小分子多肽化合物CMS008和CMS001对小鼠运动性疲劳及慢性疲劳综合症影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究小分子多肽化合物CMS 008和CMS 001抗小鼠运动性疲劳的作用及并初步探讨其作用机理;观察小分子多肽化合物CMS 001对慢性疲劳综合症的治疗作用。
     方法:1.选用雄性Balb/c小鼠,根据抗疲劳作用的检验方法,观察CMS008,CMS001对小鼠负重游泳时间,肝糖原,尿素氮,血乳酸水平的影响。2.电镜观察CMS 008对运动后小鼠心肌,骨骼肌超微结构的影响,探讨药物对心肌,骨骼肌线粒体,肌浆网的影响。3.观察CMS 008、CMS 001对力竭运动小鼠血清MDA、SOD及AST、ALT水平的影响。4.观察CMS 008、CMS 001对体外淋巴细胞转化的影响。5.通过红外光传感器计数与单片机集中管理数据相结合,设计出24小时记录小鼠日常活动的仪器——动物旋转轮式运动计量系统。6.雌性C57BL/6小鼠,腹腔注射短棒杆菌0.1ml(6.0×10~9个菌/ml),诱发CFS模型。动物旋转轮式运动计量系统记录CMS 001对CFS小鼠日常活动量的影响。
     结果:1.CMS 008给药剂量为125-500μg/kg/d,CMS 001给药剂量为5-20μg/kg/d时,可以明显延长小鼠负重游泳时间(p<0.05)。2.CMS008给药剂量为125-500μg/kg/d,CMS 001给药剂量为5-20μg/kg/d时,可以明显降低小鼠运动后血清尿素氮水平(p<0.05)。3.CMS 008给药剂量为125-500μg/kg/d,CMS 001给药剂量为20μg/kg/d时,可以明显增加小鼠肝糖原的储备(p<0.05)。4.CMS 008给药剂量为125-500μg/kg/d、CMS 001给药剂量为5-20μg/kg/d时,能够抑制运动后乳酸升高并加速机体对乳酸的消除(p<0.05)。5.CMS 008可以明显减轻运动造成的小鼠心肌,骨骼肌线粒体明显减少,残存线粒体空泡样变,髓磷体沉积及“钙超载”等损伤,使大部分组织接近正常。6.CMS 008给药剂量为500μg/kg/d,CMS 001给药剂量为20μg/kg/d时,可以降低力竭运动时MDA的升高(p<0.05),并且能够增加抗氧化酶SOD的活性(p<0.05)。CMS 008给药剂量为500μg/kg/d,CMS 001给药剂量为20μg/kg/d时,可以
    
    沪丈藏要
    降低力竭运动时AST和ALT的升高(p<0.05)。7.CMS 001在2林g/ml,
    0.4林创ml,0.08林留ml,0.016林创ml浓度时能够抑制体外淋巴细胞转化
    (P<0.ool),相同浓度的CMS 008对体外淋巴细胞的转化无明显影响
    (p>.05)。8.动物旋转轮式运动计量系统可有效记录小鼠的日常活动量。9.
    腹腔注射CP后,模型组小鼠在以后的19天内日常活动量下降至原来的50%
    以下。CMS 001组与生理盐水组在注射CP后,活动量下降,两组日常活动量
    均降到原来的加%以下,两者比较无显著性差异(P>0.05)。
     结论:1.cMs 008,cMs 001具有抗小鼠运动性疲劳的作用。2.抗疲劳
    作用是通过增加肝糖原储备,抑制运动引起乳酸的堆积,加速乳酸的清除,抑
    制蛋白质的分解实现的。另外,药物对心肌、骨骼肌线粒体的保护作用以及减
    少线粒体钙超载促进了其抗疲劳作用。药物亦通过减轻运动引起的氧化损伤、
    增强机体抗氧化系统酶的活性发挥抗疲劳作用。3.动物旋转轮式运动计量系
    统能够记录小鼠24小时日常活动量,可靠、灵敏、简便。CMS 001对CFS小
    鼠无治疗作用。
OBJECTION To investigate the anti-fatigue effects and the mechanism of
    small molecular peptides CMS 008 and CMS 001 on Balb/c mice, and the effect on CFS of small peptide CMS001.
