基于水代谢的城市水资源承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化和城镇化进程的发展,水资源缺乏已经成为制约石家庄市经济增长的“短板”。作为水资源供需矛盾突出的省会城市,其城市水资源承载力现状如何,现状水资源究竟可以承载多少工业增加值、养活多少人口、能灌溉多少农田、能饲养多少头家畜,未来到底应该采取何种措施来对水资源进行调控才能达到既保护环境又提高了水资源承载力的目的,这些对本市未来的社会发展具有十分现实的意义。
     本文对水资源承载力的研究现状和进展进行了综述,在对其中现存问题进行分析基础上,从水资源承载力所依据的基本理论研究开始,探讨了五个方面问题,即:(1)对城市水资源承载力理论基础体系进行拓展和深化研究,加强了对水系统组成、分类及其子系统运行过程与城市水资源承载力的相关性研究;(2)对城市水资源承载力定义、内涵以及特征等进行研究,并依据基础理论研究成果提出基于水代谢的城市水资源承载力;(3)对城市水资源承载力评价指标体系进行研究,运用理论分析法结合改进的灰色关联度分析法对待选指标进行筛选,建立了基于水代谢的城市水资源承载力评价指标体系;(4)引入粗糙集理论及其赋权方法结合模糊综合评价法对城市水资源承载力的进行评价研究,应用引入并经改进的方法对研究区现状水资源承载力进行评价;(5)建立基于水代谢的城市水资源承载力系统动力学仿真模型,对城市水资源承载力进行调控研究。
     通过以上研究主要取得了如下几个进展:
     (1)深化了城市水资源承载力理论基础体系中水系统理论的研究,对以水的社会循环和再生利用为核心的水代谢系统的状态与城市水资源承载力的关系进行论述分析,对水系统进行了定义和组成、特征研究,在对水代谢过程及水代谢系统研究分析的基础上,定义了城市水代谢系统概念。研究表明水循环、水代谢与水再生是城市区域水系统运转过程的重要组成部分,其中城市再生水水量、水质是水的社会代谢作用高效发挥的关键条件。城市水代谢系统中,水循环和水再生力度的加强可以显著地提高城市水代谢状态,同时使城市水资源承载力状况得以改善。
     (2)在前人研究基础上,重新定义城市水资源承载力,提出了基于水代谢的城市水资源承载力概念。提出了水代谢率(water-system metabolic rate: WMR)对城市水代谢系统状况进行定量描述,并将城市水代谢系统状况分为4个级别,为基于水代谢的城市水资源承载力模型的量化奠定了基础。研究分析了不同城市水代谢系统运行模式及其调控措施,为不同的发展规划下人类利用技术手段对基于水代谢的城市水资源承载力进行调控建立了理论依据。
     (3)利用前述理论研究成果进行理论分析,并引入灰色关联度分析法结合相关分析、Delphi法,对传统的灰色关联度分析进行了改进,应用改进的指标筛选方法分析计算得到21个指标,并在理论研究指导下构建了基于水代谢的城市水资源承载力指标体系。引入目前在水资源承载力评价研究中还没有得到应用的粗糙集理论及其赋权方法,以及目前在该评价研究中应用较少的TOPSIS模型,结合模糊综合评价方法与熵权法与AHP法综合赋权,对研究区内各个市县的城市水资源承载力现状进行评价。
     (4)建立了基于水代谢的城市水资源承载力系统动力学动态仿真模型,在不同的城市水代谢运行模式下采用不同的调控措施对石家庄市区城市水资源承载力进行动态调控。结果表明旧有城市水代谢模式下2025年石家庄市区所能承载的工业增加值为868.53亿元,城镇人口为298.35万人,农业灌溉面积为18.26万亩,牲畜饲养头数为40.25万头;新型城市水代谢模式下2025年市区所能承载的工业增加值为3670.23亿元,城镇人口为763.78万人,农业灌溉面积为24.35万亩,牲畜饲养头数为83.75万头。
With the development of industrialization and urbanization, a lack of water resources has become the "short plank" restraining the increase in the economy of Shijiazhuang. As an provincial capital with an obvious imbalance between supply and demand for water resources, how about its urban water resources carrying capacity(UWRCC), how much industrial added value it can afford, how many population it can support, and how many farmland it can irrigate as well as how many domestic animals it can feed, by what measures to regulate and control water resources in the future the city can protect its environment and enhance its UWRCC. All these questions have a completely realistic significance for the future social development of the city.
