分子标记辅助选择在优质蛋白玉米(QPM)育种中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
opaque-2(o2)基因可以显著提高玉米胚乳中的赖氨酸和色氨酸含量,胚乳修饰基因可改善胚乳物理性状,增加籽粒硬质度、粒重、透明度。本研究利用与opaque-2(o2)基因紧密连锁的分子标记phi057,检测QPM 群体中群13、中群14 内o2 基因的频率分布,发现中群13、中群14 在o2 基因位点的等位基因频率发生了很大变化,说明定期监测群体o2o2 基因型频率的必要性。利用phi057 分子标记检测CB、CD、CA、R 高代自交系,发现某些高代系在o2 基因位点上没有纯合,通过分子标记进行o2 基因的检测,可以提高选择的准确性。
    将现有的优良普通玉米自交系转育成QPM,是丰富优质蛋白玉米遗传基础的有效途径。本研究通过优化DNA 提取技术、SSR、AFLP 技术流程,建立了一整套进行QPM的分子标记辅助选择体系。在将50 个普通玉米自交系转育成QPM 自交系的过程中,利用分子标记辅助选择O2o2 基因型,结果表明是十分有效的。利用与o2 基因紧密连锁的分子标记对CA335 和黄早四回交群体、CA335 和178 回交群体的BC1F1 和BC2F1的前景选择,表明利用分子标记能够有效地进行QPM o2 基因的前景选择;利用AFLP 分子标记进行QPM 回交群体BC1F1 和BC2F1的背景选择,表明利用AFLP 分子标记辅助选择使回交二代比回交一代与轮回亲本的相似性显著增加, 使未纯合位点进一步纯合,从而加快QPM 育种进程,为分子标记辅助选择QPM 提供重要理论依据。
opaque-2(o2)gene increases the lysine and tryptophan contents sinificantly in maizeendosperm. Modifying genes could alter the kernel phenotype including kernel horniness,kernel weightiness and kernel transparency. In this study, the SSR primer phi057 that linkedtightly with opaque-2 (o2) was used to detect o2o2 genotype in the QPM(Quality ProteinMaize) populations CPop13, and CPop14, and it was revealed that the frequency of o2 genehad shifted significantly in the two populations. The MAS was used to detect the o2o2genotype in CA, CD, CB, and R series lines. It was indicated that homozygous o2o2 genotypein QPM inbred lines could not be ensured with conventional breeding efforts.
    Germplasm background is constraint in QPM breeding efforts. In the current study anefficient technique of marker assisted selection for QPM was established based on theoptimized DNA extraction, technique program of SSR (Simple Sequence Repeat) andAFLP(Amplified Fragment Length Polymorphism). In order to enhance the QPM germplasmbasis and convert 50 elite normal lines into QPM, the SSR marker Phi057 was used to detecto2 gene in backcross generations, and it proved to be a powerful tool in the efforts. The SSRprimer phi057 was used to detect o2 gene in BC1F1 and BC2F1 of the crosses(CA335×X178) , (CA335×HZ4). It was proved that the marker used to foreground selectionis effective. The AFLP primers were used to detect background in BC1F1 and BC2F1 of thecrosses. It was proved that the similarity of BC2F1 increases more apparently than similarityof BC1F1, and more heterozygous loci tend to homozygous. Molecular Markers AssistedSelection (MAS) can expedites breeding program. It offers important theoretical method forMolecular Markers Assisted Selection of QPM.
引文
[1] 石德权, 张世煌. 优质蛋白玉米杂交种选育和开发利用. 作物杂志, 1994,(4): 5-7.
    [2] 宋同明. 发展我国特用玉米产业的意义、潜力与前景. 玉米科学, 1996, 4(4): 6-11.
    [3] 张欣. 中国优质蛋白玉米(QPM)育种的回顾与展望. 国外农学—杂粮作物, 1999, 19(6): 26-29.
    [4] 翟少伟, 齐广海, 刘福柱. 优质蛋白玉米的营养价值及发展前景, 粮食与饲料工业, 2002,(6):23-25.
    [5] Crow J F, Kermicle J. Oliver Nelson and quality protein maize. Genetics, 2002, 160:819-821.
    [6]张世煌, 白丽, 石德权. www.newcorn.com.cn/ tezhongyumi/danbaiyumizhuanti-2002-12-27.htm.