    METHODS 1. According to the anti-fatigue test, the male Balb/c mice were tested for the exhaustive swimming time, liver starch, urea nitrogen and lactic acid in the blood serum. 2. To research the ultrastructure especially mitochondria and sarcoplasmic reticulum of the fatigued mice and the molecular peptide's effect, electron microscope was used to discover the ultrastructure difference between peptide group and saline group. 3. The MDA, SOD, AST, ALT levels in the blood serum were also detected to find the effects of CMS 008and CMS 001 on the exhaustive mice. 4. The effects of CMS008 and CMS001 on T lymphocyte transformation in vitro were tested to reflect their immune function. 5. Wheel System to Count Mice Activity was designed to count the mice's daily activity. 6. CP 0.1ml(6.0X 109 /ml) was intraperitoneally injected to female C57BL/6 mice to induce immunologically mediated fatigue. What we do is to investigate if CMS 001 had some therapeutic effect on CFS mice.
    RESULTS 1. CMS 008 can remarkably prolong exhaustive swimming time (p<0.05). CMS 001 high and low dose groups also can prolong exhaustive swimming time of mice. 2. All the CMS 008 and CMS001 groups can decline the BUN significantly after 90min swimming (p<0.05). 3. CMS 008 high and low dose groups enhance liver starch level significantly contrast to saline group (p<0.05). CMS001 high dose group can enhance liver starch (p<0.05), but the low dose group not. 4. As to lactic acid level in blood serum, it increased after acute short time exercise. All of the experiment groups can inhibit the produce of lactic acid and decrease the increased lactic acid (p<0.05). 5. Electron microscope gave a
    
    
    direct damage impression of acute long exercise. Skeletal muscle and myocardium's mitochondria and sarcoplasmic reticulum of saline group were damaged by piles and piles of myelin, calcium-overload can also be detected. Mitochondria turned into many vacuoles, sarcoplasmic reticulum lysised. CMS 008 group damaged little at the same time, and pathological changes were minimal to adapt to exercise. 6. After acute exercise, MDA and SOD gained positive findings statistically for the two peptides can decrease MDA and increase SOD contrast to saline group; After exhaustive exercise, AST and ALT levels in the blood were higher than the normal control group, but CMS 008(500ug/kg/d) group was relatively lower than saline group (p<0.05). CMS 001 (20ug/kg/d) group can also decreased AST and ALT levels of blood serum compared with saline group(P< 0.05). 7. CMS 001 can inhibit T lymphocyte transformation^ 0.001), but CMS008 hasn't the immune function.8. Wheel System to Count Mice Activity can count mice's daily activity.
    9. Through CP injection, the CFS model mice declined their daily exercise below to 50% of their baseline, and the model control group kept their normal activity, CMS 001 and saline control's activity dropped radically to 20% of the normal activity, and the two groups were in the same percentage (p>0.05).
    CONCLUTIONS 1. CMS 008, CMS 001 have anti-fatigue effects on Balb/c mice. 2. Inhabiting protein lysis, protecting skeletal muscle and myocardium, cleaning out free radicals contribute to anti-fatigue of the small peptides. 3. Wheel System to Count Mice Activity can sensitively and precisely counts daily activity of mice, CMS 001 has little therapeutic effect on CFS.
引文
1. Knuttgen H.G. Biochemistry of Exercise. Human Kinetics Publishers. 1983. Glory Of Exercise Terminology.
    2.吴红饶.外周疲劳研究的现状.中国运动医学杂志,1993,12(2):93-96.
    3.冯炜权.运动性疲劳和恢复过程与运动能力的研究新进展.北京体育学院学报,1993,16(2).17-29.
    4. Niiho Y. Yamazaki T, Hosono T, et al. Pharmacological studies on small peptide fraction derived from soybean. The effects of small peptide fraction derived from soybean on fatigue, obesity and glycemia in mice. Yakugaku Zasshi. 1993 Apr; 113(4):334-42.
    5. Kim KM, Yu KW, Kang DH, et al. Anti-stress and anti-fatigue effect of fermented rice bran. Phytother Res. 2002 Nov; 16(7):700-2.