     After summarizing the research and progress into WRCC, with the beginning of the basic theoretical study of UWRCC, the dissertation discusses five aspects of issues:(1) the basic theoretical system of UWRCC is expanded and further researched, the composition, classification of water system and correlation studies between the operational process of water subsystem and UWRCC is deeply explored;(2)the definition, connotation and features is researched, and urban water resources carrying capacity based on water metabolism(UWRCCWM) is proposed according to theoretical research results;(3) the evaluation index system of UWRCC is researched, by combining theoretical analysis with the improved grey correlation degree analysis (IGCDA)candidate indices is selected, the evaluation index system of UWRCCWM is established;(4) rough set theory (RST) and its weighting method is introduced to evaluate UWRCC combining with fuzzy synthetic evaluation, and the improved introduced method is applied to assess the current UWRCC of study area;(5)the simulation model of system dynamics of UWRCCWM is constructed to conduct the research into dynamic regulation and controlling of UWRCCWM.
     Through the above researches several main progresses is obtained:
     (1)The water system theory study of basic theoretical system is deepen, the definition, composition and features of water system is studied, the relation between water metabolism system that is powered by social circulation of water and recycling and UWRCC. On the basis of the research of water metabolism process and water metabolism system, the concept of urban water metabolism system (UWMS) is defined. The study indicates that water circulation, water metabolism and water recycling are the important components of water system of urban area,the yield of urban reclaimed water and its water quality are the crucial condition of giving full play to water social metabolism. The enhancement of Water circulation and water recycling of urban water metabolism can markedly boost the status of urban water metabolism, and makes the condition of UWRCC improved at the same time.
     (2) The definition of UWRCC is redefined on the basis of previous research result, the concept of UWRCCWM is proposed. Thewater-system metabolic rate (WMR) is proposed to quantify the conditions of UWMS, and divides the conditions of UWMS into4levels, which lay the foundation for the quantification of the model of UWRCCWM. Different patterns of urban water metabolism and their regulation measures are explored and analyzed, which establish the theoretical basis for regulation and control of UWRCCWM under the different conditions of development programs.
     (3) Usingtheoretical research result to conduct theoretical analysis, and introducing grey grey correlation degree analysis combining with correlation analysis and Delphi to improve traditional grey correlation degree analysis, and employ the improved method to analyze and calculate and finally obtain21evaluation indices, under the guidance of theoretical research the index system of UWRCCWM is constructed. RSTand its weighting method that is not yet employed in current evaluation researches of WRCCis introduced, and TOPSIS model that less used in the evaluation researches, RST and TOPSIS combine with fuzzy synthetic evaluation and comprehensive weighting by entropy weight method and analytic hierarchy process (AHP) is employed to assess the current conditions of UWRCC in every city and county of research area.
     (4) The simulation model of system dynamics of UWRCCWM is built, and regulates and controls UWRCC of Shijiazhuang under different pattern of urban water metabolism by the model. The results shows that under the old pattern of urban water metabolism the water resources of the Shijiazhuang urban district are capable of carrying RMB868.53billion industrial added value, supporting urban population298.35million, irrigating18.26million mu, and feeding40.25million domestic animals in2025; however, under the new pattern of urban water metabolism the water resources of the Shijiazhuang urban district are capable of carrying RMB3670.23billion industrial added value, supporting urban population763.78million, irrigating24.35million mu, and feeding83.75million domestic animals in2025.
引文
[1]Jun Ma. China's water crisis[M]. EastBridge,2004.
    [2]刘颖秋.水资源可持续利用与水管理现代化建设[J].中国水利,2002,10:23-25.
    [3]林伟杰.水资源规划及利用[M].中国民艺出版社,2007,263-272.
    [4]王瑗,盛连喜,李科,孙弘颜.中国水资源现状分析与可持续发展对策研究[J].水资源与水工程学报,2008,19(3):10-14.
    [5]王友贞.区域水资源承载力评价研究[D].河海大学,2004.
    [6]张光斗,陈志恺.中国水资源问题及其解决途径[J].水利学报,1991,4:23-29.
    [7]卢路,刘家宏,秦大庸等.海河流域天然径流年际变化规律分析[J].水电能源科学,2011,29(6):11-13.
    [8]胡君春,郭纯青,曾成.近50年来石家庄市水资源与水环境的演化特征[J].干旱区研究,2011,28(5)761-767.
    [9]李颖智,许广明,吕科建.南水北掉后石家庄水资源优化配置研究[J].节水灌溉,8:55-57.
