微管蛋白在颞叶癫癎模型突触后致密物中的表达及其意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分微管蛋白在颞叶癫癇模型突触后致密物中的动态表达
     目的:探讨微管蛋白α-tubulin与β-tubulin在颞叶癫癇大鼠模型突触后致密物(PSD)中的动态表达。
     方法:健康成年雄性Sprague-Dawley(SD)大鼠,体重250±20 g,200只,实验随机分为对照组和颞叶癫癇(TLE)组。建立氯化锂-匹罗卡品颞叶癫癇大鼠模型,分别在癫癇持续状态(SE)后1d、3d、7d、15d、30d 6个时间点提取全脑组织,分离PSD蛋白。应用westernblot方法检测β-actin、β-tubulin及GAPDH蛋白在PSD中的表达变化,确定PSD蛋白western blot半定量分析的内参;采用western blot及免疫电镜方法检测微管蛋白α-tubulin与β-tubulin在PSD中的表达变化。
     结果:1.氯化锂-匹罗卡品大鼠致癇模型:SE诱发成功率为91.1%,总死亡率为20.6%,模型成功率为70.6%。
     2.PSD蛋白纯度:NR1与PSD-95蛋白在P2成分、突触小体及PSD中均呈免疫印迹阳性,而SynPhy蛋白在PSD成分中呈阴性。
     3.颞叶癫癇大鼠PSD蛋白western blot半定量分析的内参确定:β-actin、β-tubulin及GAPDH在对照组中均表达,β-actin及β-tubulin蛋白含量从SE后1d开始减少,SE后7d降至最低,SE后15d、30d表达有所增多,但仍低于对照组(P<0.01)。而GAPDH蛋白在SE各组及对照组中的表达无明显差异(P>0.05)。随后,我们随机选取正常对照组及SE后15天PSD蛋白两个样本,每个样本置6个泳道,分别对这三个蛋白进行分析。实验证实与正常对照组的6个泳道蛋白相比,SE后15天6个泳道的蛋白β-actin与β-tubulin的表达均明显减少,有明显的统计学意义(P<0.01)。而GAPDH的表达在所有泳道中的表达则无明显差异(P>0.05),提示β-actin与β-tubulin的表达变化与加量误差无关。
     4.微管蛋白α-tubulin与β-tubulin在PSD的表达检测:①α-tubulin与β-tubulin在SE后1d、3d、7d、15d、30d的表达明显减少,SE后7d降至最低(P<0.01),在SE后15d及30d蛋白含量较SE后7d时有所增多,但仍明显低于对照组(P<0.01)。②免疫电镜结果显示在正常对照组海马CA1中,β-tubulin蛋白在突触前、突触问隙、突触后及胞浆中均有表达。与对照组比较,PSD中β-tubulin在SE后1d、3d、7d、15d、30d PSD中的阳性表达颗粒明显减少,SE后7d降至最低(P<0.01),几乎未见有阳性颗粒表达,SE后15d及30d表达颗粒有所增多,当仍明显低于对照组(P<0.01)。
     结论:1.GAPDH蛋白更适合做颞叶癫癇大鼠PSD蛋白westernblot半定量研究的内参。2.PSD蛋白tubulin参与了颞叶癫癇形成机制。
     第二部分突触后致密物微管蛋白对颞叶癫癇大鼠自发发作的影响
     目的:探讨突触后致密物微管蛋白α-tubulin与β-tubulin对颞叶癫癇大鼠反复自发发作形成的影响。
     方法:健康成年雄性Sprague-Dawley(SD)大鼠,体重250±20g,236只,实验随机分为对照组、TLE自发发作(TLE-SRS)组和TLE无自发发作(TLE-NSRS)组。建立氯化锂-匹罗卡品颞叶癫癇大鼠模型,提取全脑组织,分离PSD蛋白。采用western blot及免疫电镜方法检测微管蛋白α-tubulin与β-tubulin在PSD中的表达变化。
     结果:1.氯化锂-匹罗卡品致癇模型SE诱发成功率为91%,总死亡率为22%,模型成功率为72.5%,自发发作率为50.5%。TLE-SRS组大鼠EEG异常,表现θ节律增多及单个、多个棘波或阵发连续棘波群发放;TLE-NSRS组大鼠EEG表现为正常或轻度异常,有时可发现散在的棘波或尖波;生理盐水对照组EEG亦未见癫癇样放电波。
     2.尼氏染色:与对照组比较,TLE-SRS组海马CA1、CA3区及齿状回区均有显著的神经元减少(P<0.01)。CA1区和CA3区锥体细胞层神经元排列紊乱,可见部分神经元形态不完整,细胞肿胀或皱缩、轮廓模糊、界限不清,细胞间距加大,胞浆尼氏小体减少。齿状回颗粒细胞边界不整齐、排列松散、增宽,呈现颗粒细胞发散改变。TLE-NSRS组存活神经元与对照组相比也有明显减少,但较SRS组要多(P<0.01)。
     3.微管蛋白α-tubulin与β-tubulin在PSD的表达检测:①与对照组比较,TLE-NSRS组α-tubulin在PSD中表达明显减少(p<0.01),TLE-SRS组PSD中α-tubulin含量较对照组也显著减少(p<0.01);与NSRS组相比,其表达水平也明显降低(p<0.01)。②与对照组比较,TLE-NSRS组及SRS组β-tubulin在PSD中表达明显减少(p<0.01);与NSRS组相比,SRS组PSD中β-tubulin含量也明显降低(p<0.01)。免疫电镜结果显示在正常对照组海马CA1中,β-tubulin蛋白在突触前、突触间隙、突触后及胞浆中均有表达,我们将着重与突触后致密物PSD中β-tubulin在SE后的表达变化。与对照组比较,蛋白β-tubulin在TLE-NSRS组及SRS组PSD中的阳性表达颗粒明显减少(p<0.01),与NSRS组相比,SRS组PSD中β-tubulin含量也明显降低(p<0.01)。支持western blot分析结果。
     结论:PSD中Tubulin蛋白表达与颞叶癫癇反复自发发作呈负相关。
     第三部分海马微管稳定性对颞叶癫癇成的影响
     目的:探讨干预微管的稳定性对颞叶癫癇形成的影响。
     方法:①健康成年雄性SD大鼠,体重250±20g,75只,立体定向海马注射不同剂量的秋水仙碱(微管解聚剂)及紫杉醇(微管聚合剂),根据尼氏染色、免疫组织化学检测β-tubulin的表达确定秋水仙碱及紫杉醇的最佳注射剂量。②健康成年雄性SD大鼠,体重250±20g,60只,建立氯化锂-匹罗卡品颞叶癫癇大鼠模型,在SE后7天,分别予以立体定向海马注射最适剂量的秋水仙碱及紫杉醇,归于秋水仙碱干预组及紫杉醇干预组。对各组大鼠进行行为学观察及脑电图记录,30天后根据有无自发发作每组又分为自发发作组及无自发发作组两亚组。采用免疫电镜方法检查β-tubulin在PSD中的表达。
     结果:1.海马注射秋水仙碱最适剂量的确定:①尼氏染色:与对照组相比,秋水仙碱0.01、0.03、0.1、0.3ug干预组存活神经元数量无明显变化(p>0.05),1.0与2.0ug治疗组神经元死亡明显增多(p<0.01),细胞排列紊乱,可见神经元形态不完整,细胞肿胀或皱缩、轮廓模糊、界限不清。②免疫组织化学方法检测发现对照组可见β-tubulin大量表达,主要分布在胞浆,与对照组比较,秋水仙碱0.01、0.03、0.1ug治疗组β-tubulin表达无明显差异(p>0.05),0.3ug治疗组表达减少(p微管解聚,但不影响神经元细胞的存活。
     2.海马注射紫杉醇最适剂量的确定:①尼氏染色:与对照组相比,紫杉醇0.1、0.5、1.0ug干预组存活神经元数量无明显变化(p>0.05),1.5ug治疗组神经元死亡明显增多(p<0.01),细胞排列紊乱,可见神经元形态不完整,细胞肿胀或皱缩、轮廓模糊、界限不清。
     ②免疫组织化学方法检测发现与对照组比较,紫杉醇0.1、0.5ug治疗组β-tubulin表达无明显差异(p>0.05),1.0ug治疗组表达较对照组增多(p<0.05),但1.5ug治疗组表达明显减少(p<0.01)。③提示海马注射紫杉醇的最佳剂量为1.0ug,使微管聚合,但不影响神经元细胞的死亡。
     3.秋水仙碱0.3ug干预组及紫杉醇1.0ug干预组大鼠行为学及EEG与对照组无差异,提示秋水仙碱及紫杉醇无致癇性。
     4.TLE组白发发作率为75%,秋水仙碱组自发发作率为90%,。紫杉醇组自发发作率为40%。脑电图结果显示TLE-SRS组大鼠EEG重度异常,表现θ节律增多及单个、多个棘波或阵发连续棘波群发放,TLE-NSRS组大鼠EEG正常或轻度异常,偶见单个棘波或尖波发放,与TLE-SRS组比较,秋水仙碱-SRS组大鼠EEG无显著差异,而紫杉醇-SRS组大鼠EEG棘尖波明显减少,频率及波幅均降低。秋水仙碱-NSRS组及紫杉醇-NSRS组大鼠EEG与TLE-NSRS组相比无显著差异。
     5.微管蛋白β-tubulin在PSD的表达检测:免疫电镜结果显示与TLE-SRS组比较,秋水仙碱-SRS组β-tubulin表达无显著差异(p>0.05),而紫杉醇-SRS组表达明显增多(p<0.01)。秋水仙碱-NSRS组与紫杉醇-NSRS组与TLE-NSRS组比较β-tubulin表达无显著差异(p>0.05)。
     结论:1.海马微管稳定性障碍是颞叶癫癇形成的易感因素;2.促微管聚合剂可能可防止颞叶癫癇形成。
Part One The down-regulation of microtubules at postsynaptic density in rats with temporal lobe epilepsy
     Objective To investigate the expression change of proteinsα-tubulin andβ-tubulin at postsynaptic density(PSD) in rats with temporal lobe epilepsy(TLE).
     Method 200 male Sprague-Dawley(SD) rats were randomly divided into control group and TLE group.The lithium-pilocarpine model of TLE was established.,The whole brain was collected to isolate the PSD at 1d,3d,7d,15d and 30d after SE.First,the expression of proteinsβ-actin、β-tubulin and GAPDH were detected using Western Blot to define the internal control of Western Blot analysis of proteins at PSD. Then,Western Blot and immuno-electron microscope analysis were used to detect the expression of microtubule proteinsα-tubulin andβ-tubulin at PSD.
     Results 1.The lithium-pilocarpine model of TLE:SE was induced at the achievement ratio of 91.1%and total mortality of 20.6%.
     2.Purity of PSD:The proteins NR1 and PSD-95 were all expressed in P2 fraction,synaptosome and PSD fraction,but Synphy protein was absent in PSD fraction.
     3.Definition of internal control in western blot analysis of rat PSD with TLE:The proteinsβ-actin,β-tubulin and GAPDH were all expressed in control group.β-actin andβ-tubulin were decreased from 1d after SE, and were slowest on 7d after SE(P<0.01).Compared to on 7d after SE, the two proteins were increased on 15d and 30d after SE,but still less than control group(P<0.01).The expression of GAPDH in TLE group was no significant difference compared to control group(P>0.05).After then, we randomly chose two PSD samples from control group and 15-day SE group.Each sample were loaded on six lanes.Our results showed that the expression ofβ-actin andβ-tubulin were significantly lower in six lanes of the SE group than in the control group(P<0.01).Whereas the expression of GAPDH had no difference in two samples(P>0.05).It was indicated that the variation ofβ-actin andβ-tubulin expression was a result of TLE instead of loading error.
     4.The expression ofα-tubulin andβ-tubulin at PSD①the expression ofα-tubulin andβ-tubulin were markly decreased from the time point of 1 day after SE,and were lowest on 7-day after SE(P<0.01). The protein levels on 15-day and 30-day after SE were higher than on 7-day after SE,but still largely lower than in control group(P<0.01).②Immuno-electron microscopy showed that in CA1 part of hippocampus in control group,β-tubulin was expressed in cytoplasm and synapse including presynapse,synaptic cleft and PSD.Our study emphasized on the change of expression ofβ-tubulin at PSD.Immunogold labeled particles ofβ-tubulin were markly decreased from 3-day after SE,and decreased lowest on 7-day after SE(P<0.01).And then the expression was increased from 15-day after SE compared to on 7-day after SE,but still less than in control group(P<0.01).
     Conclusion 1.GAPDH was more suitable for the internal control in western blot analysis of rat PSD with TLE.2.Microtubulesα-tubulin andβ-tubulin may be one of the mechanism in the formation of temporal lobe epilepsy.
     Part Two Effect of microtubules at postsynaptic density on spontaneous seizure of rat with temporal lobe epilepsy
     Objective To investigate the effect of microtubulesα-tubulin andβ-tubulin at postsynaptic density(PSD) on recurrent spontaneous seizure of rat with temporal lobe epilepsy(TLE).
     Method 236 male SD rats were randomly used to set up lithium-pilocarpine model of TLE and decided into control group,TLE with recurrent spontaneous seizure(SRS) group and TLE with no recurrent spontaneous seizure(NSRS) group.The whole brain was removes to isolate the PSD.The expression ofα-tubulin andβ-tubulin was detected with western blot and immuno-eletron microscopic analysis.
     Results 1.The lithium-pilocarpine model of TLE SE was induced at the achievement ratio of 91.1%,total mortality of 20.6%and spontaneous seizure ration of 50.5%.EEGs of rats in TLE-SRS group were abnormal,presenting moreθwave,single or multiple spikes and groups of spikes.EEGs of rats in TLE-NSRS group were normal or mild abnormal,with sporadic spikes and sharp waves.
     2.Niss1 staining Compared with the control group,the numbers of surviving neurons in regions of CA1,CA3 and dentate gyms were markedly decreased in TLE-SRS group(p<0.01).We found that the neurons with disorder,cell swelling or shrinkage,irregular border and decrease of Nissl bodies in cytoplasm.The surviving neurons in TLE-NSRS group were markly decreased compared to control group (p<0.01),but more than in TLE-SRS group(p<0.01).
     3.The expressions ofα-tubulin andβ-tubulin at PSD①Compared to control group,the expressions ofα-tubulin andβ-tubulin at PSD in TLE-SRS group and TLE-NSRS group were largely decreased(p<0.01). And the expressions of these proteins in TLE-SRS group were also lower than in TLE-NSRS group(p<0.01).②Immuno-eletron microscopy analysis The immunogold labeled particles ofβ-tubulin at PSD were significantly decreased in TLE-SRS and TLE-NSRS group compared to in control group(p<0.01).And the particles in TLE-SRS group were also less than in TLE-NSRS group(p<0.01).