    [7] Mertz E T, Bates L S, Nelson O E. Mutant gene changes protein composition and increases lysine content of endosperm. Science. 1964, 145: 279-280.
    [8] Bjarnason, M. Vasal,S K. Breeding of quality protein maize (QPM). Plant Breeding. 1992, 181.
    [9] Gentinett E, Malamini F, Lorenzoni C. Protein studies in 46 opaque-2 maize varieties for strains with modified endosperm texture . Maydica , 1975, 20: 1-17.
    [10] Vasal S K. High quality protein corn. In: A.R. Hallauer (ed.), peciality corns. CRC Press. 1994,80-121.
    [11] Soave C, Reggiani R, Fonzo N D,et al. Genes for zein subunits on maize chromosome 4. Biochen Genet, 1982,20: 1027-1038.
    [12] 石德权, 张世煌. 优质蛋白玉米杂交种选育和开发利用. 作物杂志, 1995,(1): 2-4.
    [13] Hunter B G. Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 2002, 14: 2591–2612.
    [14] Huang S S. Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. Food Chem. 2004, 52: 1958-1964.
    [15] Binelli G, Soave C, Ottaviano E. Location and differential expression of a zein gene in maize. Plant Sci Lett, 1984, 33:259-265.
    [16] Viotti A, Sala E, Morotta R. Genes and mRNAs coding for zein polypeptides in Zea mays. Eur J Biochem, 1979,102: 211-222.
    [17] Schmidt R J, Burr F A, Aukerman M J, Burr B. Maize regulatory gene oqaque-2 encodes a protein with a “leucinezineipper ”motif that binds to zein DNA. Proceeding of the National Academy of Sciences of the United States of America, 1990, 87: 46-50.
    [18] Motto M, Maddaloni M, Ponziani G,. Molecular cloning of the o2-o5 allele of Zea mays using transposon marking. Mol Gen Genet, 1998, 212: 488-494.
    [19] Maddaloni M, Fonzo Di,Hartings N, Lazzaroni N, Salamini F, Thompson R, Motto M. The sequence of the zein regulatory gene opaque-2 of Zea mays. Nucleic Acids Research, 1989, 17(18): 7532.
    [20] Hartings H, Maddaloni M, Lazzaroni N. The o2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptionl activators. The EMBO J, 1989, 8: 2795-2801.
    [21] Schmidt R J, Burr F A,Aukerman M J. Maize regulatory gene oqaque-2 encodes a protein with a “leucinezineipper”motif that binds to zein DNA. Proc Natl Acad Sci USA, 1990, 87: 46-50.
    [22] Nelson O E. Second Mutant Gene Affecting the Amino Acid Pattern of Maize genetics conference abstracts. 1997, 39.
    [23] Mcwhirter K S. A floury endosperm high lysine locus on chromosome 10 . Maize Genet Crop. News ,1971, 145-184.
    [24] Ma Y ,Nelson O E. Amino acid composition and storage protein in two new high-lysine nutants in maize . Cereal Chem, 1975, 52 : 412-419.
    [25] Soave C, Salam F. High-lysine genes in maize theoretical and applied aspects . Monografia digeget Agrar, 1979, 4: 107-142.
    [26] Kim C S. A defective signal peptide in a 19-kD alpha-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant. Plant Physiol, 2004, 134: 380–387.
    [27] Soave C, Cossnna S, Lorenzoni C, et al. Expressivties of the floury-2 allele at the level of zein molecular components.Maydica, 1978,23: 145-152.
    [28] Soave C, Righetti O , Lorenzoni,. Expressivity of the opaque-2 gene at the level of zein molecular components . Maydica, 1976, 21: 61-75.
    [29] Pedersen K, Bloom K S, Anderson J N. Analysis of the complexity and frequency of zein genes in the maize genome . Biochemistry, 1980, 19: 1644-1650.
    [30] Vasal S K. The quality protein maize story. Food and Nutrition Bulletin. 2000, 21(4): 445-450.
    [31] Damerval C, Devienne D. Quantification of dominancefor proteins pleiotropically affected by opaque-2 in maize.Heredity. 1993, 70, 38–51
    [32] Glover D V, Mertz E T. In: Nutritional quality of cereal grains: genetic and agronomic improvement.Am Soc Agron, Madison, Wis, 1987,138-140.
