姿控飞轮摩擦学系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从卫星对其姿控飞轮性能更高地要求出发,对影响姿控飞轮轴系性能的关键问题进行研究,以期获得长寿命、高性能和高可靠性的摩擦学系统,进而提高卫星寿命和控制精度。
     针对飞轮润滑系统采用油润滑时低速性能差、转速范围窄,而固体润滑寿命短、摩擦系数大等问题,提出采用固-液复合润滑技术为轴承提供润滑以改善其在启动和低速状态的性能,并实现其低摩擦、宽转速和精确控制等目标。
     基于液体润滑理论及固体润滑技术,结合摩擦学和界面化学研究固-液复合润滑的可行性;并从材料学、摩擦学、界面化学及流体力学等学科交叉融合的角度,采用理论分析和实验相结合的研究方法分析固-液复合润滑系统的摩擦磨损性能和机理。首先建立了固-液复合润滑在零速启动、边界润滑、混合润滑及弹流润滑摩擦模型,并对各状态下的减摩机制进行研究;并建立球-盘式摩擦学试验系统,先后完成对磁控溅射MoS2膜和化学气相沉积DLC膜的摩擦和磨损试验,从试验角度研究润滑条件、速度和载荷对其摩擦学特性的影响,进而分析膜层减摩机制和耐磨特性,从而为固-液复合润滑的应用提供理论和实验依据。
     理论和试验结果表明:固-液复合润滑能有效改善摩擦副润滑性能,在零速启动、边界润滑、混合润滑或弹流润滑等各状态下的摩擦系数均得到有效降低,零速启动和低速时性能的改善可提高飞轮的可靠性和控制精度,而中高速时摩擦的改善要有效降低飞轮功耗,延长卫星寿命。由于MoS2膜的减摩效果优于DLC膜,其在提高飞轮过“零”性能和提高低速控制精度等方面更具有优势,但MoS2膜在有液体润滑剂的条件下耐磨性能磨损寿命明显降低;DLC膜在有液体润滑剂时的磨损寿命反而提高,能更长久发挥固-液复合润滑性能的优势,对降低飞轮电机功耗、延长卫星寿命具有重要意义。
     为研究润滑剂空间挥发损失及其对轴系润滑寿命的影响,建立了飞轮轴系润滑系统油气分子物理循环模型,并完成模拟真空条件下润滑油的挥发试验;通过理论和试验结果的对比分析,提出降低轴系流导,减少润滑油的挥发损失率,对提高轴系润滑寿命具有重要意义。
     通过干摩擦条件下的运转试验和对电流特性和摩擦表面形貌的分析,研究润滑不良时氮化硅陶瓷球混合轴承的临界失效特性,对分析飞轮轴系临界性能具有重要意义。
To achieve longer life, better performance and higher reliability of the tribological system in demanding increasing more higher requirement of the attitude control flywheel for satellite, and furthermore to improve the life and the control precision of the satellite, the key factors and which influence the performance of the axle of the attitude control flywheel be studied in this paper.
     Aiming at the problem of the poor performance at low speed, the narrow range of the rotator when the flywheel lubricated with liquid lubricants, and the short lubrication life and poor antifriction while that lubricated with solid lubricant, for improve the performance of the fly wheel when work at start-up and low speed, and realize the low friction, wide speed range and accurate control, the solid lubrication coatings using with liquid lubricants simultaneously is proposed.
     Based on the theory of liquid lubrication and solid lubrication, and combined with the tribology and the surface and interface chemistry principles, the feasibility of solid lubricating coatings-oil composite lubrication was analyzed, and the performance and mechanism of solid lubrication film used with liquid lubricants was studied with experiment and theoretic based on the knowledge of material mechanics, tribology, surface and interface chemistry and hydrodynamic. First, the tribological modal of solid lubricating coatings-oil composite lubrication were established when the friction couples work at start-up, boundary lubrication, mixed lubrication and hydrodynamic lubrication, and antifriction mechanism of each model was analyzed. Then the tribological experiment were carried out on magnetron sputtered MoS2 coatings and chemical vapor deposited hydrogenated diamond-like carbon (DLC) films against Si3N4 ball using a ball-on-disk tribo-tester under the conditions of room temperature and different lubrication condition, and the influence of lubrication condition, speed and load to the tribology performance of solid coatings was analyze from the results of experiment, at the same time, the antifriction mechanism and antiwear property be studied too based on surface morphology of coatings, investigated by atom force microscope (AFM), and so as to provide theoretical and experimental basis for the applications of solid - liquid composite lubrication in flywheel.
