黄浦江上游水源林水文生态功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对黄浦江水源林的土壤渗透性、可蚀性、土壤水库容等水文生态功能、基于小波分析的水文模型构建进行了研究,结果表明:
     (1) 衡量安吉地区土壤抗蚀性的最佳3个指标是:>0.25mm水稳性团聚体、>0.5mm水稳性团聚体和水稳性指数。各样地土壤抗蚀性差异显著,从不同样地来看,落叶阔叶林、灌木林、毛竹林、国外松林的0-60cm土层土壤总体抗蚀能力强,茶园、常绿阔叶林、草地的抗蚀能力较强,而裸露地很差。从不同土层来看,表层土壤的抗蚀能力强,而底层较弱,这种规律在同一类型样地的土壤剖面方向上表现得更加明显。经DIDCRIM过程判别分析,得到安吉地区主要植被类型土壤抗蚀性强、较强、差3个等级的判别函数,模型平均误判概率仅为0.0704,具有较高的可信度。
     (2) 除毛竹林外,各样地表层(0-10cm)土壤抗冲性最高,由上向下逐渐降低,这对保持水土、防止土壤侵蚀十分有利。各林地、草地土壤抗冲性差异并不显著,但都要显著高于裸露地。
     (3) 各林地的渗透能力之间有差异,但都要强于裸露地。在同一样地土壤渗透性表现出随土层深度增加而减弱的趋势。对8种不同土地利用类型表层土壤的典型入渗过程进行拟合发现,考斯恰可夫公式和菲利浦公式拟合理想,以考斯恰可夫公式拟合最佳,而霍顿公式、通用经验公式与实测点拟合较差。
     (4) 各样地土壤各库容指标之间有明显差异。灌木林、落叶阔叶林具有较高的土壤总库容、兴利库容、滞洪库容、最大有效库容。裸露地死库容较高,而其它各库容指标显著低于林地,贮存水分的能力很差。一次充分降水后,土壤含水量随着时间逐渐减小,呈指数变化规律,且变化幅度因林地类型而异,松林、毛竹林土壤含水量变化比较剧烈。
     (5) 根据表层土壤水土保持能力将8个样地分为4类。落阔林、灌木林为第一类,表现出极强的水土保持功能。茶园、草地、松林划为第二类,土壤水土保持功能较强;毛竹林、常阔林水土保持功能中等,划为第三类;裸露地水土保持性能很差,单独作为第四类。
     (6) 土壤理化性质、根系,特别是≤1mm细根深刻的影响着土壤水土保持功能。根系对土壤水土保持功能的强化效应的实质是由于≤1mm细根对土壤理化性质的改善作用。
     (7) 对降水量和径流深运用离散小波分析表明,降水和径流总体上趋势相类似,降水量存在7年的周期变化,径流深存在2年,7年,14年左右的周期变化。
     (8) 涵养指数β能够反映流域森林涵养水源的能力。采用径流系数来作为流域产生径流能力的特征参量,能够消除降水量的影响,适合区域对比和时间变化的分析。建立森林水文模型Q(P,α)=P-(bα+c){1-e~(p/bα+c)},能够更直接地反映
Function on soil and water conservation of the main forest types in Huangpu River, hydrological model base on wavelet analysis It showed:
    (1) It was found that >0.25mm,>0.5mm water stable aggregates and water stable index can be regarded as the optimum 3 indexes to express soil anti-erodibility of the main forest types in Anji County by means of principal component analysis.There was much variance in soil anti-erodibility of different plots and levels.Soil anti-erodibility of Deciduous broad-leaved forest, Shrub community, Moso bamboo stand and Pinetum were high. Bare land was the poorest one. Soil anti-erodibility changed very much in different levels, especially in the same plot . From the soil surface to the bottom, Soil anti-erodibility reduced to some extend. With discriminant analysis, we could get 3 discriminant functions concerning good soil anti-erodibility, medium soil anti-erodibility and poor soil anti-erodibility in Anji County. The average mistaken probability was only 0.0704. The model could be used to evaluate soil anti-erodibility in this area.