     Conclusion expression of microtubules may be negatively related to recurrent spontaneous seizures of temporal lobe epilepsy.
     Part Three Effect of microtubule stability on temporal lobe epilepsy
     Objective To observe the effect of intervention in microtubule stability on temporal lobe epilepsy.
     Method①75 male SD rats were randomly used to make stereotactic infusion of hippocampus with different doses of cochicine and paclitaxol respectively and divided into control group, cochicine-treated group and paclitaxel-treated group.Nissl staining and detection ofβ-tubulin with immnohistochemistry were made to define the suitable infusion dose of the two drug.②60 male SD rats were randomly set up lithium-pilocarpine model of TLE.At the time point of 7-day after SE,the suitable dose of cochincine and paclitaxel were stereostacticly infused hippocampally respectively,which were divided into TLE-control group,TLE-cochincine group and TLE-paclitaxel group.We observed rats in three group behaviourally for 30 days,and 30-day after SE we made EEG of rats.Then each group was divided into spontaneous recurrent seizure(SRS)group and no spontaneous recurrent seizure (NSRS)group again according to whether or not the rats had recurrent spontaneous seizures.Immuno-electron microscopy was used to detect the expression ofβ-tubulin.
     Results 1.The definition of suitable infusion dose of cochicine①Nissl staining:compared to control group,the surviving neurons were no significant difference in cochicine-treated group with the infusion dose of 0.01,0.03,0.1,0.3ug(p>0.05),and were markly decreased with the dose of 1.0 and 2.0ug(p<0.01).②Immunohistochemistry:β-tubulin was largely expressed in cytoplasm in control group.The expression ofβ-tubulin was no difference in cochicine-treated group with the dose of 0.01,0.03,0.1ug compared to control group and was markly decreased from the dose of 0.3ug(p<0.01).③Our results indicated that the suitable infusion dose of cochicine was 0.3ug,which induced microtubule depolymerization but did not affect the survival of neurons.
     2.The definition of suitable infusion dose of paclitaxol①Nissl staining:compared to control group,the surviving neurons were no significant difference in paclitaxel-treated group with the infusion dose of 0.1,0.5,1.0ug(p>0.05),and were markly decreased with the dose of 1.5ug(p<0.01).②Immunohistochemistry:Compared to control group,The expression ofβ-tubulin was no difference in paclitaxel-treated group with the dose of 0.1,0.5ug and was increased in the dose of 1.0ug(p<0.01),but markly decreased in the dose of 1.5ug(p<0.01).③Our results indicated that the suitable infusion dose of paclitaxel was 1.0ug,which induced microtubule polymerization but did not affect the survival of neurons.
     3.In cochicine 0.3ug -treated group and paclitaxel 1.0ug-treated group,the behavior and EEG recording of rats were no difference compared to control group,indicating that these drugs had no epileptogenesis.
     4.The recurrent spontaneous seizures ratio of TLE-control group was 75%,TLE-cochicine group 90%and TLE-paclitaxel group 40%. EEGs of rats in TLE-SRS group were abnormal,presenting moreθwave,single or multiple spikes and groups of spikes.EEGs of rats in TLE-NSRS group were normal or mild abnormal,with sporadic spikes and sharp waves.Compares to TLE-SRS group,EEG of rats in TLE-cochicine SRS group were no difference and EEG in TLE-paclitaxel SRS group had less spike and sharp waves,of which frequency and amplitude were decreased.There were no significant difference in TLE-cochicine NSRS group or TLE-paclitaxel NSRS group compared to TLE-NSRS group.
     5.The expression ofβ-tubulin at PSD Compared to TLE-SRS group,the immunogold labeled particles ofβ-tubulin at PSD in TLE-cochicine SRS group were no difference(p>0.05) and particles in TLE-paclitaxel SRS group largely increased(p<0.01).Compared to TLE-NSRS group,the expression ofβ-tubulin in TLE-cochicine NSRS and TLE-paclitaxel NSRS group was no significant difference(p>0.05).
     Conclusion 1.Abnormality of microtubule stability is the predisposing factor of temporal lobe epilepsy.2.microtubule polymerized agent may prevent temporal lobe epilepsy.
引文
[1]Kapur J.Role of neuronal loss in the pathogenesis of recurrent spontaneous seizure.Epilesy Curr.2003,3:166-7
    [2]Zhang X,Cui SS,Wallace AE,et al.Relations between brain pathology and temporal lobe epilepsy.J Neurosci.2002,22:6052-61
    [3]Feng L,Molnor P,Nadler JV.Short-term freguency-dependent plasticity at recurrent mossy fiber synapse of the epileptic brain.J Neurosci.2003,23:5381-90
    [4]Williams PA,Wuarin JP,Dou P,et al.Reassessment of the effects of cycloheximide on mossy fiber sprouting and epileptogenesis in the Pilocarpine model of temporal lobe epilepsy.J Neurophy.2002,88:2075-87
    [5]Morimoto K,Fahnestock M,Racine RJ.Kindling and status epilepticus models of epilepsy:rewiring the brain.Prog Neurobioc,2004,73:1-60
    [6]Jutila L,Immonen A,Partanen K,et al.Neurobiology of epileptogenesis in the temporal lobe.Adv Tech Stand Neurosurg,2002,27:5-22
    [7]Barnes GN,Slevin JT.Ionotropic glutamate receptor biology:effect on synaptic connectivity and function in neurological disease.Curr Med Chem.2003,10:2059-2072
    [8]章子贵,杜红燕,陆汉新,等。小鼠的记忆与脑内突触结构参数变化的相关性。心理学报,1995,27:317
    [9]章子贵,申秀英,许晓路。硒对氟致小鼠学习记忆损伤的改善作用。卫生研究,2001,30:144
    [10]Jordan BA,Fernholz BD,Boussac M,et al.Identification and verification of novel rodent postsynaptic density proteins.Mol Cell Proteomics,2004,3:857-71
    [11]Yashimura Y,Yamauchi Y,Shinkawa T,et al.Molacular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromataography tandem mass spectrometry.J Neurochem,2004,88:759-68
    [12]Steward O,Schuman EM.Compartmentalized synthesis and degradation of proteins in neurons.Neuron,2003,40:347-59
    [13]Hegde AN,Diantonio A,Ubiquitin and the synapse.Nat Rev Neurosci.2002,3:854-861
    [14]Ehlers MD,Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system.Nat Neurosci.2003.6:231-42
    [15]Sheng M,Kim MJ.Postsynaptic signaling and plasticity mechanisms.Science.2002.298:776-80
    [16]Kennedy MB.Signaling-processing machines at the postsynaptic density.Science.2000.290:750-54
    [17]Kneussel M,Loebrich S.Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors.Biol Cell.2007.99:297-309
    [18]Beresexicz M.Scaffold proteins(MAGUK,Shank and Homer) in postsynaptic density in the central nervous system.Postepy Biochem.2007,53:188-97
    [19]Beique JC,Lin DT,Kang MG,et al.Synapse-specific regulation of AMPA receptor function by PSD-95.Proc Natl Acad Sci USA.2006,103:19535-40
    [20]Boeckers TM.The postsynaptic density.Cell Tissue Res.2006,326:409-22
    [21]Blitzer RD,Lyengar R,Landau EM.Postsynaptic signaling networks:cellular cogwheels underlying long-term plasticity.Biol Psychiatry.2005,15:113-9
    [22]Goffin K,Nissinen J,Van Laere K.Cyclicity of spontaneous recurrent seizures in pilocarpine model if temporal lobe epilepsy.J Neurochem.2005,92:1377-1385
    [23]Niimura M,Moussa R,Bissoon N,et al.changes in phosphorylation of the NMDA receptor in the rat hippocampus induced by status epilepticus.J Neurochem.2005,92:1377-85
    [24]Hou XY,Zhang GY,Yan JZ,et al.Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD-95-NR2A complex after transient brain ischemia.Brain Res.2002,955:123-32
    [25]Eva Nogales.Structural insights into microtubule function.Annu.Rev.Biophys.Biomol Struct.2001,30:397-420
    [26]Kenneth H,Eva Nogales.Tubulin and microtubule structure.Current Opinion in Cell Biology,1998,10:16-22
    [27]黄志凌,周颖,肖波,等。颢叶癫痫相关突触后致密物蛋白质的蛋白质组学筛选研究。中华医学杂志,2008,88:3205-9
    [28]Goffin K,Nissinen J,Van Laere K,et al.Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat.Experimental Neurology,2007,205:501-5
    [29]Erakovic V,Zupan C,Varljen J,et al.Lithium plus pilocarpine induced status epilepticus-biochemica changes.Neurosci Res,2000.36:157-66
    [30]Santos JG,Longo BM,Blanco MM,et al.Behavioral changes resulting from the administration of cycloheximide in the pilocarpine model of epilepsy.Brain Res.2005,1066:37-48
    [31] Mello LE, Cavalheiro TL, Babb ER, et al. Circuit mechanisms of seizures in the pilocarpine model if chronic epilepsyxell loss and mossy fiber sprouting.Epilepsia,1993,34: 985-995
    [32] Chum SB, Kochan LD, Delorenzo RJ, et al. Chronic inhibition of Ca2+/calmodulin kinase II activity in the pilocarpine model of epilepsy.Brain research .2000,857:66-77
    [33] Houser CR, Miyashiro JE, Swartz BE, et al. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990;10:267-282.
    [34] Cohen, R . S ., F . Blomberg, K . Berzins, and P . Siekevitz. Structure of postsynaptic densities isolated from dog cerebral cortex . 1. Overall morphology and protein composition J. Cell Biol.1977. 74:181-203
    