     The results of theoretical analysis and experiment both showed that: The performance of friction couples be improved greatly when the solid lubrication film used with liquid lubricants simultaneously, the friction of the couple at start-up, boundary lubrication, mix lubrication and hydrodynamic lubrication be improved effectively, the improvement of the tribological performance at start-up and low speed could improve the reliability and control precision of the attitude control flywheel, and the decrease of the friction at high speed could reduce the power and prolong the life the satellite effectively. For the anti-friction performance of MoS2 better than DLC, the effect of MoS2 film to improve the zero-speed reversing and control precision at low speed of the flywheel better than DLC, but the anti-wear performance of MoS2 film be reduced by the liquid lubricants. While the anti-wear performance of DLC film be improved evidently and which could exert the advantage of solid lubricating coatings-oil composite lubrication chronically, and that is important to reduce the motor’s power and increase the life of the flywheel.
     In order to analyze the loss of lubrication oil vapor in space and the influence of the oil loss to the lubrication life of attitude control Flywheel, the physical mode of the lubrication was established and the transfer of the oil molecule via by the seal gap was studied, and experimental of the selected oil volatilized in a simulant vacuum room, and the way to reduce the flow conductance of the shafting and the loss of oil vapor molecule was given through the comparative study of theoretical and experimental investigation, and then improve the lubrication life of the flywheel effectivly.
     To investigate the properties of critical failure of the Si3N4 hybrid ceramic ball bearing when the lubrication got worse, the characteristic of currents of driver motor and the wear surface morphology was analyzed after the tribology experiment of the test bearing rotating at the high speed to failure without lubrication was completed, the research would be useful to the critical performance of flywheel.
引文
[1]翁立军,刘维民.空间摩擦学的机遇和挑战[J].磨擦学学报.2005,25(1):92-95.
    [2] Briscoe H M. Why space tribology?[J], Tribology International.1990.123(2):67-74
    [3] Jones W R Jr. et a1.The preliminary evaluation of liquid lubricants for space applications by vacuum tribometry[R].Proc of 28th Aerospace M ECH Syrup NASA Lewis Research Center. Cleveland, 1994.
    [4] Roberts E W. Thin solid lubricant films in space[J] Tribology International. 1990,123(2):95-104
    [5] Zaretsky E V. Liquid lubrication in space, Tribology International[J], 1990,23(2): 75-93.
    [6] Zaretsky E V. Liquid lubrication in space[J], Tribology International, 1990,23(2): 75-93.
    [7] Fleischauer P D, Hilton M R. Applications of space tribology in the USA Tribology International, 1990,23(2),:135-139.
    [8]袁杰.空间有效载荷用长寿命中高速滚动轴承的润滑[J].润滑与密封.2006,3:154-158
    [9]黄圳圭,航天器姿态动力学[M].长沙:国防科技大学出版社,1997.151-210
    [10]见永刚,王治强,张斌.三轴稳定卫星姿态控制周期的仿真研究[J].计算机工程与设计,2008,29(3):716-718.
    [11]施少范.国外对地观测卫星高精度姿态控制系统研究[J].上海航天,2000,17(6):49- 53.
    [12] Jaehyun Jin, Sangho Ko, Chang-Kyung Ryoo. Fault tolerant control for satellites with four reaction wheels[J]. Contrlo Engineering Practice, 2008,16(10):1250-1258.
    [13] Michael E, Rene S. Space mechanisms and tribology of future space missions[J]. Acta Astronautica.2004,55(1):935-943.
    [14]程颜.反作用飞轮自适应逆控制[D],哈尔滨,哈尔滨工业大学硕士论文,2003
    [15] William R J, Mark J J. Lubrication for space applications[R]. NASA/CR-2005- 213424.