    [33]Paez A V, Helm J L, Zuber M S. Lysine content of opaque-2 maize kenels having different phenotypes. Crop sci, 1969, 251-252.
    [34]Gibbon B C. (2003) Altered starch structure is associated with endosperm modification in Quality Protein Maize. Proc. Natl Acad Sci. 2003, 15329–15334.
    [35] Hohls T. Genetic control of kernel modification found in South African quality protein maize inbred lines. Euphytica 1996,87:103–109.
    [36] 丁占生. 优质蛋白玉米遗传育种研究进展. 中国农业科学, 2000,(33)增刊:80-86.
    [37] Geetha K B, Lending C R, Lopes M A, et al. opaque-2 modifiers increase r-zein synthesis and alter its spatial distribution in maize endosperm[J]. Plant Cell.,1991, 3: 1207-1219.
    [38] Lopes M A, Larkins B A. Genetic analysis of opaque-2 modifier gene activity in maize endosperm. Theor Appl Genet, 1995, 19: 274-281.
    [39] Wallace J C , Lopes M A. New methods for extraction and quantitiation of zeins reveal a high content of gamma-zein in modified opaque-2 maize. Plant physiol, 1990, 92: 191-196.
    [40] 杨引福,胡必德,罗淑平. 硬质胚乳奥帕克-2 玉米籽粒品质性状相关研究.优质蛋白玉米石德权主编,1995:201-216.
    [41]Bryan.C, Gibbon, Brian A, Larkins. Molecular genetic approaches to developing quality protein maize. Genetica. 2005, 21(4): 227-233.
    [42] Lopes M A, Larkins B A. Opaque-2 modifiers act post-transcription in quality protein maize. Crop Science, 1991, 31: 1655-1662.
    [43] Vasal S K. High quality protein cron. Specialty corns. 2001, 85-129.
    [44] 陈泽辉, 高翔, CIMMYT 主要优质蛋白玉米群体和自交系. 种子, 1999,(4):55-56.
    [45]. 杨斌, 陈泽辉. CIMMYT 优质蛋白玉米研究概况, 作物杂志, 1995,(4): 8-10.
    [46] Vasal S K. Improving Human Nutrition Through Agriculture:The Role of International Agricutural Research. Quality Protein Maize Story, 1999 .
    [47] 杨引福, 胡必德, 师公贤. CIMMYT 玉米基因圃Pool33QPM 温带驯化种群轮回选择的效应. 西北农业大学学报, 1995, 23(3):24-28.
    [48] 石德权. 优质蛋白玉米[M]. 北京: 中国科学技术出版社, 1995, 78-87.
    [49] 刘治先, 贾世锋, 郭庆法, 汪黎明. 优质蛋白玉米杂交种鲁玉13号选育研究. 作物学报, 1997, 23 (5): 626-629.
    [50] 赵博, 王振华, 贾连璋, 赵发欣. 优质蛋白玉米的研究利用和发展前景. 种子, 2001, (1): 34-39.
    [51] 李维鼎, 梁晓玲. 优质蛋白玉米新品种新玉7 号. 江苏农业科学, 1994, (1): 65.
    [52] 张世煌,白丽, 石德权. 优质蛋白玉米育种研究进展. 中国农业科学.
    [53]番兴明, 谭静, 张培高, 杨峻芸. 云南省优质蛋白玉米育种的进展及发展方向. 作物杂志.1999,5:19-20.
    [54] 李竞雄, 石德权, 吴秀琴, 常碧影. 高赖氨酸玉米杂交种的选育. 中国农业科学, 1980,(1):51-59.
    [55] 杨晓辉,韩晓清,崔淑惠. 中国优质蛋白玉米育种研究现状及开发利用前景展望. 2003 年全国作物遗传育种学术研讨会论文集.
    [56] 田清震, 李新海, 李明顺,姜伟,夏先春,张世煌. 优质蛋白玉米的分子标记辅助选择. 玉米科学, 2004, 12(2): 108-110.
    [57] 张世煌, 白丽, 石德权. 优质蛋白玉米育种研究进展. 2000 年玉米种质扩增、改良与杂种优势利用研究会议论文集.