    (2) Except for Moso bamboo stand, soil anti-scourability of soil surface in all forest lands was the highest. And the soil anti-scourability of deep soil was less. Soil anti-scourability of forest lands was higher than that of bare land.
    (3) The difference of the main forest types about the soil infiltration was significant. The infiltration property of forest land was better than that of bare land. The infiltration rate of soil surface was higher, which was very important to prevent soil erosion. And the infiltration rate decreased with the increase of soil depth. Both Костякоь infiltration model and Philip infiltration model could better inflect the soil infiltration course of each vegetation types in research area. It showed that Костякоь formula analog effect was the best, and the Horton model and common experienced infiltration model were bad relatively.
    (4) There were great differences in soil reservoir capacity of all plots. The soil water total volumetric capacity, storage capacity, flood control capacity and the maximal available water capacity of deciduous broad-leaved forest and Shrub community were high, which was helpful to reduce surface runoff. The dead capacity of the bare land was the highest and its water-holding function was the poorest.
    (5) All the 8 plots could be clustered into 4 kinds based on function on soil and water conservation. The function on soil and water conservation of deciduous broad-leaved forest and Shrub community were the strongest, so these 2 plots were clustered into the first kind. The second kind was composed of Tea Garden, Pinetum and grass land. Whereas the fourth kind was made up of only the bare land, whose function on soil and water conservation was the most delicate one.
    (6) Physical and chemical soil properties and roots were the most effective in
引文
[1] 高甲荣.秦岭林区的锐齿栎林水文效应的研究[J].北京林业大学学报,1998(6):31-35
    [2] 刘道平,郝晓东.城市生态系统健康评价研究进展[J].中国城市林业,2006,4(4)
    [3] 中野秀章,李之森译.森林水文学[M].北京:中国林业出版社,1983:69-72
    [4] 张金池,胡海波.水土保持与防护林学[M].北京:中国林业出版社,1996
    [5] 刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社.1996
    [6] 王德连,雷瑞德,韩创举.国内外森林水文研究现状和进展[J].西北林学院学报,2004,19(2):156-160
    [7] 刘道平.提高我国森林培育质量的对策[J].西南林学院学报,2005,25(4):5-11
    [8] Swank, W. T. Crossley, D. A(editers), Forest Hydrology and Ecology at Coweeta[Z]. Springer-erlag, New York, 1988.
    [9] Liken, G.. E., Bormann F. H. et. al, Biogeochemistry of a Forested Ecosstem, Springer Verlag[Z], New York. 1996.
    [10] 周晓峰主编,中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994
    [11] 吴承桢.我国森林凋落物研究进展[J].江西农业大学学报,2000,(3):18-23
    [12] 常宗强.祁连山水源涵养林枯枝落叶层水文生态功能[J].西北林学院学报.2001,16(增):8-13
    [13] 张庆费.浙江天童常绿阔叶林演替过程凋落物数量及分解动态[J].植物生态学报,1999,(3):250-255
    [14] 王佑民.中国桔落物持水保土作用研究概况[J].水土保持学报,2000,14(4):108-113
    [15] 赵鸿雁,吴钦孝.黄土高原几种枯枝落叶吸水机理的研究[J].防护林科技,1996,29(4):15-18
    [16] 卞相玲,仲崇谠等.几种林分土壤入渗性能的研究[J].山东林业科学,2003,(6):15-16.
    [17] 袁建平,雷廷武等.黄土丘陵区小流域土壤入渗速率空间变异性[J].水利学报,2001,(10):8-92
    [18] 陈建刚,李启军等.妫水流域不同植被覆盖条件下土壤入渗及模型的比较分析[J].中国水土保持科学,2004,2(3):22-26
    [19] 刘贤赵,康绍忠.黄土高原沟壑区小流域土壤入渗分布规律的研究[J],吉林林学院学报,1997,(13):203-208.