    [16] Robert L F. Lubrication of space system[R]. NASA Technical Memorandum 106392.1994
    [17]古乐,王黎钦,李秀娟,等.氮化硅轴承球超低温承载特性试验研究.哈尔滨工业大学学报.2002,34(2):148-151.
    [18] Takebayashi H.在极端特殊环境下应用的轴承,第一部分:轴承材料与固体润滑.国外轴承技术.2002,2:57-65.
    [19]陈晓伟,梁宇翔,汪孟言.低挥发液体空间润滑剂基础油合成及性能研究[J].石油炼制与化工.2004,35(7):46-49.
    [20]陈晓伟,梁宇翔.液体空间润滑剂的现状与发展[J].润滑与密封. 2006(6): 176-178,188.
    [21]孙德智,姜兆华.卫星用轴承润滑剂的特点及界面研究现状[J].宇航材料工艺.1995(2):1-5.
    [22] Robert L F, Michael M K. Liquid lubrication for space applications[R], NASA Technical Memorandum 105198,1992.
    [23]温诗铸.从弹流润滑到薄膜润滑—润滑理论研究的新领域[J].润滑与密封,1993,6:48-55
    [24]温诗铸.润滑理论研究的进展与思考[J].摩擦学学报,2007,27(6):497-503.
    [25]王文中,王顺,胡元中,等.全膜润滑到边界润滑的过渡研究[J].润滑与密封,2006(9):32-35.
    [25]雒建斌,路新春,温诗铸.薄膜润滑研究的进展与问题[J].自然科学进展,2000,10(12):1058-1065.
    [26]雒建斌,史兵,钱林茂,等.超滑研究进展与机理分析[J].清华大学学报(自然科学版,1997,37(11):104-109.
    [27]雒建斌,温诗铸,黄平,等.润滑理论的新进展——薄膜润滑[J].润滑与密封,1994,6:2-10,14.
    [28]温诗铸,黄平.摩擦学原理(第2版)[M].北京:清华大学出版社,2002:2-3.
    [29] Theo M, Wilfried D. Lubricants and lubrication[M]. Germany: Betz-druck Gmbh,Darmstadt.2007:13-16.
    [30] K?upka I, Poli??uk R, Hartl M. Behavior of thin viscous boundary films in lubricated contacts between micro-textured surfaces[J]. Tribology International, 2009,42(4): 535-541.
    [31]姜作泰.航空精密仪表油的研究与应用[J].合成润滑材料.1999,26(4):31-38.
    [32]冯大鹏,翁立军,刘维民.全氟聚醚润滑油的摩擦学研究进展[J].摩擦学学报,2005,25(6):597-602.
    [33] Wang M, Miyake S, Matsunuma S. Nanowear studies of PFPE lubricant on magnetic perpendicular recording DLC-film-coated disk by lateral oscillation test[J]. Wear, 2005, 259(7-12):1332-1342.
    [34] Fandi?o O, Lugo L, Maria J P, et al. Temperature and pressure dependences of volumetric properties of two poly(propylene glycol) dimethyl ether lubricants[J].The Journal of Chemical Thermodynamics, 2010,42(1):84-89.
    [35] MARK J J, WILLIAMR. J J, ROAMER E P. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings[R]. Glenn: NASA Glenn Research Center,2001.
    [36]刘春浩,顾家铭,陈晓阳,等.小卫星姿控动量轮陶瓷球混合轴承性能分析与试验[J].宇航学报.2007,28(2):427-431.
    [37]黄克威,王成伟.历经十年寿命试验的消旋天线机构轴承的可靠性分析[J].中国空间科学技术.1991(6):37-44.
    [38]刘健海.卫星轴承微循环润滑及失效分析[D].北京,北京:清华火学.1992.
    [39]樊幼温.空间轴承润滑系统的物理,数学模型[J].控制工程,1993(4):1-5.
    [40] Kazuhisa M. Solid lubricants and coatings for extreme environments: state-of-the-art-survey. NASA/TM-2007-214668.