    [35] 王平宇主编。大鼠中枢神经系统解剖学基础。北京:人民卫生出版社,1986,270-71
    [36] Yoshimura, Y., Yamauchi, Y., Shinkawa, T., and et al, Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimen -sional liquid chromatography- tandem mass spectrometry. J.Neurochem. 2004. 88, 759-768.
    [37] Klitgaard H, Matagne A, Vanneste-Goemaere J, et al. Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res, 2002, 51:93-107
    [38] Proper EA,Jansen GH,van Veelen CW, et al. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting. Acta Neuropathol,2001,101:405-409
    [39] Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res, 2002,50:105-123.
    [40] Racine RJ. Modification of seizure activity by electrical stimulation II Motor Seizure. Electroencephogr Clin Neurophysiol, 1972, 32: 781-794.
    [41] Peredery O,Persinger MA,Parker G,et al.Temporal changes in neuronal dropout following inductions of lithium/pilocarpine seizures in the rat. Brain Res,2000,881:9-17.
    [42] Clifford DB, Olney JW, Maniotis A, et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience, 1987,23: 953-968.
    [43] Li WE, Nagy JI. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal-glial interactions. Neuroscience, 2000, 97:113-123.
    [44] Glien M, Brandt C, Potschka H. et al. Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy.Epilepsy Res, 2001, 46: 111-119.
    [45] Coulter DA, McIntyre DC, Loscher W. Animal models of limbic epilepsies: what can they tell us? Brain Pathol,2002,12:240-256.
    [46] Savolainen KM, Hirvonen MR. Second messengers in cholinergic induced convulsions and neuronal injury. Toxicol Lett, 1992,64:43-45.
    [47] Einet H, Kofman O,Itkin O, et al. Augmentation of lithium's behavioral effect by inositol uptake inhibitors. J Neural Transm,1998,105:31-38.
    [48] Williams MB, Jope RS. Modulation by inositol of cholinergic- and serotonergic-induced seizures in lithium-treated rats. Brain Res, 1995, 685 (1-2): 169-178.
    [49] Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000.25,169-193.
    [50] Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 2002. 29, 23-39.
    [51] Schmittgen T.D., and Zakrajsek, B.A. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 2000.46, 69-81.
    [52] Zhu L.J., and Altmann S.W.. mRNA and 18SRNA coapplication-reverse transcription for quantitative gene expression analysis. Anal. Biochem. 2005.345,102-109.
    [53] Nai-Kui Liu and Xiao-Ming Xu .p-tubulin is a more suitable internal control than β-actin in western blot analysis of spinal cord tissues after traumatic injury. J.neurotrauma.2006,23,1794-1801.
    [54] U.Wyneken,K.-H.Smalla,J.J.Marengo ,et al.Kainate-induced seizures alter protein composition and N-methyl-D-asparate receptor function of rat forebrain postsynaptic densities.Neurosci.2001,102:65-74.
    [55] Hadfield JA, Duck S, Hirst N. Tubulin and microtubules as targets for anticancer drugs. Prog Cell Cycle Res. 2003,5:309-325
    [56] Walikonis RS, Jenden OH, Mann M. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci. 2000,11:4069-80.
    [57] Kaech S, Parmar H, Roelandse M, et al. Cytoskeletal microdifferentiation:a mechanism for organizing morphological plasticity in dendrites. Proc Natl Acad Sci.USA. 2001,98:7086-92
    