    [20] 赵西宁,吴发启等.黄土高原沟壑区坡耕地土壤入渗规律研究[J].干旱区资源与环境,2004,18(4):109-112.
    [21] 胡海波,张金池.平原粉沙淤泥质海岸防护林土壤渗透特性的研究[J].水土保持学报,2001,15(1):606-609.
    [22] 中国科学院南京土壤研究所.土壤物理性质测定法[M].北京:科学出版社,1978:141-145.
    [23] 蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4):299-305.
    [24] 王德连,雷瑞德等.国内外森林水文研究现状和进展[J].西北林学院学报,2004,19(2):156-160.
    [25] 林业部科技部司编.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社, 1993.
    [26] 刘道平.中国竹业发展现状与展望[J].科学中国人,2005,130(10):66-70
    [27] 吴建平,袁正科等.湘西南沟谷森林土壤水文—物理特性与涵养水源功能研究[J].水土保持研究,2004,11(1):74-77.
    [28] 刘道平.加快我国用材林建设的对策措施[J].林业经济,2000,6:24-28
    [29] 郜慧萍.不同林型土壤水、气、热及养分状况的观测分析[J].山西林业科技 2002.9(3):12-14
    [30] 胡海波,陈金林.苏北淤泥质海岸防护林土壤水份的研究[J].中国生态农业学报.2002.10(4):529-531.
    [31] Glenn Schwab, Richard K Frevert, Talcott W IJdminster, etal. Soil and Water Conservation Engineering [Z]. Canada: John Wi-ley&Sons, 1981: 103-104
    [32] Bajracharya R M, Lal R. Seasonal Soil Loss and Erodibility Variation on a Miamian Silt Loam Soil[j]. Soil Science Society of American Journal, 1992, 56: 1560-1565.
    [33] Rasiah. V, Kay. B. D, Martin. T. Variation of Structural Stability with Water Content: Influence of Selected Soil Properties[J]. Soil Science Society of American Journal, 1992, 56: 1604-1609.
    [34] Castro C Fo, Logan T J. Limig Effects on the Stability and Erodibility of Some Brazilian Oxisols[J]. Soil Science Society of American Journal, 1992, 55: 1407-1413.
    [35] Wischmeier, W. Ⅱ. et al. A soil erodibility nomonraph for farmland and construction sites[J]. J. of Soil& Water Cons. 26: 189-192. 1971
    [36] US Department of Agriculture. Soil survey mannual. Agriculture Handbook No.18, Washinnton, D. C. 1951
    [37] Romkens, M. J. M. The soil erodibility factor: A perspective. Soil Erosion and Conservation [J]. Soil Con-servation Society of America. 1983
    [38] Kazuhiko Enashira, etal. Aggregate stability as an indes of erodibility of Ando Soil Sci [J]. Plant Nutr. 1983(4): 29
    [39] 丁文峰,李占斌.土壤抗蚀性的研究动态[J].水土保持科技情报,2001,(1):36-39.
    [40] 方学敏,万兆惠等.土壤抗蚀性研究现状综述[J].泥沙研究,1997,(2):87-91.
    [41] 田积莹.子午岭连家砭地区土壤物理性质与土壤抗蚀性指标的初步研究[J].土壤学报,1964,12(3):21-38.
    [42] 郭培才,王佑民.黄土高原沙棘林地土壤抗蚀抗冲性及其指标的研究[J].中国水土保持,1992,(4).
    [43] 杨玉盛,何宗明等.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2):32-37.
    [44] 王佑民,郭培才等.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(2):11-16.
    [45] 朱显谟.甘肃中部土壤侵蚀调查报告[J].土壤专报,1958,(32).
    [46] 朱显谟.我国十年水土保持工作的成就[J].土壤,1959,(10).
    [47] 蒋定生,李新华等.黄土高原水土流失危险程度预警研究[J].土壤侵蚀与水土保持学报,1995,1(1):12-19.
    [48] 李勇,朱显谟等.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,35(5):390-393.