    [41] Kazuhisa M. Solid lubrication fundamentals and application[C]. NASA/TM- 1998-107249/CH1-REV1.
    [42] Kessler G,Mahn G.Structure and vacuum frictional properties of solid lubricant films[J].Lubr Eng,1967,23(A):372-379.
    [43] Kazuhisa M. Solid lubrication fundamentals and application-Friction and wearProperties of selected solid lubricating films: case studies[C]. NASA/TM-2000- 107249/chapter 6
    [44] Hilton, M R, Fleischauer, P D. Applications of solid lubricant films in spacecraft Surface and Coatings Technology, 1992,54/55:435-441.
    [45]赵滨海,宁春磊.固体润滑轴承在航天器中的应用[J].轴承.2001(8):1-3.
    [46]梅田一德.陶瓷轴承与固体润滑[J].国外轴承技术.2001,4:25-29
    [47]西村允.真空中运转一万小时的固体润滑滚动轴承的磨擦学特性.国外轴承技术[J]. 1994.4:18-25
    [48]石淼森.固体润滑技术[M].北京:中国石化出版社,1998:
    [49]孙荣禄,孙树文,郭立新.固体润滑技术在空间机械中的应用[J].宇航材料工艺.1999,29(1):17-22
    [50] TEER D G.New solid lubricant coatings[J].Wear.2001,251(1-2):1068-1074.
    [51] Pope L E, Jervis T R, Nastasi M. Effects of laser processing and doping on the lubrication and chemical properties of thin MoS2 films[J]. Surface and Coatings Technology, 1990,42(3):217-225.
    [52] Hirvonen J P, Koskinen J, Jervis J R, et a1. Present progress in the development of low friction coatings[J]. Surface and Coatings Technology,1996,80(1-2):139-150.
    [53] Baker C C, Chromik R R, Wahl K J. Preparation of chameleon coatings for space and ambient environments[J]. Thin Solid Films. 2007,515(7): 6737-6743
    [54] Renevier N M, Hamphire J, Fox V C. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings[J]. Surface and Coatings Technology 2001,142-144: 67-77.
    [55]孙嘉奕,翁立军,孙晓军. Ti/Ag及Ag薄膜的应力状态及其对摩擦学性能的影响[J].机械工程材料.2002,26(1):29-32
    [56] Erdemir A. solid/liquid lubrication of ceramics at elevated temperatures[C]. Sandiego,CA, The 11th International Conference on Wear of Materials, 1997,4:21-24.
    [57] Erdemir A. Review of engineered tribological interfaces for improved boundary lubrication[J]. Tribology International, 2005,38(3):249-256.
    [58]周先辉,孙友松,魏良模.边界润滑摩擦面固体润滑涂层技术发展的若干趋势[J].润滑与密封.2006.4:175-178
    [59] Tagawa M, Yokota K, Matsumoto K, et al. Space environmental effects on MoS2 and diamond-like carbon lubricating films: Atomic oxygen-induced erosion and its effect on tribological properties[J]. Surface & Coatings Technology. 2007,202(4-7): 1003–1010.
    [60] Roberts E W, Ultralow friction films of MoS2 for space applications[J], Thin Solid Films,1989,181(1-2):461–473.
    [61]罗虹,刘家浚,刘芬,等.脂润滑下二硫化钼溅射膜的摩擦特性[J].摩擦学学报.1994,15(4):314-319.
    [62] Ihsan Efeoglu, ?zlem Baran, Fatih Yetim, et al. Tribological characteristics of MoS2-Nb solid lubricant film in different tribo-test conditions[J]. Surface & Coatings Technology. 2008, 203(5-7): 766-770.
    [63]冶银平,陈建敏,周惠娣.粘结固体MoS2润滑涂层在油润滑条件下的摩擦学性能[J].润滑与密封,2007,32(9):10-12.
    [64]郑友华,李冀生,王美玲.固体润滑涂层在干摩擦及有油条件下的摩擦磨损性能[J].润滑与密封,2001,(3):35-37
    [65]徐进,朱昱昊,刘捍卫,等.湿度、温度及润滑油对粘结MoS2固体润滑涂层微动磨损寿命的影响[J].机械工程材料,2003,27(9):21-23.