    [58] Matus A. Actin-based plasticity in dendritic spines.Science. 2000,290:754-58
    [59] Lei,S.,Czerwinska,E.,Czerwinski,W.,et al. Regulation of NMDA receptor activity by F-actin and myosin light chain kinase.J.Neurosci. 2001 21,8464-72
    [60] Yoshimura Y, Aoi C, Yamauchi T. Investigation of protein substrates of Ca(2+)/calmodulin-dependent protein kinase II translocated to the postsynaptic density.Brain Res Mol Brain Res.2000,81:118-28.
    [61] Banan A, Zhang LJ, Farhadi A, et al. Critical role of the atypical {lambda} isoform of protein kinase C (PKC-{lambda}) in oxidant-induced disruption of the microtubule cytoskeleton and barrier function of intestinal epithelium.J Pharmacol Exp Ther. 2005,12:458-71.
    [62] Van Rossum D,Kuhse J,Betz H,Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits.J Neurochem.1999,72:962-73.
    [63] Wyneken U, Marengo JJ, Villanueva S, et al . Epilepsy-induced changes in signaling systems of human and rat postsynaptic densities.
    [64] Moore S. D., Barr D. S. and Wilson W. A. Seizure-like activity disrupts LTP in vitro. Neurosci. Lett. 1993.163, 117-19.
    [65] Reid I. C. and Stewart C. A. Seizures, memory and synaptic plasticity. Seizure 1997. 6,351-59.
    [66] Stewart C. and Reid I. Electroconvulsive stimulation and synaptic plasticity in the rat. Brain Res. 1993.620, 139-41.
    [67] Trepel C. and Racine R. J. Blockade and disruption of neocortical long-term potentiation following electroconvulsive shock in the adult,freely moving rat.Cerebral Cortex ,1999.9, 300-05
    [68] Yang JW, Gech T, Felizardo M. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy.Amino Acid.2006,30:477-93.
    [69] Zhu BK, Wang P, Zhang XD, et al.Activation of Jun N-terminal kinase is a mediator of vincristine-induced apoptosis of melanoma cells. Anticancer Drugs.2008,19:189-200.
    [70] deLanerolle NC, Kim JH, Robbins RJ, et al. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy.Brain Res,1989,495:387-395.
    [71] Houser CR, Miyashiro JE, Swartz BE, et al. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. JNeurosci 1990;10:267-282.
    [72] Mello LEAM, Cavalheiro EA, Tan AM, et al. Granule cell dispersion in relation to mossy fiber sprouting, hippocampal cell loss, silent period and seizure frequency in the pilocarpine model of temporal lobe epilepsy. In: Engel Jr J,Wasterlain C, Cavalheiro EA, Heinemann U, Avanzini G, editors. Molecular neurobiology of epilepsy. Amsterdam: Elsevier, 1992, 51-60.
    [73] Sloviter RS. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neurosci Lett, 1992,137:91-96.
    [74] Wenzel HJ, Woolley CS, Robbins CA, et al. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats. Hippocampus, 2000,10:244-60.
    [75] Scharfman HE, Sollas AL, Berger RE, et al. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol,2003,90:2536-47.
    [76] Proper EA, Jansen GH, van Veelen CW. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting. Acta Neuropathol. 2001, 101(4):405-409.
    [77] Represa A,Pollard H,Moreau J ,et al .Mossy fiber sprouting in epileptic rats is associated with a transient increased expression of alpha-tubulin.Neurosci Lett.1993,156:149-52.
    [78] Represa A, Ben-Ari Y.Molecular and cellular cascade in seizure-induced neosynapse formation.Adv Neurol.1997;72:25-34
    [79] Ethell, I.M., and Pasquale, E.B. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol. 2005. 75, 161-205.
    [80] Tada, T., and Sheng, M. Molecular mechanisms of dendritic spine morphogenesis.Curr. Opin. Neurobiol. 2006.16, 95-101.
    