    [49] 吴佩华,郑世清等.黄土高原土壤抗冲性的试验研究[J].水土保持研究,1997,4(5):47-58.
    [50] 朱显谟.黄土高原植被因素对水土流失的影响[J].土壤学报,1960,8(2),110-120.
    [51] 刘国彬,张光辉.原状土冲刷法与人工模拟降雨法研究土壤抗冲性对比分析[J].水土保持通报,1996,16(2):32-37.
    [52] 汪有科,吴钦孝等.林地枯落物抗冲性机理研究[J].水土保持学报,1993,7(1):75-80.
    [53] 周佩华,武春龙.黄土高原抗冲性的试验研究方法探讨[J],水土保持学报,1993,7(1):29-34.
    [54] 郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].西北林学院学报,1989,4(1):80-86.
    [55] 吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):11-16.
    [56] 吴普特,周佩华等.黄土丘陵沟壑区土壤抗冲性研究[J].水土保持学报,1993,7(3),19-25.
    [57] 蒋定生.黄土区不同利用类型土壤抗冲刷能力研究[J].土壤通报,1979,(4).
    [58] Weaver, J, E. Root development of filed crops[Z] New York,Mc Graw-Hill, 1926.
    [59] Bohm, W. Methods of studyinn root system sprinner- verlag[Z].Berlin. 1-140.
    [60] Cater, W.A. A method of growing plants in water vapor to facilitate examination of roots[J]. Phytopatholony, 1942, 32: 623-625.
    [61] Ahmadi N. Genetic varibility and inheritance of drounht mechanisms in rice [J]. Anronomic Tropical, 1983, 38(2): 118-122
    [62] Fogel R. Root turnover and productivity of coniferous forests [J]. Plant and Soil,1983,71: 75-85
    [63] Persson H. Root dynamics in a young Scots pine stand in central Sweden[J]. Oikos, 1978, 30: 508-519
    [64] Ford E D, Deans J n. Growth of Sitka spruce plantation[J]. Spatial distribution and seasonal fluctuations of lennths, weinhts and carbohydrate concentrations of fine roots. Plant and Soil, 1977, 47: 463-485
    [65] Harris W F et al. Comparison of below-ground biomass of natural deciduous forest and loblolly pine plantation[J]. Pedobiolonia, 1977, 17: 369-381
    [66] Deans J D. Dynamics of coarse root production in a younn plantation of Picea sitchersis[J]. Forestry, 1981, 54: 139-155
    [67] Reynolds E R C. Root distribution and the cause of its spatial variability in Pseudocsnga taxif olia[J]. Plant and Soil, 1970, 32: 501-517
    [68] Nadelhoffer K J et al. Pine roots, net primary production and soil nitrogen availability: a new hypothesis [J]. Ecology, 1985, 66(4): 1377-1390
    [69] Marshall J D, Warinn R H. Predicting fine root production and turnover by monitoring root starch and soil temperature[J]. Can .J. For. Res.,1985, 15: 781-800
    [70] 李鹏,李占斌等.根系调查取样点数确定方法的研究[J].水土保持研究,2003, 10(1): 46-148.
    [71] 刘建军.林木根系生态研究综述[J].西北林学院学报,1998,13(3):74-78.
    [72] 查轩.植被对土壤特性及土壤侵蚀的影响研究[J].水土保持学报, 1992,6(2):52-58.
    [73] 李勇等.植物根系与土壤抗冲性[J].水土保持学报,1993,7(3),11-18.
    [74] 刘国彬,蒋定生.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3).
    [75] 张金池,康立新等.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2):633-638.
    [76] 胡海波,魏勇等.苏北沿海防护林土壤可蚀性的研究[J].水土保持研究.2001,8(1): 150-154.
    [77] 吴彦,刘世全.植物根系提高土壤水稳性团粒含量的研究[J].土壤侵蚀与水土保持学报 1997,3(1):45-49.