    [66]梅方胜,陈卫飞,梅炳初.不同摩擦条件下MoS2-Ti3SiC2的摩擦学性能[J].中国材料进展,2009,28(2):56-60.
    [67] Sol Aisenberg, Ronald Chabot. Ion-beam deposition of thin films of diamond-like carbon [J]. J. Appl. Phys, 1971,42(7):2953-2958.
    [68] A.Erdemir A.The role of hydrogen in tribological properties of diamond-like carbon films[J]. Surface and Coatings Technology. 2001,146-147(10):292~297.
    [69] Vanhulsel A, Velasco F, Jacobs R. DLC solid lubricant coatings on ball bearings for space applications[J]. Tribology International. 2007,40(7):1186-1194.
    [70] Heon Woong Choi, David M. Gage, Reinhold H, et al. Effects of thermal annealing and Si incorporation on bonding structure and fracture properties of diamond-like carbon films[J]. Diamond & Related Materials. 2009,18(4): 615-619.
    [71] Kim H G, Ahn S H, Kim J G, et al. Effect of Si-incorporation on wear–corrosion properties of diamond- like carbon films[J]. Thin Solid Films. 2005;482(1-2):299-304
    [72] Tagawa M, Yokota K, Matsumoto K, et al. Space environmental effects on MoS2 and diamond-like carbon lubricating films: Atomic oxygen-induced erosion and its effect on tribological properties[J]. Surf Coat Technol. 2007,202(4-7): 1003-1010.
    [73] Eryilmaz O L, Erdemir A. TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments[J]. Wear, 2008(265)(1-2): 244–254.
    [74] Ando J, Ohmori T, Murase A, et al. Tribological properties of Si-containing diamond-like carbon film under ATF lubricated condition[J]. Wear. 2009,266(1-2): 239-247.
    [75] Ksenija Topolovec-Miklozic, Frances Lockwood, Hugh Spikes. Behaviour of boundary lubricating additives on DLC coatings[J]. Wear. 2008,265(11-12): 1893- 1901.
    [76] Kalin M, Vi?intin J. A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contacts when lubricated with mineral and biodegradable oils[J], Wear,2006, 261(1): 22–31.
    [77] Boris Kr?an, Franz Novotny-Farkas, Jo?e Vi?intin. Tribological behavior of tungsten-doped DLC coating under oil lubrication[J]. Tribology International, 2009,42(2):229-235.
    [78] Kalin M, Vi?intin J, Vercammen K, et al. The lubrication of DLC coatings with mineral and biodegradable oils having different polar and saturation characteristics[J], Surface&Coatings Technology, 2006,200(14-15): 4515–4522.
    [79] Kalin M, Vi?intin J. The tribological performance of DLC-coated gears lubricated with biodegradable oil in various pinion/gear material combinations[J], Wear ,2005,259 (7-12):1270–1280.
    [80] Haque T, Morina A, Neville A, et al. Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions[J]. wear, 2009,266(1-2): 147-157.
    [81] Vercammen K, Van Acker K, Vanhulsel A, et al. Tribological behaviour of DLC coatings in combination with biodegradable lubricants[J], Tribology International,2004, 37(11-12): 983–989.
    [82] Statuti R P C C, Radi P A, Santos, L V, et al. A tribological study of the hybrid lubrication of DLC films with oil and water[J].Wear,2009, 267(5-8):1208–1213.
    [83] Wang L, Snidle R W, Gua L. Rolling contact silicon nitride bearing technology: a review of recent research[J]. Wear, 2000, 246(1-2) :159-173.
    [84] Petit S, Duquennoy M, Ouaftouh M, et al. Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy[J]. Ultrasonics, 2005, 43(10):802-810.
    [85] Kang J, Hadfield M, Ahmed R. The effects of material combination and surface roughness in lubricated silicon nitride/steel rolling contact fatigue[J]. Material and Design, 2003, 24(1):1-13.