    [10]郭颖娟.石家庄市城市用水健康循环研究[D].河北科技大学,2013.
    [11]邓绍云,邱清华.城市水资源可持续开发利用研究现状与展望[J].人民黄河,2011,33(3):42-43.
    [12]Christian C. Young. Defining the Range:The Development of Carrying Capacity in Management Practice[J] Journal of the History of Biology,1998,31:61-83.
    [13]Mcnaughton, S.J., Wolf, L.L. Dominance and the niche in ecological systems [J]. American Association for the Advancement of Science,1970,167 (39): 131-139.
    [14]I. T. Vokhmyanin, Yu. V. Nemirovskii.The Carrying Capacity of Smooth and Rein-forced Cylindrical Shells[J] Soviet Applied Mechanics,1967,9 (3):18-23.
    [15]P. V. Vlasov, G. G. Gusev, D. F. Kagan, I. Ya. Klinov, A. V. Molokanov. Carrying Capacity and Deformation Properties of Glass Reinforced Plastic Pipes of Various Construc-tion[J] Mekhanika Polimerov,1967,3 (6):1082-1088.
    [16]A. Baltov, O. Minchev, J. Ivanova, Sofia. Dynamic carrying capacity of elasto-visco-plastic cylindrical shells[J] Archive of Applied Mechanics 1993,63:189-194
    [17]Irmi Seidl, Clem A. Tisdell.Carrying capacity reconsidered:from Malthus'population theory to cultural carrying capacity[J]. Ecological Economics,1999,31:395-408.
    [18]William E. Rees. Revisiting carrying capacity:Area-based indicators of sustainability[J]. Population and Environment,1996,17 (3): 195-215.
    [19]J. Alan Wagar. The carrying capacity of wild lands for recreation[M]. Forest Science, 2009.
    [20]Alan R. Graefe, Jerry J. Vaske, Fred R. Kuss. Social carrying capacity:An integration and synthesis of twenty years of research[J].Leisure Sciences:An Interdisciplinary Journal,1984, 6 (4):395-431.
    [21]Manning R. E, Lime D.W, Hof M. Social carrying capacity of natural areas:theory and application in the U.S. National Parks[J]. Natural Areas Journal, 1996,16 (2):118-127.
    [22]Durham D. F. Cultural carrying capacity: I = PACT[J]. FOCUS,1992,2 (3):5-8.
    [23]G. Hardin. Cultural carrying capacity:a biological approach to human problems[J]. BioScience, 1986,36 (5):355-363.
    [24]J.L. Simon. Population matters:People, resources, environment, and immigration[M].New Brunswick,1990.
    [25]Kenneth Arrow, Bert Bolin, Robert Costanza, et.al. Economic Growth, Carrying Capacity, and the Environment[J]. Science. 268:520-521.
    [26]龙腾锐,姜文超,何强.水资源承载力内涵的新认识[J].水利学报,2004,1:38-45.
    [27]Hunter C.Perception of the sustainable city and implications for fresh water resources management[J]. Environment and Pollution,1998,10 (1):84-103.
    [28]Falkenmark M, Lundqvst J. Towards water security:political determination and human adaptation crucial[J]. Natural Resources Forum,1998,21 (1):37-51.
    [29]朱运海,彭利民,杜敏,徐秀风.区域水资源承载力评价国内外研究综述[J].科学与管理,2010,3:21-24.
    [30]Souro D.Joardar. Carrying Capacity and Standards as Bases Towards Urban Infrast Planning in India [J].Habitat Intl,1998,22 (3):327-337.
    [31]Jonathan M. Harris, Scott Kennedy. Carrying capacity in agriculture:global and regional issues [J]. Ecological Economics,1999,29:443-461.
    [32]Harold P. Batchelder, Suam Kim. Lessons learned from the PICES/GLOBEC Climate Change and Carrying Capacity (CCCC) Program and Synthesis Symposium [J]. Progress in Oceanography,200877:83-91.
    [33]P. Duarte, R. Meneses, A.J.S. Hawkins, et. al. Mathematical modelling to assess the carrying capacity for multi-species culture within coastal waters[J]. Ecological Modeling,2003,168: 109-143.
    [34]G. Sara, A. Mazzola. The carrying capacity for Mediterranean bivalve suspension feeders: evidence from analysis of food availability and hydrodynamics and their integration into a local model[J]. Ecological Modeling,2004,179:281-296.