    [78] FigliolaA, SeeranoE. Analysis of physics of physiological time series using wavelet transforms [J]. IEEE Eng in Med and Bio, 1997, 16(3): 74-79.
    [79] MallatS, Hwng WL. Singularity Detection and Processing with Wavelet [J]. IEEE Trans on Medical Imaging, 1995, 14(2): 193-204.
    [80] 薛小杰,蒋晓辉,黄 强等.小波分析在水文序列趋势分析中的应用[J].应用科学学报,2002,20(4):426-428.
    [81] 刘晓宏,秦大河,邵雪梅等.西藏林芝地区近350 a来降水变化及突变分析[J].冰川冻土,2003,25(4):375-379.
    [82] 王文圣,丁晶,向红莲.水文时间序列多时间尺度分析的小波变换法[J].四川大学学报(工程科学版),2002,34(6):14-17.
    [83] 胡春歧,张登杰.水文模型进展及展望[J].南水北调与水利科技,2004,2,(6):29-30.
    [84] 郦建强.华北地区流域月降水径流模型比较研究[J].水科学进展,1998,9(3):282-288.
    [85] 赵永军,杨珏,程文辉.太湖流域产汇流模拟[J].河海大学学报,1998,26(2):110-113.
    [86] 李丽,郝振纯,杨向辉等.三门峡—小浪底区间分布式水文模型构建[J].河海大学学报(自然科学版),2004,32(6):648-651.
    [87] 祝列克,魏殿生,吴斌等.全国森林培育技术标准汇编[M],北京:中国林业出版社, 2003.
    [88] 高峻.上海自然植被的特征、分区与保护[J].地理研究,1997(3):84-88
    [89] 水利电力部农林水利水土保持司.水土保持试验规范[M],北京:水利电力出版社,1988.
    [90] 中国林业标准汇编(营造林卷)[M],北京:中国林业出版社,1998.
    [91] 南京农业大学主编.土壤农化分析(第二版)[M].北京:农业出版社,1988
    [92] 方学敏,万兆惠等.土壤可蚀性研究现状综述[J].泥沙研究,1997,(2):87-91.
    [93] 胡建忠,范小玲等.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(2):25-30.
    [94] 高维森等.黄土丘陵区柠条林地土壤抗蚀性规律研究[J].西北林学院学报,1991,6(3):70-78.
    [95] 章明奎,韩常灿.浙江省丘陵区土壤的抗蚀性[J].浙江农业学报,2000,12(1):25-30.
    [96] 岳朝龙,黄永兴等.SAS系统与经济统计分析[J].合肥:中国科学技术大学出版社, 2003.
    [97] 王秀英,曹文洪.水土保持措施下的土壤入渗研究及次暴雨地表产流计算方法[J].泥沙研究,1996,(6),79-83.
    [98] 陈丽华,余新晓.晋西黄土地区水土保持林地土壤入渗性能的研究[J].北京林业大学学报,1995,17(1):42-47.
    [99] 董三孝.黄土丘陵区退耕坡地植被自然恢复过程及其对土壤入渗的影响[J].水土保持通报,2004,24(4):1-5.
    [100] 张启昌,陈真等.黄土低山丘陵区土壤渗透过程的研究[J].吉林林学院学报,1997,13(1):45-48.
    [101] 刘霞,张光灿等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J].水土保持学报,2004,18(6):1-5.
    [102] 王经民,吴钦孝等.陕北黄土区土壤入渗模型的比较探讨[J].农业系统科学与综合研究,2004,20(4):288-290.
    [103] 韩冰,吴钦孝等.黄土丘陵区人工油松林地土壤入渗特征的研究[J].防护林科技, 2004,(5)1-3.
    [104] 张永涛,杨吉华等.石质山地不同条件的土壤入渗特性研究[J].水土保持学报,2002,16(4):123~126.
    [105] 康绍忠,张书涵等.内蒙古敖包小流域土壤入渗规律的研究[J].土壤侵蚀与水土保持学报,1996,2(2):38-46.