    [86] Thoma K, Rohr L, Rehmann H, et al. Materials failure mechanisms of hybrid ball bearings with silicon nitride balls[J]. Tribology International, 2004, 37(6):463-471.
    [87] Wang Y, Hadfield M. Failure modes of ceramic rolling elements with surface crack defects[J]. Wear, 2004, 256(1-2):208-219.
    [88] Takebayashi H. Bearings for extreme special environments-part 3-basic performance of ceramic (Silicon Nitride) bearings[J]. Koyo, 2001,158:53-60.
    [89]马志奎.Si3N4陶瓷球混合轴承在长寿命陀螺电机上的应用[J].导航与控制, 2003,2(2):59-62.
    [90] MARK J J, WILLIAMR. J J, ROAMER E P. Evaluation of Temperature and Material Combinations on Several Lubricants for Use in the Geostationary Operational Environmental Satellite (GOES) Mission Filter Wheel Bearings[R]. Glenn: NASA Glenn Research Center, NASA/TM-2001-211121.
    [91]屠善澄.卫星姿态动力学与控制(4)[M].北京:宇航出版社。2006.316-318.
    [92]刘阳,孙冲,崔展鹏,等.多级串联密封系统泄漏规律及应用研究[J].宇航学报.2005,26(4):476-481.
    [93] U?ur Yücel. Calculation of leakage and dynamic coefficients of stepped labyrinth gas seals[J]. Applied Mathematics and computation. 2004,152(2):521-533.
    [94] Dursun E. Rotordynamic coefficients in stepped labyrinth seals[J]. Comput. Methods Appl. Mech. Engrg. 2002,191(29-30):3127–3135.
    [95] KANNEL J W,“Dufrane K F. Rolling element bearing in space”The 20th aerospace mechanism symposium[R]. Glenn: NASA Glenn Research Center, 1986.
    [96]丁学俊,杨彦磊,肖国俊.迷宫密封流场与泄漏特性研究[J],流体机械, 2006,34(4):14-18.
    [97]高光藩,张牢牢.迷宫密封性能影响因素分析.风机技术. 1997(6):17-21.
    [98]朱高涛,刘卫华.迷宫密封泄漏量计算方法的分析[J],润滑与密封,2006,176(4):123-126
    [99]孙婷梅.迷宫密封流场及其特性计算[D],浙江大学,2008
    [100]沈青.认识稀薄气体动力学[J],力学与实践.2002,24(6):1-14.
    [101]达道安.真空设计手册[M].北京:国防工业出版社.2004,7:50-132.
    [102]高云国.现代小卫星及其相关技术[J].光学精密工程.1999,7(5): 16-21.
    [103]白越,刘治化,吴一辉.高速混合陶瓷轴承性能试验[J],哈尔滨工业大学学报,2009,41(7):169-17.
    [104]陈日敏.国外飞轮研制概况及其在卫星姿控中的应用[R].北京:航天工业总公司502所,1997.
    [105]薛群基,刘惠文.陶瓷摩擦学Ⅱ.陶瓷材料的润滑[J].摩擦学学报. 1996,16(2): 184-190.
    [106] Petit S, Duquennoy M, Ouaftouh M, et al. Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy[J]. Ultrasonics, 2005, 43(10):802-810.
    [107]于德阳,翁立军.物理气相沉积减摩与耐磨薄膜[J].摩擦学学报.1996, 7(3): 282-288.
    [108]薛群基,魏建军.陶瓷润滑研究的发展概况[J].摩擦学学报.1995, 15 (1):90-94.
    [109] Woydt M, Schwenzien J. Dry and water-lubricated slip-rolling of Si3N4- and SiC-based ceramics[J]. Tribology International,1993,26(3):165-173.
    [110]曹同坤,邓建新.一种自润滑陶瓷摩擦磨损性能的研究[J].摩擦学学报, 2005, 25(6):564-568.
    [111] David J M, John J M J, James H A, et al. All-steel and Si3N4-steel hybrid rolling contact fatigue under contaminated conditions[J]. Wear, 2000, 239(2):176-188.
    [112]张家玺,刘昆,胡献国.纳米金刚石颗粒对发动机润滑油摩擦学特性的影响[J].摩擦学学报,2002,22(1):44-48.