    [81] Matus, A. Actin-based plasticity in dendritic spines. Science,2000. 290:754-58.
    [82] Suter, DM., Schaefer, A.W., and Forscher, P. Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering. Curr. Biol.2004. 14, 1194-1199.
    [83] Glien, M., Brandt, C., Potschka, H., et al, Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy.Epilepsy Res. 2001. 46, 111-119.
    [84] Cavalheiro, E.A., Leite, J.P., Bortolotto, Z.A., et al, Ikonomidou, C.,Turski, L.,Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 1991. 32, 778-782.
    [85] Mello, L.E., Cavalheiro, E.A., Tan, A.M., et al, Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting.Epilepsia 1993.34, 985-995.
    [86] Priel, M.R., dos Santos, N.F., Cavalheiro, E.A., Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Res. 1996.26, 115-121.
    [87] dos Santos Jr., J.G., Longo, B.M., Blanco, M.M., Menezes de Oliveira, M.G.,Mello,L.E., Behavioral changes resulting from the administration of cycloheximide in the pilocarpine model of epilepsy. Brain Res. 2005. 1066,37-48.
    [88] Karolien Goffin, Jari Nissinen, Koen Van Laere , et al.Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat.Experi.Neuro.2007.205:501-505.
    [89] Goiter, J.A., Goncalves Pereira, P.M., van Vliet, E.A., et al, Neuronal cell death in a rat model of mesial temporal lobe epilepsy is induced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia 2003.44,647-658.
    [90] Arida, R.M., Scorza, F.A., Peres, C.A., et al., The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res. 1999.34,99-107.
    [91] Cavalheiro, E.A., Naffah-Mazzacoratti, M.G., Mello, L.E.,et al. The pilocarpine model of seizures. In: Pitk(?)nen, A., Schwartskroin, P.A., Solomon, L.M. (Eds.),Models of Seizures and Epilepsy. Elsevier Academic Press, Burlington, 2006 pp.433-448.
    [92] Mello, L.E., Cavalheiro, E.A., Tan, A.M., et al, Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting.Epilepsia 1993.34,985-995.
    [93] Balish, M., Albert, P.S., Theodore,W.H., Seizure frequency in intractable partial epilepsy: a statistical analysis. Epilepsia 1991.32, 642-649.
    [94] Bauer, I, Burr, W., Course of chronic focal epilepsy resistant to anticonvulsant treatment. Seizure2001. 10, 239-246.
    [95] Bowman, T., Leppik, I., Haus, E., Periodicity of seizure activity in persons with complex partial seizures. Epilepsia 1984. 25, 658.
    
    [96] Du F, Eid T, Lothman EW, et al. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J Neurosci 1995;15: 6301-13.
    
    [97] Ingvar M, Morgan PF, Auer RN. The nature and timing of excitotoxic neuronal necrosis in the cerebral cortex, hippocampus and thalamus due to flurothyl-induced status epilepticus. Acta Neuropathol 1988;75:362-9.
    [98] Covolan L, Mello LE. Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res 2000;39:133-52.
    [99] Poirier JL, Capek R, De Koninck Y. Differential progression of dark neuron and Fluoro-Jade labelling in the rat hippocampus following pilocarpine-induced status epilepticus. Neuroscience 2000;97:59-68.
    
    [100] Tuunanen J, Lukasiuk K, Halonen T, et al. Status epilepticus induced neuronal damage in the rat amygdaloid complex: distribution, time-course and mechanisms. Neuroscience 1999;94:473-95.
    [101] 包新民,舒斯云。大鼠脑立体定位图谱。北京:人民卫生出版社, 1990,40-45.
    
