harris T A. Rolling Bearing Analysis[M].3 rd. New York:John Wilcy and Sons. Inc., 1991
    [80]蔡振兵.扭动微动磨损机理研究[D].西南交通大学.2009
    [81]刘剑.高速滚珠丝杠副综合性能的试验研究[D].山东大学.2005
    [82](苏)科拉格利斯基等著.摩擦磨损计算原理[M].北京:机械工业出版社,1982
    [83]何明鉴.机械构件的微动疲劳[M].北京:国防工业出版社,1994.
    [84]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [85]Hite GC, Mabie HH, Eiss NS, et al. Vibration and fretting corrosion of instrument ball bearings[J]. ASLE Trans,1972,15 (1):25-36.
    [86]汪洪,陈原.转盘轴承承载能力及额定寿命的计算方法[J].轴承,2008(2):7-9.
    [87]Li Qijun, Shima Masayuki, Yamamoto Takashi, et al. Study on Fretting Wear of Rolling Bearing (Part 4)-Effects of Various Factors on Fretting Wear [J]. Journal of Japanese Society of Tribologists,1995,40 (12):1029-1036.
    [88]闵文杰,陈建明,张仲义.信息系统评估指标体系及方法的研究[J].铁道学报,2000,25(5):37-41
    [89]杜义贤.机械产品性能评估研究[D].三峡大学,2004
    [90]黄崇福,王家鼎.模糊信息优化处理技术及其应用[M].北京:北京航空航天大学出版社,1996
    [91]徐样发,肖人彬.评估指标相关性的消除方法研究[J].系统工程理论与实践,2002(11):1-5
    [92]阎文杰,陈建明,张仲义.信息系统评估指标体系及方法的研究[J].铁道学报,2000,22(5):37-40
    [93]王兆坦,朱继生,张瑞,等.滚珠丝杠副性能指标的测试与研究[J].功能部件,2009(6):128-133/136
    [94]田茂林.重载滚珠丝杠副可靠性试验及分析[J].金属加工,2012(5):31-32/80
    [95](联邦德国)哈比希(Habig.K.H)著,严立译.材料的磨损与硬度[M].北京:机械工业出版社,1987.2
    [96]陈国荣,唐绍华.基于模糊综合评判法的滚动轴承性能评估[J].轴承,2009(12):24-26
    [97]陈勇将,汤文成,王洁璐.滚珠丝杠副刚度影响因素及试验研究[J].振动与冲击,2013,32(11):70-74
    [98]李兴林,刘泽九,张燕辽,等.国外滚动轴承疲劳寿命试验的现状及其发展趋势[J].轴承,1995,12:30-39
    [99]李兴林.滚动轴承疲劳寿命强化试验研究[D].浙江大学,1995
    [100]滚动轴承试验研究考察组考察报告(第三分册)[R].美国及日本的轴承公司.杭州轴承试验研究中心,1983
    [101]姚江伟.旋转机械永磁轴承的失效模式与加速寿命试验研究[D].天津大学,2004
    [102]黄伯权.基于性能退化模型的数控机床滚珠丝杠副寿命预测研究[D].西南交通大学,2010
    [103]高宏力,李登万,许明恒.基于人工智能的丝杠寿命预测技术.西南交通大学学报,2010,45(5):685-691
    [104]赵敏,高宏力,许明恒.多变量灰色模型在滚珠丝杠剩余寿命预测中的应用.计算机集成制造系统,2011,17(4):846-851
    [105]Khalid F. Al-Raheem, Asok Roy, K. P. Ramachandran, et al. Application of the Laplace-Wavelet Combined With ANN for Rolling Bearing Fault Diagnosis[J]. Journal of Vibration and Acoustics,2008,130(051007)1-9
    [106]B. Sreejith, A.K. Verma,A. Srividya. Fault diagnosis of rolling element bearing using time-domain features and neural networks[J]. IEEE Kharagpur Section and IEEE Sri Lanka Section,2008(8-10):1-6
    [107]郭磊,陈进,赵发刚,等.小波支持向量机多分类器在轴承性能退化评估中的应用[J].机械强度,2009,31(5):702-706
    [108]肖文斌,陈进,周宇,等.小波包变换和隐马尔可夫模型在轴承性能退化评估中的应用[J].振动与冲击,2011,30(8):32-35
    [109]潘玉娜,陈进.小波包-支持向量数据描述在轴承性能退化评估中的应用研究[J].振动与冲击,2009,28(4):164-167/211
    [110]刘良勇,李鸿亮,康正坡,等.高转速对滚动轴承性能影响的分析与计算[J].轴承,2013,2:1-4
    [111]王宇飞,刘刚.变工况下滚动轴承的状态监测与性能分析[J].硅谷,2011,20:156-157
    [112]伍世虔,徐军.动态模糊神经网络一设计与应用[M].北京:清华大学出版社,2008:27-38
    [113]Lu Y, Sundararajan N, Saratchandran P.A sequential Learning Scheme for Function Approximation by Using Minimal Radial Basis function Networks. Neural Computation,1997.9:461-478
    [114]Chen S,Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Network. IEEE Trans. Neural Networks,1991.2:302-309
    [115]Lee S, Kil R M. A Gaussian Potential Function Network with Hierarchically Self-Organizing Learning. Neural Networks,1991.4:207-224
    [116]Huang Haifeng, Gao Hongli, Xu Mingheng. Study on dynamic machining performance of machine tool based on BP network[C]. Procedia Engineering,2011(15):5148-5152
    [117]吴希曦,高宏力,燕继明,等.基于超球面支持向量机的丝杠故障诊断技术.计算 机集成制造系统,2012,16(12):2261-2267
    [118]Park Jong In, Bae Suk Joo. Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests [J].IEEE Transactions on Reliability,2010,59 (1):74-90
    [119]高宏力,李登万,许明恒.基于人工智能的丝杠寿命预测技术[J].西南交通大学报,2010,45(5):685-691.
    [120]张英芝,贾亚洲,申桂香,等.数控机床故障分布的灰关联分析法[J].农业机械学报,2004,35(6):195-197
    [121]赵学智,叶邦彦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010,46(1):100-108
    [122]Chinedum E. Okwudire. Improved Screw-Nut Interface Model for High-Performance Ball Screw Drives[J]. Journal of Mechanical Design,2011.4:(1-10)
    [123]郭磊,陈进,王国伟.基于多智能体的设备性能退化评估系统建模[J].计算机集成制造系统,2008,14(3):494-498
    [124]郭磊.基于核模式分析方法的旋转机械性能退化评估技术研究[D].上海交通大学,2009
    [125]黄祖尧.国外滚珠丝杠副的精度、性能检测动向[J].机床,1985,11:37-39
    [126]林晶,焦志强,李俊升.航空轴承标准体系的现状、问题及建议.航空标准化与质量,2012,4:14-17
    [127]宾光富,周元,Balbir S. Dhillon.基于Fuzzy-A HP的机械设备多特征参数健康状态综合评价研究.中国机械工程,2009,20(20):2487-2492
    [128]崔玉莲.国内外机械产品典型可靠性设计方法评述.质量与可靠性,2000,5:31-34
    [129]Paul I. Ro, Wonbo Shim, Sanghwa Jeong. Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system. Precision Engineering,2000,24:160-173
    [130]Otakar Horejs. THERMO-MECHANICAL MODEL OF BALL SCREW WITH NON-STEADY HEAT SOURCES. Thermal Issues in Emerging Technologies, ThETA 1, Cairo, Egypt, Jan 3-6th 2007:133-137