    [35]Carrie Byron, Jason Link, Barry Costa-Pierce, David Bengtson. Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling:Narragansett Bay, Rhode Island[J]. Ecological Modeling,2011,222:1743-1755.
    [36]Suncana Gecek, Tarzan Legovic. Towards carrying capacity assessment for aquaculture in the Bolinao Bay, Philippines:A numerical study of tidal circulation[J]. Ecological Modeling, 2010,221:1394-1412.
    [37]Julien Thebault, Tara S. Schraga, James E. Cloern, Eric G. Dunlavey. Primaryproduc- tion and carrying capacity of former salt ponds after reconnection to San Francisco Bay[J]. WETLANDS,2008,28 (3):841-851.
    [38]Kaoru Kakinuma, Seiki Takatsuki. Applying local knowledge to rangeland management in northern Mongolia:do'narrow plants'reflect the carrying capacity of the land?[J]. Pastoralism: Research, Policy and Practice, 2012,23 (2): 1758-1768.
    [39]C. Bacher, P. Duarte, J.G. Ferreira, et al. Assessment and comparison of the Marennes-Oleron Bay (France) and Carlingford Lough (Ireland) carrying capacity with ecosystem models[J]. Aquatic Ecology 1998,31:379-394.
    [40]I.F. Karasev, E.B Suntsova. Channel carrying capacity and consideration of overgrown-river runoff[J] Hydrotechnical Construction,2001,35(1):31-37.
    [41]Christian C. Young. Defining the Range:The Development of Carrying Capacity in Management Practice[J]. Journal of the History of Biology,1998,31:61-83.
    [42]Alice L. Clarke. Assessing the Carrying Capacity of the Florida Keys[J]. Population and Environment.2002,23 (4):405-418.
    [43]A.C. Smaal, T.C. Prins, N. Dankers, B. Ball. Minimum requirements for modelling bivalve carrying capacity[J]. Aquatic Ecology 1998,31:423-428.
    [44]E.L. Astrachan. Growth Rate, Not Carrying Capacity, Determines Extinction in Simple Stochastic Model[J]. Oecologia (Berl.) 1977,31:131-132.
    [45]Joan Hett, Richard Taber, James Long, John Schoen. Forest Management Policies and Elk Summer Carrying Capacity in the Abies amabilis Forest, Western Washington[J]. Environmental Management,1978,2 (6):561-566.
    [46]G. Kocasoy. A Method for Prediction of Extent of Microbial Pollution of Seawater and Carrying Capacity of Beaches [J]. Environmental Management,1989,13 (4):469-475.
    [47]V.I. Yukalov, E.P. Yukalova, and D. Sornette. Extreme events in population dynamics with functional carrying capacity[J]. Eur. Phys. J. Special Topics,2012,205:313-354.
    [48]Patrick Foley. Predicting Extinction Times from Environmental Stochasticity and Carrying Capacity [J]. Conservation Biology,1994,8(1):124-137.
    [49]靳志军,陈佰尧.城市生活污水原位再生利用[J].环境保护,2002,8:4648.
    [50]Samuel Shephard, Deirdre Brophy, David G. Reid.Can bottom trawling indirectly diminish carrying capacity in a marine ecosystem?[J]. Mar Biol,2010,157:2375-2381.
    [51]Roberte. Manning, Stevenr. Lawson. Carrying Capacity as "Informed Judgment":The Values of Science and the Science of Values [J]. Environmental Management,2002,30(2):157-168.
    [52]Guangwei Huang, Masahiko Isobe. Carrying capacity of wetlands for massive migratory waterfowl[J]. Hydrobiologia,2012,697:5-14.
    [53]谢武明,刘焕彬,胡勇有.水再生回用的研究进展与对策[J].四川环境,2003,22(1):4-7.
    [54]Murray Lane. The carrying capacity imperative:Assessing regional carrying capacity methodologies for sustainable land-use planning [J]. Land Use Policy,2010,27:1038-1045.
    [55]David Yount. Human carrying capacity as indicator of regional sustainability[J]. Environmental Monitoring and Assessment,1998,51:507-509.
    [56]Daniel E. Campbell. Emergy analysis of human carrying capacity and regional sustainability: An example using the state of Maine[J]. Environmental Monitoring and Assessment 1998,51: 531-569.
    [57]Zh. S. Tyul'ko, I. V. Kuzmin. Simulation of Rabies Epizootic Process in Fox Populations at a Limited Carrying Capacity of Biotopes[J]. Russian Journal of Ecology,2002,33 (5): 331-337.