    [58] 番兴明, 张世煌, 谭静, 李明顺, 李新海. 根据SSR 标记划分优质蛋白玉米自交系的杂种优势群. 作物学报, 2003, 29(1): 105-110.
    [59]张世煌, 石德权. 系统引进和利用外来玉米种质. 作物杂志, 1995, 1: 7-9.
    [60]杨引福, 胡必德, 师公贤. 优质蛋白玉米综合种中群14 号的轮回选择效果, 贵州农学院学报.1996, 15(2): 7-10.
    [61] 石德权. 玉米籽粒蛋白质品质育种进展. 农业科技参考资料(79-3), 1979.
    [62] 刘治先, 贾世锋, 郭庆法, 汪黎明, 优质蛋白玉米自交系齐205 的选育研究. 作物杂志. 1994,(1): 7-8.
    [63]刘鹏渊, 朱军. 标记辅助选择改良数量性状的研究进展. 遗传, 2001, 23(4): 375-380.
    [64]陈佩度. 作物育种生物技术. 北京: 中国农业科技出版社. 2001.
    [65]吴建宇, 徐翠莲, 卢超, 杨清岭. 生化标记和分子标记在玉米轮回选择中的应用. 河南农业大学学报,1996,30(3):269-273.
    [66]袁鹰,刘德璞,张光弟,郝文媛,谭化,姜昱.玉米常规育种中存在的问题的生物技术解决方案. 分子植物育种,2005,3(1):135-139.
    [67] 方宣钧, 吴为人, 唐纪良. 作物DNA 标记辅助育种. 科学技术出版社, 2002: 1-21.
    [68] 贾继增. 分子标记种质资源鉴定和分子标记育种. 中国农业科学, 1996,29(4):1-10.
    [69] Goff S A, Ricke D, Lan T H. A draft sequence of the rice genome Oryza sativa L.ssp.japonica.Science, 2002,296: 92-100.
    [70] Lemieux B, Aharoni A, Schena M. Overview of DNA chip technology. Molecular Breeding,1998, 4: 227-289.
    [71] Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF and Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize(Zea mays L.). Proceedings of the National Academy of Sciences of USA. 2002, 98:9161-9166..
    [72] Zwick ME, Cutler DJ and Chakravarti A. Patterns of genetic variation in Mendelian and complex traits. Annual Review of Genomics and Human Genetics, 2000,1: 387-407.
    [73] 潘海军, 王春连, 赵开军, 章琦, 樊颖伦,周少川, 朱立煌. 水稻抗白叶枯病基因Xa23 的PCR 分子标记定位及辅助选择. 作物学报,2003,29(4)501-507.
    [74] Lander E S, David Botstein. Mapping mendelian factors underlying quantitative traits using RFLP linking maps. Genetics,1989,121(l):185-199.
    [75] 薛庆中, 张能义, 熊兆飞, 李羽中, 朱立煌. 应用分子标记辅助选择培育抗白叶枯病水 稻恢复系. 浙江大学学报(农业与生命科学版), 1998,24(6): 581-582.
    [76] Ming R., Brewbaker, J L., Pratt, R. C., Musket, T A., McMullen M. D. Molecular mapping of a major gene conferring resistance tomaize mosaic virus. Theor. Appl. Genet, 1997, 95: 271-275.
    [77] Young N D. A cautiously optimistic vision for marker-assisted breeding. Molecular Breeding.1999, 5: 505-510.
    [78] Cho Y G,Darvasi A. Optimu spacing of genetic markers for determining linkaye between marker loci and quantitative trait loci. Theor Appl Genet, 1994,89(1):54-55.
    [79] 刘士平,李信,汪朝阳,李香花,何予卿.基因聚合对水稻稻瘟病的抗性影响. 分子植物育种, 2003, 1(1):22-26.
    [80] 郑康乐,庄杰云,王汉荣.基因聚合提高了水稻对白叶枯病的抗性.遗传, 1998,20(4):4-6.
    [81] 田清震,周荣华,贾继增. 小麦抗白粉病近等基因系遗传背景的分子标记检测.作物学报, 2004, 30(3): 205-209.