    [106] 刘贤赵,康绍忠.陕西王东沟小流域野外土壤入渗试验研究[J].人民黄河,1998,20(2):14-17.
    [107] 解文艳,樊贵盛.土壤含水量对土壤入渗能力的影响[J].太原理工大学学报,2004,35(3):272-275.
    [108] 解文艳,樊贵盛.土壤结构对土壤入渗能力的影响[J].太原理工大学学报,2004,35(4):381-384.
    [109] 解文艳,樊贵盛.土壤质地对土壤入渗能力的影响[J].太原理工大学学报,2004,35(5):537-540.
    [110] 王秀芬,曹成有等.辽宁东部山区森林土壤渗透性能和蓄水功能[J],1997,(2):21-23.
    [111] 高人,周广柱.辽宁东部山区几种主要森林植被类型土壤渗透性能研究[J].农村生态环境,2002,18(4):1-4.
    [112] 牛云,刘贤德等.祁连山水源涵养林土壤渗透功能有分析与评价[J].西北林学院学报,2001,(16):35-38.
    [113] 仇才楼,梁珍海等.苏北沿海防护林对土壤渗透性的影响[J].生态学杂志,1996,16(2):13-16.
    [114] 袁建平.纸坊沟流域土壤入渗速率随空间和治理度之变异规律[J].水土保持学报,2000,14(4):121-122.
    [115] 吴彦,刘世全.植物根系对土壤侵蚀能力的影响[J].应用与环境生物学报,1997,3(1).
    [116] 孟春红,夏军.“土壤水库”储水量的研究[J].节水灌溉,2004,(4):8-10.
    [117] 郭庆荣,钟继洪等.南亚热带丘陵赤红壤水库容状况及水分问题研究[J].农业系统与综合研究,2004,20(4):254-257.
    [118] 全斌,陈健飞等.福建赤红壤、红壤早地土壤水库容状况及水分问题研究[J].土壤通报,2002,33(2):96-99.
    [119] 邓振镛,方德彪.甘肃东部旱作区土壤水库贮水力的研究[J].应用气象学报,1996,7(2):169-174.
    [120] 黄荣珍,杨玉盛等.不同林地类型土壤水库蓄水特性研究[J].水土保持通报,2005,25(3):1-5
    [121] 何其华,何永华等.干旱半干旱区山地土壤水分动态变化[J].山地学报,2003,21(2):149-156.
    [122] 张学龙,车克钧等.祁连山寺大隆林区土壤水分动态研究[J].西北林学院学报,1998,13(1):1-9.
    [123] 潘占兵,李生宝等.不同种植密度人工柠条对土壤水分的影响[J].水土保持研究,2004,11(3):265-267.
    [124] 孙辉,谢嘉穗等.农林复合经营模式对干热河谷退化坡地土壤水分参数的影响[J].水土保持研究,2004,11(3):25-27.
    [125] 陈仁升,康尔泗,张济世.基于小波变换和GRNN神经网络的径流模型在雅砻江流域中的应用[J].干旱区资源与环境,2001,15(3):71-78.
    [126] 杨辉,宋正山.华北地区水资源多时间尺度分析[J].高原气象,1999,18(4):496-508.
    [127] 姚棣荣,钱恺.小波变换在新安江流域近百年降水变化分析中的应用[J].科技通 报,2001,17(3):17-21
    [128] 刘益兰.贵阳近八十年降水变化的小波特征[J].贵州气象,2001,25(3):5-8.
    [129] 李发东,宋献方,张秋英等.太行山山前平原降水量特征及其分布的小波分析——以栾城为例[J].应用气象学报,2005,16(3):367-372.
    [130] 李贤彬,丁晶,李后强.水文序列Hurst系数的子波估计法[J].水利学报,1999,8:21-25
    [131] 程根伟,余新晓,赵玉涛等著.山地森林生态系统水文循环与数学模拟[J].北京:科学出版社,2004
    [132] 安吉林业志.杭州:浙江人民出版社,1993