    [58]Russell Hopfenberg. Human Carrying Capacity Is Determined by Food Availability[J] Population and Environment,2003,25 (2):109-117.
    [59]Garrett Hardin. Wilderness, a Probe into "Cultural Carrying Capacity"[J]. Population and Environment 1988, 10 (1):14-15.
    [60]王述梁.提高城市污水利用率推进中水回用的发展[D].中国环境保护优秀论文集(上册),2005.
    [61]高华生,朱建林,张殿发,郑琦宏.城市污水再生与景观河道利用工艺方案探讨[J].水处理技术,2007,33(6):74-76.
    [62]William E. Rees. Revisiting Carrying Capacity:Area-Based Indicators of Sustainability[J]. Population and Environment:A Journal of Interdisciplinary Studies,1996,17(3):195-216.
    [63]Franco Salerno, Gaetano Viviano, Emanuela C. Manfredi, et al. Multiple Carrying Capacities from a management-oriented perspective to operationalize sustainable tourism in protected areas [J]. Journal of Environmental Management. 2013, 128:116-125.
    [64]Fred R. Kuss, John M. Morgan III. A First Alternative for Estimating the Physical Carrying Capacities of Natural Areas for Recreation [J]. Environmental Management, 1986, 10 (2): 255-262.
    [65]Celine Chadenas, Agnes Pouillaude, Patrick Pottier. Assessing carrying capacities of coastal areas in France[J]. J Coast Conserv,2008,12:27-34.
    [66]David W. Lime, George H. Stankey.Carrying Capacity:Maintaining Outdoor Recreation Quality[J]. Northeastern Forest Exper,1971,10:174-184.
    [67]新疆水资源软科学课题研究组.新疆水资源及其承载能力和开发战略对策[J].水利水电技术,1989,6:1-7.
    [68]施雅风,曲耀光.鸟鲁木齐流域水资源承载力及其合理利用[M].北京科学出版社,1992.
    [69]阮本青,沈晋.区域水资源适度承载能力计算研究7J8.土壤侵蚀与水土保持学报,1998,4(3):57-61.
    [70]冯尚友,刘国全.水资源持续利用的框架[J].水科学进展,1997,8(4):301-307
    [71]苏东水.产业经济学(第三版)[M].高等教育出版社,2010.
    [72]王浩,陈敏建,秦大庸.西北地区水资源合理配置与承载能力研究[M].黄河水利出版社,2003.
    [73]冯耀龙,韩文秀,王宏江,练继建,黄津明.区域水资源承载力研究[J].水科学进展,2003,14(1):109-113.
    [74]龙腾锐,姜文超,何强.水资源承载力内涵的新认识[J].水利学报,2004,1: 38-45.
    [75]郭丽华.日本利用水再生的规划[J].微生物学通报,1984,4:22-24.
    [76]王翔,王佩璋.废(污)水再生回用于水电厂水系统的实践和经验[J].山西电力技术,1997,17(3):26-31.
    [77]王君丽,刘春光,斯东林等再生水作为景观环境用水的安全评价指标探讨[J].给水排水,2009,35(S2):197-200.
    [78]吴朝阳,王光华,李文兵等.工业污水处理水再生处理初步研究[J].洁净煤技术,2010,16(3):112-115.
    [79]何凡.杭州市污水处理厂尾水再生利用的探讨[J].浙江科技学院学报,2012,24(4)316-322.
    [80]孙富行.水资源承载力分析与应用[D].河海大学,2006.
    [81]王耀辉.城市污水处理厂尾水再生利用现状及工艺探讨[J].尔莞理工学院学报,2013,20(1):95-99.
    [82]赵国华,翟国静,李晓粤,刘凤华.水资源承载力的内涵与理论探析[J].水干保持研究,2007,14(6):289-294.
    [83]朱坚强,韩狄明.可持续发展概论[M].立信会计出版社,2002.
    [84]刘勇.可持续发展理论[M].红旗出版社,2003.
    [85]胡吉敏.沿海地区水资源承载力评价研究[D].大连理工大学,2008.
    [86]魏宏森,曾国屏.系统论:系统科学哲学[M].中国出版集团,2009.
    [87]耿福明.区域水资源承载力分析及配置研究[D].河海大学,2007.
    [88]冯耀龙,练继建,韩文秀等.区域水资源系统可持续发展评价研究[J].水利水电技术,2001,32(12):9-12.