    [102] Mattson MP Effects of microtubule stabilization and destabilization on tau immunoreactivity in cultured hippocampal neurons. Brain Res 1992, 582:107-18
    
    [103] Michaelis ML, Ranciat N, Chen Y, Bechtel M, Ragan R, Hepperle M, Liu Y,Georg G Protection against beta-amyloid toxicity in primary neurons by paclitaxel (taxol). J Neurochem 1998,70:1623-27
    
    [104] Yi Yang ,Xiaonan Zhu , Yuanbin Chen ,et al .p38 and JNK MAPK, but not ERK1/2 MAPK, play important role in colchicine-induced cortical neurons apoptosis.Euro.J.Pharmaco.2007,576:26-33.
    [105] Kung AL, Zetterberg A, Sherwood SW, Schimke RT Cytotoxic effects of cell cycle phase specific agents: result of cell cycle perturbation. Cancer Res 1990,50: 7307- 17
    [106] Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L Mitotic block induced in HeLa cells by low concentrations of paclitaxel (taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996,56:816-825
    [107] Xavier A,Figueroa-Masot,Michal Hetman,et al Taxol induces apoptosis in cortical neurons by a mechanism independent of Bcl-2 phosphorylation.J.Neurosci.2001, 21:4657-4667.
    [108] Hetman M, Kanning K, Cavanaugh JE, Xia Z Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular-signal- regulated kinase and phosphatidylinositol-3 kinase. J Biol Chem 1999, 274: 22569-22580
    [109] Hetman M, Cavanaugh JE, Kimelman D, Xia Z Role of glycogen synthase kinase-3 in neuronal apoptosis induced by trophic withdrawal. J Neurosci 2000,20:2567-2574
    [110] Furukawa, K., Mattson, M.P., Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity. Brain Res. 1995.689, 141-146.
    [1]章子贵,杜红燕,陆汉新等.(1995),小鼠的记忆与脑内突触结构参数变化的相关性.心理学报,27:317
    [2]章子贵,申秀英,许晓路.(2001),硒对氟致小鼠学习记忆损伤的改善作用.卫生研究,30:144
    [3].De Robertis,E.,and Bennett,H.S.(1954).Submicroscopic vesicular component in the synapse.Fed.Proc.13,35.
    [4].Palade,GE,and Palay,S.L.(1954).Electron microscope observa- tions of interneuronal and neuromuscular synapses.Anat.Rec.118,335-336.
    [5].Gray,E.C.(1959).Axo-somatic and axo-dendritic synapses of cerebral cortex.An electron microscopic study.J.Anat.93,420-433
    [6].Colonnier,M.(1968).Synaptic patterns on different cell types in the different laminae of the cat visual cortex.An electron microscope study.Brain Res.9,268-287.
    [7].Landis,D.M.,andReese,T.S.(1974).Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex.J.Comp.Neurol.155,93-125.
    [8].Landis,D.M.,Reese,T.S.,and Raviola,E.(1974).Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapse in the olfactory bulb.J.Comp.Neurol.155,67-91.
    [9].Peters,A.,Palay,S.L.,and Webster,H.D.(1991).The Fine Structure of the Nervous System:Neurons and Their Supporting Cells,3rd Ed.(New York:Oxford University Press).
    [10].Spacek,J.,Hartmann,M.,(1983).Three-dimensional analysis of dendritic spines.I.Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices.Anat.Embryol.(Berl.) 167,289-310.
    [11].Harris,K.M.,Stevens,J.K,(1989).Dendritic spines of CA 1 pyramidal cells in the rat hippocampus:serial electron microscopy with reference to their biophysical characteristics.J.Neurosci.9,2982-2997.
    [12].Harris,K.M.,Stevens,J.K,(1989).Dendritic spines of CA 1 pyramidal cells in the rat hippocampus:serial electron microscopy with reference to their biophysical characteristics.J.Neurosci.9,2982-2997.
    [13].Harris, KM., Jensen, F.E., Tsao, B., (1992). Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685-2705.
    [14].Spacek, J., Harris, K.M., (1998). Three-dimensional organization of cell adhesion junctions at synapses and dendritic spines in area CA1 of the rat hippocampus. J.Comp. Neurol. 393, 58-68.
    [15].Gulley, R.L., Reese, T.S.,( 1981). Cytoskeletal organization at the postsynaptic complex. J. Cell Biol. 91, 298-302.
    [16].Hirokawa, N., (1989). The arrangement of actin filaments in the postsynaptic cytoplasm of the cerebellar cortex revealed by quick-freeze deep-etch electron microscopy. Neurosci. Res. 6, 269-275.
    [17]. Harris, KM, Stevens, J.K.,( 1989). Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982- 2997.
    [18].Sorra, K.E., Harris, K.M.,( 2000). Overview on the structure, composition,function, development, and plasticity of hippocampal dendritic spines.Hippocampus 10, 501-511.
    [19],Cohen, R.S., Siekevitz, P.,( 1978). Form of the postsynaptic density. A serial section study. J. Cell Biol. 78, 36-46.
    [20].Petersen, J.D., Chen, X., Vinade, L., Dosemeci, A., Lisman, J.E., Reese,T.S.,(2003). Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J. Neurosci. 23,11270-11278.
    [21].Cohen, R.S., Blomberg, F., Berzins, K., Siekevitz, P., (1977). The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J. Cell Biol. 74, 181- 203.
    [22].Cotman, C.W., Banker, G., Churchill, L., Taylor, D., 1974. Isolation of postsynaptic densities from rat brain. J. Cell Biol. 63, 441-455.
    [23].Fifkova, E., and Morales, M. (1992). Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. Int. Rev. Cytol. 139, 267-307
    [24].Carlin, R.K., Bartelt, D.C., and Siekevitz, P. (1983). Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J. Cell Biol. 96, 443-448.
    [26].Kennedy, M.B., Bennett, M.K., Erondu, N.E., 1983. Biochemical and Immuno-chemical evidence th at the "major postsynaptic density protein " is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. U. S. A.80, 7357-7361.
    [27].Nusser, Z.,Mulvihill, E., Streit, P., and Somogyi, P. (1994). Subsy-naptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61, 421-427.
    [28].Cho, K.O., Hunt, C.A., Kennedy, M.B., (1992). The rat bra in postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929-942.
    [29].Kistner,U.,Wenzel, B.M, Veh, R.W., Cases-Langhoff, C., Garner, A.M.,Appeltauer, U., Voss, B., Gundelfinger, E.D., Garner, C.C., 1993.SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J. Biol. Chem. 268, 4580 -4583.
    [30].Muller, B.M., Kistner, U., Veh, R.W., Cases-Langhoff, C., Becker,B, Gundelfinger, E.D., Garner, C.C., (1995). Molecular characteriza- tion and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor supper- ssor protein. J. Neurosci. 15,2354-2366.
    [31].Kennedy, M.B., (2000). Signal-processing machines at the postsynap- tic density.Science 290, 750-754.
    [32].Kornau, H.C., Schenker, L.T., Kennedy, M.B., and et al, (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.
    [33].Tu, J.C., Xiao, B., Naisbitt, S., and et al, (1999).Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583-592.
    [34].Husi, H.,Ward, M.A., Choudhary, IS.,and et al,( 2000). Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3,661-669.
    [35].Jordan, B.A., Fernholz, B.D., Boussac, M., and et al, (2004). Identification and verification of novel rodent postsynaptic density proteins. Mol. Cell Proteomics 3, 857-871.
    [36].Yoshimura, Y., Yamauchi, Y., Shinkawa, T., and et al, (2004). Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography- tandem mass spectrometry. J.Neurochem. 88, 759-768.
    [37].Steward, O., Schuman, E.M., (2003). Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347-359.
    [38].HusiH,Ward MA,Choudhary JS,et al.(2000), Proteomic analysis of NMDA receptor-adhedion protein signaling complexes.Nat Neurosci. 3:661-669
    [39].Silva AI,Stevens CF,Tonegawa S,et al.(1992) Deficient hippocampal long-term potentiation in a a-cacium-camclulin kinase II muntant mice. Science,257:201-206
    [40].Silva AI,Paylor R,Wchner JM,et al.(1992)Impairment of spatial learning in a a-cacium-calmudulin kinase II muntant mice.Science., 257:206
    [41].Bach MA,Hawking RD,Osman M,et al.(1995),Impairment of spatial but not contextual memory in CaMK mutant mice with a selective loss of hippocampal LTP in the range of frequency.Cell. 81:905
    [42].Rees S,Guldner FH,Aitken L. (1985),Activity dependent plasticity of postsynaptic density structure in the ventral eoeblcar nucleus in the rats.Brain Res. 325:370
    [43].Guldner FH. (1979),Plasticity in synaptic apposition of optic nerve afferents under different lighting conditions.Neurosci Latt. 14:235
    [44] R. Coronado, C. Miller, (1979)Voltage-dependent caesium- blockade of a cation channel from fragmented sarcoplasmic reticulum, Nature 280:807- 810.
    [45]. R. Dingledine, K. Borges, D. Bowie, S. Traynelis, (1999) The glutamate receptor ion channels, Pharmacol. Rev. 51 7-61.
    [46]. A. Doble, (1999)The role of excitotoxocity in neurodegenerative disease: implications for therapy, Pharmacol. Ther. 81 163-221.
    [47] R.C. Malenka, R.A. Nicoll, (1999) Long-term potentiation—a decade of progress, Science ,285:1870- 1874.
    [48]. R. Sattler, M. Tymianski, (2000)Molecular mechanisms of calcium- dependent excitotoxicity, J. Mol. Med. 78: 3 -13.
    [49].Conn PJ,Pin JP.(1997),Pharmacology and functions of metabotropic glutamate receptors.Annu Rev Pharmacol Toxicol. 37: 205-237
    [50].Gurd, J.W., 1985. Phosphorylation of the postsynaptic density glycoprotein gp180 by endogenous tyrosine kinase. Brain Res. 333, 385-388.
    [51].Moon, I.S., Apperson, M.L., Kennedy, M.B.,(1994). The major tyrosinephosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2 B. Proc. Natl. Acad. Sci. U. S. A.91,3954-3958
    [52].A1-Hallaq, R.A., Yasuda, R.P., Wolfe, B.B., (2001). Enrichment of N-methyl-D-aspartate NR1 splice variants and synaptic proteins in rat postsynaptic densities. J. Neurochem. 77, 110-119.
    [53].Lee, S.H., Valtschanoff, J.G., Kharazia, V.N., (2001). Biochemical and morphological characterization of an intracellular membrane compartment containing A MPA receptors. Neuropharmacology 41, 680-692.
    [54].Wong, H.K., Liu, X.B., Matos, M.F.,and et al,(2002). Temporal and regional expression of NMDA receptor subunit NR3 A in themammalian brain. J. Comp.Neurol. 450, 303-317.
    [55].Das, S., Sasaki, Y.F., Rothe, T.,and et al, (1998). In creased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393,377-381
    [56].Chatterton, J.E., Awobuluyi, M., Premkumar, L.S., (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415,793-798.
    [57]. M. B. Kennedy, (2000),Signal-processing machines at the postsynaptic density.Science 290: 750.
    [58]. M. Sheng, D. T. Pak, (2000).Ligand-gated ion channel interactions with cytosketetal and signaling proteins.Annu. Rev. Physiol. 62, 755
    [59]. C. C. Garner, J. Nash, R. L. Huganir, (2000).PDZ domains in synapse assembly and signaling.Trends Cell Biol. 10:274 .
    [60]. R. H. Scannevin, R. L. Huganir, (2000).Postsynaptic organization and regulation of excitatory synapses.Nat Rev.Neurosci. 1, 133 .
    [61]. M. Sheng, C. Sala, (2001).PDZ domains and the organization of supramolecular complexes.Annu. Rev. Neurosci. 24, 1
    [62]. H. Husi, M. A. Ward, J. S. Choudhary, and et al. (2000).Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci. 3: 661
    [63]. D. B. Scott, T. A. Blanpied, G. T. Swanson, and et al.(2001).An NMDA receptor ER retention signal regulated bu phosphorylation and alternative splicing.J.Neurosci. 21, 3063-72.
    [64].K. W. Roche ,S. StandleyJ. McCallum and et al., (2001).Molecular determinants of NMDA receptor internalization.Nature Neurosci. 4: 794 -802.
    [65].N. Sans, C Racca, RS Petralia and et al., (2001).Synapse-associated protein 97 selectively associated with a subset of AMPA receptors early in their biosynthetic pathway.J. Neurosci. 21, 7506-16
    [66].F. Steigerwald , TW Schulz, LT Schenker ,and et al., (2000).C-terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J. Neurosci. 20, 4573-81.
    [67].Silva AI,Paylor R,Wchner JM,et al. (1992),Impairment of spatial learning in a a-cacium-calmudulin kinase II muntant mice. Science. 257: 206
    [68].Bach MA,Hawking RD,Osman M,et al. (1995),Impairment of spatial but not contextual memory in CaMK mutant mice with a selective loss of hippocampal LTP in the range of frequency.Cell. 81:905
    [69].Arzberger T, Krampfl K, Leimgruber S, Weindl A.(1997). Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease--an in situ hybridization study, J Neuropathol Exp Neurol.;56440-54.
    [70].Lopes-Cendes I, Andermann E, Attig E, et al. (1994);Confirmation of the SCA-2 locus as an alternative locus for dominantly inherited spinocerebellar ataxias and refinement of the candidate region. Am J Hum Genet54:774-81.
    [71].Oertel WH. (1993);Neurotransmitters in the cerebellum. Scientific aspects and clinical relevance. In: Harding AE, Deufel T, eds. Advances in neurology. New York: Raven Press 61:33-75.
    [72].Lalonde R, Joyal CC, Guastavino J-M, C6te C, Botez MI. (1993);Amantadine and ketamine-induced improvement of motor coordination in lurcher mutant mice. Restor Neurol Neurosci 5:367-70.
    [73].Arias C, Arrieta I, Tapia R. (1995);Beta-Amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J Neurosci Res. 41(4): 561-566.
    [74].Harris ME, Wang Y, Pedigo NW Jr., et al. (1996);Amyloid beta peptide (25-35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem. 67(1):277-286.
    [75],Liang Z, Valla J, Sefidvash-Hockley S, et al. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer's disease patients. J Neurochem.2002;80: 807-814.
    [76]. Parsons CG, Danysz W, Quack G. (1999);Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist- a review of preclinical data. Neuropharmacology. 38:735-767.
    [77]. Miguel-Hidalgo JJ,Alvarez XA,Cacabelos R, Quack G. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid (1-40). Brain Res.2002;958:210-221.
    [78].Harkany T, Abraham I, Timmerman W, et al. (2000); Beta-amyloid neurotoxicity is mediated by a glutamatetriggered excitotoxic cascade in rat nucleus basalis.EurJNeurosci. 12:2735-2745.
    [79]. Doraiswamy PM ,(2003).Alzheimer's disease and the glutamate NMDA receptor.Psychopharmacol Bull.37:41-9
    [80].Miller WC, DeLong MR.(1987), Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism.In: Carpenter MB, Jayarman A, eds. The Basal Ganglia II. New York, NY:Plenum Press:415-427.
    [81]. Albin RL, Young AB, Penney JB. (1989);The functional anatomy of basal ganglia disorders. Trends Neurosci. 12:366-375.
    [82].Klockgether T, Turski L. (1989); Excitatory amino acids and the basal ganglia: implications for the therapy of Parkinson's disease. Trends Neurosci. 12:285-286.
    [83].Mitchell IJ, Clarke CE, Boyce S, Robertson RG, et al.(1989); Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to l-methyl-4- phenyl-1,2,3, 6-tetrahydropyridine. Neuroscience. 32:213-226.
    [84].Albin RL, Aldridge JW, Young AB, Gilman S.( 1989);Feline subthalamic nucleus neurons contain glutamate-like but not GABA-like or glycine- like immunoreactivity.Brain Res. 491: 185-188.
    [85].Smith Y, Parent A. (1988);Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res. 453. 353-356
    [86].Amalric M, Baunez C, Nieoullon A (1995) Does the blockade of excitatory amino acid transmission in the basal ganglia simply reverse reaction time deficits induced by dopamine inactivation? Behav Pharmacol 6:508-519
    [87].Baunez C, Nieoullon A, Amalric M (1995) In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J Neurosci 15:6531-6541
    [88].Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson's disease and related disorders. Pharmacol Ther 88:427-435
    [89].Baron MS, Wichmann T, Ma D, Delong MR (2002) Effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22:592-599.
    [90].Hollmann, M., Heinemann, S.,(1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17,31-108.
    [91].Burnashev, N., Monyer, H., Seeburg, PH., Sakmann, B., (1992). Divalention permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189-198.
    [92].Zhu, J.J., Esteban, J.A., Hayashi, Y, Malinow, R., 2000. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098-1106.
    [93].Meng, Y, Zhang, Y., Jia, Z., 2003. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39, 163-176.
    [94].V. Derkach, A. Barria, T. R. Soderling, (1999).Ca2+/calmodulin- kinase II enhances channel conductance of alpha-amino-3- hydroxy-5-methyl-4- isoxazolepropionate type glutamate receptors. Proc. Natl. Acad.Sci. U.S.A. 96,3269-74.
    [95].A. Barria, D. Muller, V. Derkach, L. C. Griffith, T. R.Soderling, (1997).Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-K II during long-tern potentiation. Science 276, 2042-5.
    [96].K. Kameyama, H. K. Lee, M. F. Bear, R. L. Huganir, (1998). Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163-75
    [97].Y. Hayashi ,SH Shi, JA Esteban and et al., (2000).Driving AMPA receptors into synapses by LTP and CaMK II: requirement for GluR1 and PDZ domain interaction. Science 287, 2262-7
    [98].S. Shi, Y. Hayashi, J. A. Esteban, R. Malinow, (2001).Subunit-specific rules governing AMPA receptor trafficking to synapses in hippo- camidal neurons .Cell 105,331 -43
    [99].Henley JM. (2003),Proteins interactions implicated in AMPA receptor trafficking clear destination and an improving route map.Neurosci Res. 45:243-254.
    [100].Palmer CL,Cotton L,Henley JM. (2005),The molecular pharmacology and cell biology of a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors.Pharmacol Rev. 57(2):253-277
    