    [82] HE guang ming,SUN chuanqing1 , FU yongcai . Pyramiding of Sene scencei nhi bition IPT gene and Xa23 for Resistance to bacterial blight in rice . Acta Genetica Sinica . 2004 , 31 (8) : 836~841.
    [83] Huang N, Domingo J , Magpantay G. Pyramiding of bacterial blight resistance genes in rice : marker assisted selection using RFLPand PCR , Theor1 Appl1 Genet1 , 1997 , 95 : 313-320.
    [84] 柳李旺,朱协飞,郭旺珍,张天真.分子标记辅助选择聚合棉花Rf1 育性恢复基因和抗虫Bt 基因. 分子植物育种, 2003,1(1):48-52.
    [85] 何光明, 孙传清, 付永彩, 付强, 赵开军, 王春连, 章琦, 凌忠专, 王象坤.水稻抗衰老IPT 基因与抗白叶枯病基因Xa23 的聚合研究. 遗传学报, 2004, 31(8): 836-841.
    [86] Tanksley S D. Mapping Polygenes. Annu Rev Genet.1993,27:205-233.
    [87] Tanksley S D,Young N D,A Patterson RFLP mapping in Plant breeding: New tools for an old science. Bio/technology, 1989, 7: 257-264.
    [88] Yong N D, Tanksley S D. Restriction fragment length Polymorphism maps and the concept of graphical genotypes.Thero APPI Gene,1989, 77: 95-101.
    [89] 李浩杰,李平, 高方远, 陆贤军, 任光俊. SSR 标记辅助选择改良冈46B直链淀粉含量的研究. 作物学报, 30(11): 1159-1163.
    [90] Yong N D, Tanksley S D. RFLP analysis of the size of chromosomal segments. retrained around the Tm-2 locus of tomato during backcross breeding.Theo APPl Gene.1989, 77:353:359.
    [91] Kassahun Bantte & B.M. Prasanna. Simple sequence repeat polymorphism in Quality Protein Maize (QPM). Euphytica, 2003, 129: 337-344.
    [92] 番兴明, 张世煌, 谭静, 李明顺, 李新海. 根据SSR 标记划分优质蛋白玉米自交系的杂种优势群. 作物学报, 2003, 29 (1): 105-110.
    [93] 刘春林. 分子标记辅助选择与植物品种选育.作物研究,1996,10(1):47-49.
    [94] 陆朝福,朱立煌. 植物育种中的分子标记辅助选择. 1995,15(4):11-16.
    [95] 李海渤.分子标记辅助选择技术及其在作物育种上的应用(综述).河北职业技术师范学院学报.2002,16(2):68-71.
    [96] 沈新莲, 张天真.作物分子标记辅助选择育种研究的进展与展望. 高技术通讯.2003,(2):105-110.
    [97] Kata, S.R; Taylor, BH; Bockholt, AJ; Smith, JD. Identification of opaque-2 genotypes in segregating populations of quality protein maize by analysis of restriction fragment length polymorphisms.Theor Appl Genet .1994,89:407-412 .
    [98] Chin E, Senior M, Shu H, Smith J. Maize simple repetitive DNA sequence: Abundance and allele variatation. Genesome, 1996, 39: 866-873.
    [99] Senior L. Polymorphism rate and utility of SSRs using agarose gel. Maize Genetics Conference Abstracts, 1997, 39.
    [100] Ribaut J M,Hoisington D. Marker-assisted selection:New tools and strategies. Trends in plant Science . 1998, 3(6): 236-239.
    [101] 姜伟, 李新海, 李明顺, 田清震, 张世煌. opaque 2基因微卫星标记与玉米赖氨酸含量的关系.作物学报, 2004, 30(8): 739-744.
    [102]丁占生. 优质蛋白玉米遗传育种研究进展. 中国农业科学, 2000, 33(增刊): 80-86.
    [103] Lopez-Valenzuela J A. eEF1A isoforms change in abundance and actin-binding activity during maize endosperm development. Plant Physiol, 2003, 133: 1285–1295.
    [104] Lopez-Valenzuela J A. Cytoskeletal proteins are coordinately increased in maize genotypes with high levels of eEF1A. Plant Physiol, 2004, 135: 1784–1797.
    [105] Rutkowski D T, Kaufman R J. A trip to the ER: coping with stress. Trends Cell Biol, 2004, 14: 20–28.