    [89]李祚泳,乐为.城市可持续发展评价的分指数及综合指数公式[J].城市环境与城市生态,2002,15(2)34-36.
    [90]张晓鹏,张鑫.基于模糊综合评价法的区域水资源承载力研究[J].中国农村水利水电,2009,7:18-21.
    [91]陈艳,单红梅,周毅等.城市可持续发展评价方法及其应用[J].江苏大学学报(社会科学版),2005,7(2):89-92.
    [92]徐咏匕,邹欣庆.曹妃甸工业区水资源承载能力研究[J].中国人口资源与环境,2009,19(6):60-64.
    [93]段春青,刘昌明,陈晓楠等.区域水资源承载力概念及研究方法的探讨[J].地理学报,2010,65(1):82-90.
    [94]刘毅,贾若祥,侯晓丽.中国区域水资源可持续利用评价及类型划分[J].环境科学,2005,26(1):42-46.
    [95]黄初龙,章光新,杨建锋.中国水资源可持续利用评价指标体系研究进展[J].资源科学,2006,28(2):33-39.
    [96]陈亮亮,刘风华,龚程.投影寻踪模型在区域水资源承载力综合评价中的应用[J].节水灌溉,2010,1:13-15.
    [97]刘登伟.水资源承载力概念中的二元属性——水资源承载力研究的新突破[J].水利发展研究,2011,9: 14-17.
    [98]熊黑钢,付金花,王凯龙.基于熵权法的新疆奇台绿洲水资源承载力评价研究[J].中国生态农业学报,2012,20(10):1382-1387.
    [99]田静宜,王新军.基于熵权模糊物元模型的干旱区水资源承载力研究——以甘肃民勤县为例[J].复旦学报(自然科学版),2013,52(1):86-93.
    [100]曲耀光,樊胜岳.黑河流域水资源承载力分析计算与对策[J].中国沙漠,2000,20(1):1-8.
    [101]许有鹏.干旱区水资源承载能力综合评价研究——以新疆和田河流域为例[J].自然资源学报,1993,8(3):229-237.
    [102]张鑫,王纪科,蔡焕杰,王正兴.区域地下水资源承载力综合评价研究[J].水干保持通报,2001,21(3):24-27.
    [103]李亚伟,陈守煜,傅铁.基于模糊识别的水资源承载能力综合评价[J].水科学进展,2005,16(5):726-729.
    [104]李锋,刘旭升,胡聃等.城市可持续发展评价方法及其应用[J].生态学报,2007,27(11):4793-4802.
    [105]张青峰,王力,李燐楷,张宽平.长武县水资源承载力的模糊评价[J].西北农林科技大学学报(自然科学版),2010,38(5):161-166.
    [106]下楠楠,唐德善,尹笋.基于AHP法的浙江省水资源承载力模糊综合评价[J].水电能源科学,2012,30(3):42-46.
    [107]朱照宇,欧阳婷萍,邓清禄等.珠江三角洲经济区水资源可持续利用初步评价[J].资源科学,2002,24(1):55-61.
    [108]杜发兴,曹广晶,梁川,刘德富.水资源承载力综合评价的熵权属性识别模型[J].哈尔滨业大学学报,2009,41(11):243-249.
    [109]傅湘,纪昌明.区域水资源承载能力综合评价——主成分分析法的应用[J].长江流域资源与 环境,1999,8(2):168-173.
    [110]李林,付强.偏最小二乘回归模型的城市水资源承载能力研究[J].水科学进展,2005,16(6):822-825.
    [111]王建华,江东,顾定法等.基于SD模型的干旱区城市水资源承载力预测研究[J].地理学与国干研究,1999,15(2):18-22.
    [112]惠泱河,蒋晓辉,黄强,薛小杰.二元模式下水资源承载力系统动态仿真模型研究[J].地理研究,2001,20(2):191-198.
    [113]车越,张明成,杨凯.基于SD模型的崇明岛水资源承载力评价与预测[J].华东师范大学学报(自然科学版),2006,6:67-74.
    [114]徐国祥.统计预测和决策[M].上海财经大学出版社,2008.
    [115]朱锋,魏国孝,王德军,徐涛.基于SD模型的肃州区水资源承载力[J].兰州大学学报(自然科学版),2008,44(3):1-5.
    [116]孙才志,陈玉娟.辽宁沿海经济带水资源承载力研究[J].地理与地理信息科学,2011,27(3):63-68.