    [101].Schneiderman JH. ( 1997),The role of long-term potentiation in persistent epileptiform burst-induced hyperexcitablity following GABA receptor blockade.Neurosci.,81:1111
    [102].Shaw PJ,Ince PG. (1997);Glutamate , excitotoxicity and amyotrophic lateral sckerosis.J Neurol. 244:S3-14
    
    [103].Zhao P, Ignacio S, Beattie EC, Abood ME. (2008),Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur J Neurosci. 27:572-9
    [104].Van Damme P, Dewil M,Robberecht W,Van Den Bosh L. (2005); Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener Dis. 2:147-59.
    [105].Schneiderman JH. (1997),The role of long-term potentiation in persistent epileptiform burst-induced hyperexcitablity following GABA receptor blockade.Neurosci. 81:1111
    [106]Small, D. H.; Mok, S. S.; Bernstein, J. C. ( 2001);Alzheimer's disease and Abeta toxicity: from top to bottomNat. Rev. Neurosci. 2: 595- 598.
    [107].Selkoe, D. J. (2002);Alzheimer's disease is a synaptic failure. Science. 298:789-791.
    [108].Hardy, J.; Selkoe, D. J. (2002);The amyloid hypothesis of Alzheimer' disease .progress and problems on the road to therapeutics. Science. 297: 353- 56.
    [109].L(?)scher, C.; Nicoll, R. A.; Malenka, R. C.; Muller, D. (2000); Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat.Neurosci. 3:545-550.
    
    [110].Chang EH,Savage MJ, Flood DG, and et al . (2006).AMPA receptor downscaling at the onset of Alzheimer's disease pathology in double knockin mice.Proc Natl Acad Sci USA. 103:3410-5
    [111].Hollmann M,Heinemann S. (1994),Cloned glutamate receptors.Ann Rev Neurosci. 17:31-108
    
    [112].Basn S,Volk B,Wisden W. (1994),Kainate receptor gene expression in the developing rat brain.J Neurosci. 14:5525-5547
    [113].Cui C,Mayer MI. (1999),Heteromeric kainite receptors formed by the coassembly of GluR5,GluR6 and GluR7.J Neurosci. 19:8281-8291
    [114].Bureau I, Bischoff S, Heinemann SF,et al. (1999)Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci .,19: 653-663.
    [115].Contractor A, Swanson GT & Heinemann SF. (2001)Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron.,29:209-216.
    [116].Lerma J. (2003),Roles and rules of kainate receptors in synaptic transmission.Nat Rev Neurosci. 4:481-495.
    [117].Lerma J,Morales M,Vicenle MA,et al. (1997),Glutamate receptors of the kainite type and synaptic transmission.Neurosci. 20:9-12
    [118].Vignes M,Collingridge GL. (1997),The synaptic activation of kainite receptors.Nature. 388:179-182
    [119].Vignes M,Bleakman D,Collingridge GL. (1997)The synaptic activation of the GluR5 subtype of kainite receptor in area CA3 of the rat hippocampus.Neuropharma- cology,36:1477-1481
    [120].Mulle C, Sailer A, Perez-Otano I,et al. (1998), Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice.Nature. 392:601-605.
    [121].Khalilov I, Hirsch J, Cossart R,et al. (2002), Paradoxical anti- epileptic effects of a GluR5 agonist of kainate receptors. J Neurophysiol, 88:523-527
    [122].Mathern GW, Pretorius JK, Kornblum HI,et al. (1998), Altered hippocampal kainate- receptor mRNA levels in temporal lobe epilepsy patients. Neurobiol Dis. 5:151-176.
    [123].Xu J,Liu Y,Zhang GY, (2008)Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D- aspartate receptors mediated by Src kinase.J.Biol Chem.283:29355-66.
    [123],Conn PJ,Pin JP,Pharmacology and functions of (1997),metabotropic glutamate receptors.Annu Rev Pharmacol Toxicol. 37:205-237
    [124].F.agni.L, Chavis P, Ango F,et al. (2000)Complex interactions between mGluRs intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci.,23:80-88
    [125]Merlin LR, (1999),Group I mGluR mediated silent induction of long-lasting epileptiform discharge. J Neurophysiol. 82:1078-81
    [126].Gasparini F,Bruno V,Battaglia G, et al. (1999). (R,S)-4-phosphonophenylglycine,a potent and selective group III metabotropic glutamate receptor agonist,is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther. 190:1678-87
    [127].Chapman AG, Nanan K,Yip P, et al . (1999),Anticonvulsant activity of a metabotropic glutamate receptor 8 preferetial agonist, (R,S)-4-phosphonophenylglycine.Eur.J.Pharmacol. 383:23-37
    [128].Awad H., Hubert G.W., Smith Y., Levey A.I., Conn P.J.: Activation of metabotropic glutamate receptor 5 (2000), has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus.J.Neurosci., 20, 7871-7879.
    [129] Kerner J.A., Standaert D.G., Penney J.B.Jr, Young A.B., (1997), Landwe-hrmeyer G.B.: Expression of group one metabotropic glutamate receptor subunit mRNA in neurochemically identified neurons in the rat neostriatum,neocortex and hippocampus. Mol. Brain Res., 48, 259-269.
    [130].Testa C.M., Standaert D.G., Young A.B., Penney J.B. (1994), Jr.: Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J.Neurosci., 14, 3005-3018.
    [131]. Hubert G.W., Paquet M., Smith Y: Differential subcellular localization of mGluRla and mGluR5 in the rat and monkey substantia nigra. J. Neurosci.,2001, 21, 1838-1847.
    [132].Battaglia G., Monn J.A., Schoepp D.D.: In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci. Lett., 1997, 229, 161-164.
    [133]. Bradley S.R., Marino M.J., Wittmann M., Rouse S.T., Awad H.: Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J. Neurosci., 2000, 20, 3085-3094.
    [134].Kennedy, M.B., Bennett, M.K., Erondu, N.E., (1983). Biochemical and Immuno-chemical evidence th at the "major postsynaptic density protein" is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. U. S. A.80, 7357-7361.
    [135].Shen, K., Meyer, T.,( 1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 28, 162-166.
    [136].Shen, K, Teruel, M.N., Connor, J.H., Shenolikar, S., Meyer, T., (2000).Molecular memory by reversible translocation of calcium/ calmodulin -dependent protein kinase II. Nat. Neurosci. 3, 881- 886.
    [137].Dosemeci, A., Tao-Cheng, J.H., Vinade, L.,Winters, C.A., Pozzo-Miller,L.,Reese, T.S., (2001). Glutamate-induced transient modification of the postsynaptic density. Proc. Natl. Acad. Sci. U. S. A. 98, 10428-10432.
    [138].Hudmon, A., Lebel, E., Roy, H., Sik, A., Schulman, H., Waxham, M.N., De Koninck, P.,( 2005). A mechanism for Ca2+/calmodulin- dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association.J. Neurosci. 25, 6971-6983.
    [139].Strack, S., Colbran, R.J.,( 1998). Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 273, 20689-20692.
    [140].Walikonis, R.S., Oguni, A., Khorosheva, E.M., Jeng, C.J., Asuncion, F.J.,Kennedy, M.B., (2001). Densin-180 forms a ternary complex with the(alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II a nd(alpha)-actinin. J. Neurosci. 21, 423-433.
    [141].Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M.,Sheng,M.,( 1997). Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442.
    [142].Chen, H.J., Rojas-Soto, M., Oguni, A., Kennedy, MB, (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II.Neuron 20, 895-904.
    [143].Kim, J.H., Liao, D, Lau, L.F., Huganir, R.L.,( 1998). SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20,683-691.
    [144].Kim, J.H., Lee, H.K., Takamiya, K., Huganir, R.L., (2003). The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J.Neurosci. 23, 1119-1124.
    [145].Komiyama, N.H.,Watabe, A.M., Carlisle, H.J., et al, (2002). SynGAP regulates ERK/MAPK signaling, synaptic plasticity, a nd learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci. 22, 9721-9732.
    [146].Vazquez, L.E., Chen, H.J., Sokolova, I., Knuesel, I., Kennedy, M.B., (2004).SynGAP regulates spine formation. J. Neurosci. 24, 8862-8872
    [147].Nagerl, U.V., Eberhorn, N., Cambridge, S.B., Bonhoeffer, T., ( 2004).Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759-767.
    [148].Zhou, Q., Homma, K.J., Poo, M.M., (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44,749-757.
    [149].Costa, M.C., Mani, F., Santoro Jr.,W, Espreafico, E.M., Larson, RE., 1999.Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulindependent protein kinase II and activates its kinase activity. J. Biol. Chem. 274,15811-15819
    [150].Lise, M.F.,Wong, T.P., Trinh, A., et al ( 2006). Involvement of myosin Vb in glutamate receptor trafficking. J. Biol. Chem. 281, 3669-3678.
    [151].Shen, K., Meyer, T., (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 28, 162-166.
    [152].Shen, K., Teruel, M.N., Subramanian, K., Meyer, T., (1998). CaMKII beta functions as an F-actin targeting module that localizes CaMKII alpha/ beta heterooligomers to dendritic spines. Neuron 21, 593-606.
    