    6. Ktan NM. Chronic fatigue syndrome. An overview of current concepts. Adv Nurse Pract. 2003 Dec; 11(12):64-6.
    7. Mizunoya W, Oyaizu S, Ishihara K, et al. Protocol for measuring the endurance capacity of mice in an adjustable-current swimming pool. Biosci Biotechnol Biochem. 2002 May;66(5): 1133-6.
    8.何聆,王明,陈润等.西洋参对血乳酸、血清尿素氮和肝糖原含量的影响.预防医学文献信息,2002,8(3):293-294.
    9.王小雪,邱隽,宋宇等.茶氨酸的抗疲劳作用研究.中国公共卫生杂志,2002,18(3),315-317.
    10. Thomas D P, Marshall K I. Effects of repeated exhaustive exercise on myocardial subcellular membrane structure. Int J Sport Med, 1988,(9):257-260.
    11. Anthonys Fancis. Harrison's principles of internal medcine. 14the New York d: Mcgraw Hill, professions Division. 1998.
    12. Wen S Sheng, Shuxian HU, Antonette Lamkin, et al. Susceptibility to
    
    immunologically mediated fatigue in C57BL/6 versus Balb/c mice. Clinical Immunology and immunopathology, 1996,81 (2): 161-167.
    13. J.E.Ottenweller, B.H.Natelson, W.C.Gause. Mouse running activity is lowered by brucella abortus treatment:a potential model to study chronic fatigue. Physiolgy and Behavior, 1998,63 (5): 795-801.
    14.张镜如.生理学(第四版)[M].北京:人民卫生出版社,1997.
    15.王瑞元.运动生理学[M].北京:人民体育出版社,2002.
    16.刘燕萍.运动性疲劳及其机制分析[J].西安体育学院学报,2001,(18):46-47.
    17.全国体育院校教材委员会.运动生物化学[M].北京:人民体育出版社,1999.
    18.田野.线粒体钙聚集对运动性骨骼肌疲劳的影响[J].体育科学,1992,3.47-48.
    19. Castell LM, Newsholme EA. The relation between glutamine and the immunodepression observed in exercise. Amino Acids. 2001 ;20(1):49-61.
    20. Crocq L. Objective method of assessment of psychotonic drugs for fatigue.Sem Hop Ther. 1976 Dee;52(10):557-64. French.
    21.宋杰,陶郁.牛磺酸与运动性疲劳.现代康复,2001,5(4):111.
    22.李世成,杨则宜.活性肽及其在运动中的应用.中国运动医学杂志,2003,22(2):174-176.
    23.金宗镰.功能食品评价原理及方法.北京:北京大学出版社,1995
    24. Vollestad N K, Ssjersted O M.Biochemial correlates of fatigue[J].Eur J Appl Physiol, 1988, 57:336-347.
    25.周薇,王远金.大鼠疲劳模型的建立及疲劳对肝脏结构和功能的影响[J]成都体育学院学报,1998,24(3):81-86.
    26. Thomas DP, Marshall KI. Effects of repeated exhaustive exercise on myocar dial subcellular membrane structures [J] Int J Sports Med, 1988,(9):257-260.
    
    
    27.黄明,张晓玲.跑台运动与负重游泳致大鼠力竭性疲劳时心肌、骨骼肌组织学变化特征观察.成都体育学院学报,1996,4:81-83.
    28.卫生部,保健食品功能学评价程序和检验方法.
    29. Westblad.H. Changes of intracellular pH due to repetitive stimulation of single fibers from mouse skeletal muscle[J]. J Physiol Lond; 19(499).49-97.
    30. Edman KA. Changes in force and stiffness induced by fatigue and intracellular acidufieation in frog muscle fibers.J Gen Physiol, 1991 (98):615-635.
    31.许豪文.运动生物化学概论[M]高等教育出版社,2001,22-26:391-392.
    32.黄兴裕.运动性疲劳与PH值.山东体育科技,2003,25(4):35-36.
    33.殷劲.疲劳时肌肉中的Ach量[J].中国运动医学杂志,1987,(6).