    [117]王顺久,侯玉,张欣莉,丁晶.流域水资源承载能力的综合评价方法[J].水利学报,2003,1:88-92.
    [118]姜秋香.三江平原水干资源承载力评价及其可持续利用动态仿真研究[D].东北农业大学,2011.
    [119]冯耀龙,韩文秀,王宏江,练继建,黄津明.区域水资源承载力研究[J].水科学进展,2003,14(1):109-113.
    [120]徐国志.系统科学[M].上海科技教育出版社,2000.
    [121]张洪波,黄强,辛琛,李子婷.水资源承载力可拓评价方法[J].大连理工大学学报,2006,46(Suppl):206-212.
    [122]栾贵勤.区域经济学[M].清华大学出版社,2008.
    [123]王学全,卢琦,李彬.水资源承载力综合评价的RBF神经网络模型[J].水资源与水工程学报.2007,18(3):1-5.
    [124]宁立波,刘新宇,仝晓霞.基于物元分析的武汉市水资源承载力分析[J].安全与环境学报,2008,8(4):76-80.
    [125]方国华,黄显峰.多目标决策理论、方法及其应用[M].科学出版社,2011.
    [126]杨婷,王志良,谢敏萍等.基于粗糙集和群决策特征根法的区域水资源可再生性评价[J].西部农林科技大学学报,2008,36(1):218-222.
    [127]胡芳芳.无锡市水资源可持续利用评价与优化配置研究[D].南京农业大学,2012.
    [128]徐建新,樊华,胡笑涛.熵权与改进TOPSIS结合模型在地下水资源承载力评价中的应用[J].中国农村水利水电,2012,2:30-33.
    [129]陈南祥,申瑜.基于熵权属性识别模型的地下水资源承载能力评价[J].灌溉排水学报,2008,27(4):48-50.
    [130]隋丹.水资源可持续利用评价指标体系研究——以上海为例[J].上海管理科学,2008,3:67-710
    [131]孙梁,王治江,尼庆伟等.区域水资源可持续利用评价指标体系研[J].环境保护与循环经济,2009,4:15-23.
    [132]夏军,唐青蔚.西北地区水资源合理配置和承载能力分析[J].中国科学院院刊,2005,20(4):288-292.
    [133]李川,王恩德.辽宁渤海地区水资源承载力[J].尔北大学学报(自然科学版),2011,32(10):1492-1494.
    [134]韩俊丽,段文阁.城市水资源承载力基本理论研究[J].中国水利,2004,7:12-13
    [135]魏斌,张霞.城市水资源合理利用分析与水资源承载力研究——以本溪市为例[J].城市环境与城市生态,1995,8(4):19-24.
    [136]迟道才,赵红巍,张伟华,任庆生.盘锦市水资源承载力研究[J].沈阳农业大学学报,2001,32(2):137-140.
    [137]张戈平.城市水资源承载力评价指标体系研究[D].东北农业大学,2003.
    [138]Kyushik Oh, Yeunwoo Jeong, Dongkun Lee, et al. Determining development density using the Urban Carrying Capacity Assessment System[J]. Landscape and Urban Planning,2005,73: 1-15
    [139]于堃,熊黑钢,韩茜,陆殿梅.基于目标规划模型的大连市水资源承载力分析[J].城市环境与城市生态,2005,18(5):12-14.
    [140]吴巧梅.北京市水资源承载力定量评价与风险分析及其管理对策[D].兰州大学,2006.
    [141]张朋飞.长春市水资源承载力研究[D].吉林大学,2008.
    [142]张永勇,夏军,王中根.区域水资源承载力理论与方法探讨[J].地理科学进展,2007,26(2):126-131.
    [143]滕朝霞,陈丽华,肖洋.城市水资源承载力多目标模型及其在济南市的应用[J].中国水土保持科学,2008,6(3):76-80.
    [144]黎明,李百战.重庆市都市圈水资源承载力分析与预测[J].生态学报,2009,29(12)6499-6505.
    [145]钟永光.系统动力学[M].科学出版社,2009.
    [146]陶洁(2011)陶洁,左其亭,齐登红,窦明.中原城市群水资源承载力计算及分析[J].水资源与水工程学报,2011,22(6):56-61.
    [147]肖迎迎,宋孝玉,张建龙.基于主成分分析的榆林市水资源承载力评价[J].干旱区农业研究,2012,30(4):218-223.
    [148]曾维华,程声通.论流域水质与水量集成规划[J].城市环境与城市生态,1996,9(2):6-11.