    [113] Neville A, Morina A, Haque T, et al. Compatibility between tribological surfaces and lubricant additives-How friction and wear reduction can be controlled by surface/lube synergies[J]. Tribology International, 2007, 40(10-12):1680-1695.
    [114]王超.液固二相流体润滑状态下表面形貌特性变化的研究[D].合肥:合肥工业大学,2002。
    [115]姚俊兵,董浚修,等.固体表面特征对摩擦学性能的影响[J],润滑与密封,1995(2):65-67.
    [116]刘忠,梅焕谋,等.水溶性润滑添加剂的分子设计浅说[J],润滑与密封,1995 (3):31-34.
    [117]谭建平.铝材轧制润滑机理研究及高效润滑剂配方设计[D],长沙:中南工业大学,1993.
    [118] Cho,Y K, Cai L, Granick S. .Molecular tribology of lubricants and additives[J], Tribology International, 1997,30(12):889-894.
    [119]杨升荣,任嗣利,张均彦,等.自组装单分子膜的结构及其自组装机理[J],高等学校化学学报,2001,22(3):470-476.
    [120] Tao Y T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver,copper,and aluminum[J], J.Am.Chem.Soc., 1993,115(10): 4350-4358.
    [121] Stolarski T A, Quantitative criteria for boundary lubricant selection[J], Wear, 1991,150(1-2):159-168.
    [122]宋锽.油性剂分子结构与润滑性能关系研究[D].湘潭:湘潭大学化学学院, 2002.
    [123]朱王步瑶,赵振国.表面物理化学[M],北京:化学工业出版社,1996:205-234
    [124]王伟,刘昆,焦明华,等.液固二相流润滑下活塞环/缸套摩擦特性研究[J].合肥工业大学学报(自然科学版). 2005,28(1):26-28.
    [125]张朝辉,温诗铸,雒建斌.纳米级二相流的润滑特性[J].设计与研究. 2003(1): 1-3.
    [126]田民波.薄膜技术与薄膜材料[M],北京:清华出版社,2006.
    [127]乔玉林,梁志杰,孙晓峰,等. MoS2在菜籽油中的高温摩擦磨损性能研究[J].摩擦学学报,2006,26(1):41-44.
    [128] Donnet C, Erdemirb A.Historical developments and new trends in tribological and solid lubricant coatings[J]. Surface and Coatings Technology. 2004,180- 181:76–84
    [129] Stoyanov P, Fishman J Z, Lince J R, et al. Micro-tribological performance of MoS2 lubricants with varying Au content[J]. Surface & Coatings Technology. 2008,203(5-7): 761-765.
    [130]尹桂林,黄平华,余震,等. MoS2/WS2共溅射复合薄膜的微结构及其摩擦磨损性能研究[J].摩擦学学报,2007,27(1):41-44.
    [131]周晖,万志华,郑军,等.沉积压力对非平衡磁控溅射沉积MoS2-Ti复合薄膜的结构与性能影响研究[J].润滑与密封,2009,34(5):9-12,41.
    [132]张晓化,刘道新,高广睿,等. MoS2/Ti复合薄膜对Ti811合金高温摩擦磨损性能及微动疲劳行为的影响[J].摩擦学学报,2008,28(3):219-224.
    [133] Messier R, Badzian A R, Badzian T, et al. From diamond-like carbon to diamond coatings[J], Thin solid films, 1987, 153(1-3):1-9.
    [134] Liu Y, Erdemir A, Meletis E I. A study of the wear mechanism of diamond-like carbon films[J]. Surface and Coatings Technology.1996,82(1-2):48~56
    [135] Liu Y, Erdemir A, Meletis E I. An investigation of relationship between graphitization and frictional behavior of DLC coatings[J]. Surface and Coatings Technology.1996,86-87(2)(1-3):564~568.
    [136] Erdemir A. Bindal C, Fenske G R, et al. Characterization of transfer layers forming on surface sliding against diamond-like carbon[J]. Surface&Coatings Technology, 1996,86-87(2):692-69