    34. Halestrap A P. Mitochondrial calcium handling and oxidative stress. Biochem. Soc. Trans/1993;21 (2)353-358.
    35. Tate CA. Calcium uptake in skeletal muscle mitochondria. Eur J Appl Physiol. 1978,39: 1111.
    36. Pierece GN, et al. Biochemical alteration in heart after exhaustive swimming in rats. J Appl Physiol. 1984, 57: 326.
    37.田野.急性运动后大鼠骨骼肌线粒体~(45)Ca~(2+)摄取的动力学观察.中国运动医学杂志,2001,20(2):132-133.
    38.田野,唐朝枢.运动性骨骼肌结构、机能变化的机制研究—Ⅱ.力竭运动对线粒体钙代谢水平的影响.中国运动医学杂志,1993,12(1):31-33.
    39.宋丹云.运动对心肌超微结构的影响.福建中医学院学报,2003,13(6):38-40.
    40.张勇,时庆德,文力等.运动性疲劳的线粒体膜分子机制研究Ⅰ,急性力竭运动中线粒体电子漏引起质子漏增加及其相互作用.中国运动医学杂志,1999,18(3):236-239.
    
    
    41. Gollnick PD. The effect of high intensity exercise on the respiratory capacity of skeletal muscle .Eur J Appl Physiol, 1990,145:407-413.
    42. Boverris A. Role of ubiquinone in mitochondrial generation of hydrogen peroxide. Biochem J,1976,156: 435-444.
    43.熊正英,张全江,解勇国,等.运动状态下的线粒体与细胞凋亡.中国运动医学杂志,2002,21(6):589-593.
    44. C E.Cooper N BJ.Exercise,free radicals,oxidative stress. Biochemical Society Tansactions,2001,30: 280-286.
    45.中野稔.生物体内的自由基发生体系.日本医学介绍,1994,15(7):291-291.
    46. Dobretsol G E. The increase of phospholipid bilayer rigidity after lifpid peroxidation.FEBS Lett. 1977;84:125-128.
    47. Cooper CE, Vollaard NB,Choueire T, et al.Exercise, free radicals and oxidative stress. Biochem Soc Trans. 2002 Apt;30(2):280-5.
    48. Groussard C, Rannou-Bekono F, Machefer G, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol. 2003 Mar;89(1):14-20.
    49. Ortenblad N, Madsen K, Djurhuus MS. Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. Am J Physiol. 1997 Apr;272(4 Pt 2):R1258-63.
    50.刘小杰,何国庆,熊正英.沙棘油对小鼠心肌自由基代谢和超微结构的影响.Acta Nutrimenta Since,2002.24(2): 126-128.
    51. Kinoshita S, Yano H, Tsuji E. An increase in damaged hepatocytes in rats after high intensity exercise. Acta Physiol Scand. 2003 Jul;178(3):225-30.
    52. Chuang CC, Chen WC, Lee SY, et al. The effect of blood AST, ALT and lactate after short and middle distance exercise training Kaohsiung J Med Sci. 1996
    
    Sep;12(9):544-8.
    53.梁鹰.运动性疲劳与血清酶活性的关系研究.中国运动医学杂志,1992,11(4):241.
    54. Roberto Patarca, Timothy Mark,Mary Ann, et al.Review: Immunology of chronic fatigue syndrome.Journal of Chronic Fatigue Syndrome,2000,6:69-107.
    55. Morrison U, Behan WH, Behan PO. Changes in natural killer cell phenotype in patients with post-viral fatigue syndrome. Clin Exp Immunol, 1991,83:441-446.
    56. Chun C.Chao, Michael Delahunt, Shuxian Hu.Immunologically mediated fatigue: A murine model. Clinical Immunology and Immunopathology.1992, 4(2):6161-165.
    57. Singh A, Naidu PS, Gupta S, et al. Effect of natural and synthetic antioxidants in a mouse model of chronic fatigue syndrome. J Med Food,2002,5(4):211-20.
    58.刘雁峰,王天芳,杨维益,等.慢性疲劳的中西医病理机制探讨及实验研究——复合应激因素致慢性疲劳动物模型的研制及行为学观察.中国中医基础医学杂志,1998,4(增刊):157-160.