    [153].Churn, S.B., Taft, W.C., Billingsley, M.S., et al (1990). Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase II in gerbils. Stroke 21, 1715-1721
    [154].Babcock, A.M., Liu, H., Paden, C.M., et al (1995). Transient cerebral ischemia decreases calcium/ calmodulin-dependent protein kinase II immunoreactivity,but not mRNA levels in the gerbil hippocampus. Brain Res. 705, 307-314.
    [155].Song, B., Meng, F., Yan, X., Guo, J., Zhang, G, (2003). Cerebral ischemia immediately increases serine phosphorylation of the synaptic RAS-GTPase activating protein SynGAP by calcium/ calmodulin- dependent protein kinase II alpha in hippocampus of rats. Neurosci. Lett. 349, 183-186.
    [156].Meng, F., Guo, I, Zhang, Q., Song, B., Zhang, G, (2003). Autophosphorylated calcium/calmodulin-dependent protein kinase II alpha (CaMKII alpha) reversibly targets to and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in cerebral ischemia and reperfusion in hippocampus of rats. Brain Res. 967, 161-169.
    [157].Hao, Z.B, Pei, D.S., Guan, Q.H., Zhang, G.Y., (2005). Calcium/calmodulin-dependent protein kinase II (CaMKII), through NMDA receptors and L-Voltage-gated channels, modulates the serine phosphorylation of GluR6 during cerebral ischemia and early reperfusion period in rat hippocampus. Brain Res. Mol. Brain Res. 140, 55-62.
    [158].Walton, M., Sirimanne, E., Williams, C., Gluckman, P., Dragunow,M.,( 1996).The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair. Brain Res. Mol. Brain Res. 43,21-29.
    [159].Meller, R., Minami, M., Cameron, J.A.,et al ( 2005). CREB- mediated Bcl-2 protein expression after ischemic preconditioning. J. Cereb. Blood Flow Metab.25, 234-246.
    
    [160].Ziff, E.B.,( 1997). Enlightening the postsynaptic density. Neuron 19,1163-1174.
    [161].Cho, K.O., Hunt, C.A., Kennedy, MB, (1992). The rat bra in postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929-942.
    [162]. Kistner, U., Wenzel, B.M, Veh, R.W., et al (1993). SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J.Biol. Chem. 268, 4580-4583.
    [163].Brenman, J.E., Christopherson, K.S., Craven, S.E., et al (1996). Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J. Neurosci. 16, 7407- 7415.
    [164].Kim, E., Cho, K.O., Rothschild, A, Sheng, M.,( 1996). Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17, 103-113.
    [165].Muller, B.M., Kistner, U., Veh, R.W.,et al (1995). Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. J. Neurosci. 15,2354-2366.
    [166].Muller, B.M., Kistner, U., Kindler, S., et al (1996). SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo.Neuron 17,255-265.
    [167].Kornau, H.C., Schenker, L.T., Kennedy, MB, Seeburg, P.H., (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.
    [168].Scheiffele, P., Fan, J., Choih, J., Fetter, R., Serafini, T.,( 2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657-669.
    [169].Chen, L., Chetkovich, D.M., Petralia, R.S.,et al ( 2000). Stargazing regulates synaptic targeting of AMPA receptors by two distinct mechanisms.Nature 408,936-943.
    [170].Ehrlich, I., Malinow, R., (2004). Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experiencedriven synaptic plasticity. J. Neurosci. 24, 916-927.
    [171].E1-Husseini, A.E., Schnell, E., Chetkovich, D.M., et al(2000). PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364-1368.
    [172].Huang, Y.Z.,Won, S., Ali, D.W.,et al (2000). Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443-455.
    [173].Kim, J.H., Liao, D., Lau, L.F., Huganir, R.L., (1998). SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20,683-69
    [174].Chen, H.J., Rojas-Soto, M., Oguni, A., Kennedy, M.B., (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II.Neuron 20, 895-904.
    [175].Pak, D.T., Yang, S., Rudolph-Correia, S., Kim, E., Sheng, M.,(2001).Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289-303.
    [176].Penzes, P., Johnson, R.C., Sattler, R.,et al( 2001). The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins andregulates dendritic morphogenesis. Neuron 29, 229-242.
    [177].Xiao, B., Tu, J.C., Petralia, R.S.,et al( 1998). Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of Homer-related, synaptic proteins. Neuron 21, 707-716.
    [178].Sala, C., Futai, K., Yamamoto, K.,et al (2003). Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homerla. J. Neurosci. 23, 6327-6337.
    [179].Brakeman, P.R., Lanahan, A.A., O'Brien, R., et al (1997). Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386, 284-288.
    [180].Tu, J.C., Xiao, B., Yuan, J.P.,et al(1998). Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP 3 receptors.Neuron 21, 717-726.
    [181].Tu, J.C., Xiao, B., Naisbitt, S., (1999).Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23,583-592.
    [182].Lim, S., Naisbitt, S., Yoon, J.,et al(1999). Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J. Biol. Chem. 274, 29510-29518.
    [183].Bockers, T.M., Mameza, M.G., Kreutz, M.R., et al( 2001). Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J. Biol. Chem. 276,40104-40112
    
    [184].Lim, S., Sala, C., Yoon, J.,et al(2001). Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol. Cell Neurosci. 17, 385-397.
    [185].Sala, C., Piech, V., Wilson, N.R.,et al(2001).Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115-130.
    [186].Kim, E., Naisbitt, S., Hsueh, Y.P., et al(1997). GKAP, novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669-678.
    [187],Naisbitt, S., Kim, E., Tu, J.C., et al(1999). Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/P SD-95/GKAP complex and cortactin. Neuron 23, 569-582
    [188].Takeuchi, M., Hata, Y., Hirao, K., et al(1997). SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol.Chem. 272, 11943-11951.
    [189].Hirao, K., Hata, Y., Deguchi, M., et al( 2000). Association of synapseassociated protein 90/postsynaptic density-95-associated protein (SAPAP) with neurofilaments. Genes Cells 5, 203-210.
    [190].Kawabe, H., Hata, Y., Takeuchi, M., et al(1999).nArgBP2, a novel neural member of pons in/ArgBP2/vinexin family that interacts with synapse-associated protein 90/postsynaptic density-95- associated protein (SAPAP).J.Biol.Chem.274,30914-30918.
    [191].Naisbitt,S.,Valtschanoff,J.,Allison,D.W.,et al(2000).Interaction of the postsynaptic density-9 5/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein.J.Neurosci.20,4524-4534.
    [192].Hata,Y,Ide,N.,Takeuchi,M.,et al(1998).A novel multiple PDZ domaincontaining molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins.J.Biol.Chem.273,21105-21110.
    [193].Wyneken U,Smalla KH,Marengo JJ,et al.(2001),Kainate-induced seizures alter protein composition and N-methyl-D-aspartate receptor function of rat forebrain postsynaptic densities.Neurosicence.102:65-74
    [194].Wyneken U,Marengo JJ,Villanueva S,et al.(2003),Epilepsy- induced changes in signaling systems of human and rat postsynaptic densities.Epilepsia.44:243-246
    [195].李玲,肖波,唐铁钰等.(2006),颞叶癫痫大鼠海马区NR2B/PSD-95的动态变化.中国临床神经科学.14(2):134-138
    [196].Hou XY,Zhang GY,Yan JZ,et al.(2002),Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95- NR2A complex after transient brain ischemia.Brain Res.955:123-132
    [197].Hou XY,Zhang GY,Zong YY.(2003),Suppression of postsynaptic density protein95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-D-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus.Neurosci Lett.343:125-128
    [198].Jiang W,Xiao L,Wang JC,et al.(2004),Effects of nitric oxide on dentate gyrus cell proliferation after seizures induced by pentylenetrazol in the adult rat brain.Neurosci Lett.367:344-348
    [199].Potschka H,Krupp E,Ebert U,and et al.(2002).Kindling-induced overexpression of Homer 1A and its functional implication for epileptogenesis.Eur J Neurosci.16:2157-65.