    [149]刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展,1999,10(3):251-258.
    [150]张光辉,聂振龙,陈宗宇.全新世以来华北平原层圈间水循环演化过程与区域地下水演变周期性[J].地球学报,2001,22(4):293-297.
    [151]宋献方,夏军,于静洁,刘昌明.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002,21(6):527-536.
    [152]李道峰,丁晓雯,刘昌明.GIS平台构建在黄河流域水循环研究中的应用[J].水干保持学报,2003,17(4):102-104.
    [153]王浩,王建华,秦大庸.流域水资源合理配置的研究进展与发展方向[J].水科学进展,2004,15(1):123-128.
    [154]王彪,段禅伦,吴吴等.粗糙集与模糊集的研究与应用[M].电子工业出版社,2008,2-35.
    [155]张利平.华北地区陆气水循环时空演化规律研究[D].武汉大学,2005.
    [156]贾仰文,王浩,仇亚琴,周祖吴.基于流域水循环模型的广义水资源评价(Ⅰ)——评价方法[J].水利学报,2006,37(9):1051-1055.
    [157]李文生,许十国.流域水循环的人工影响因素及其作用[J].水电能源科学,2007,25(4): 28-32.
    [158]周林匕,许士国,孙万光.基于压力-状态-响应模型的扎龙湿地健康水循环评价研究[J].水科学进展,2008,19(2):206-213.
    [159]刘家宏,秦大庸,王浩等.海河流域二元水循环模式及其演化规律[J].科学通报,2010,55(6):512-521.
    [160]吴永萍.气候变化对塔里木河流域大气水循环的影响及其机理研究[D].兰州大学,2011.
    [161]石志民,李析男.城市水循环对城市供水量的影响分析[J].节水灌溉,2012,6:49-55.
    [162]Jacob Moleschott. Georg Forster, der Naturforscher des Volks[M]. Der Krerslauf des Lebens. Mainz:Von Zabern,1857.
    [163]Z. Bardodej. Styrene, its metabolism and the evaluation of hazards in industry[J]. Scandinavian journal of work, environment&health,1978,4 (suppl. 2):95-103. (21)
    [164]Douglas M Ginley. Material flows in the transport industry:An example of industrial metabolism[J]. Resources Policy, 1994,20 (3):169-181.
    [165]Stefan Anderberg. Industrial metabolism and the linkages between economics, ethics and the environment[J]. Ecological Economics,1998,24 (3):311-320. (23)
    [166]Wolman A. The metabolism of cities[M]. Scientific American,1965.{pp.179-188}
    [167]Peter W G. Sustainability and cities:extending the metabolism model[J]. Landscape and Urban Planning,1999,44:219-226.
    [168]S W. Hermanowicz, Takashi Asano. Abel Wolman's "The metabolism of cities" revisited:A case for water recycling and reuse[J]. Water Science and Technology,1999,40 (5):29-36.
    [169]丹保宪仁.水文大循环和城市水环境代谢[J].给水排水,2002,28(6):1-5.
    [170]Matthew Gandy. Rethinking urban metabolism:Water, space and the modern city[J]. CITY, 2004,8 (3):363-375.
    [171]G.Darrel Jenerette, Wanli Wu, Susan Goldsmith, et al. Contrasting water footprints of cities in China and the United States[J]. Ecological Economics,2006,57:346-358.
    [172]钱家忠,朱学愚,孙峰根.地下水代谢与水资源保护[J].工程勘察,2000,4: 26-28.
    [173]刘晶茹,王如松,王震,杨建新.中国城市家庭代谢及其影响因素分析[J].生态学报,2003,23(12):2672-2676.
    [174]宋新山,王朝生,汪永辉.我国城市化进程中的水资源环境问题[J].科技导报,2004,2:29-31.
    [175]严涛新型城市水环境大工代谢系统研究[D].西安建筑科技大学,2006.(待下载或用摘要编辑)
    [176]张妍,杨志峰.城市物质代谢的生态效率——以深圳市为例[J].生态学报,2007,27(8):3124-3131.
    [177]邵田.中国东部城市水环境代谢研究——以上海市为例[D].复旦大学,2008.
    [178]张妍,杨志峰.北京城市物质代谢的能值分析与生态效率评估[J].环境科学学报,2007,27(11):1892-1899.
    [179]曾维华,杨志峰,刘静玲等.水代谢、水再生与水环境承载力[M].科学出版社,2012.
    [180]苗夺谦,李道国.粗糙集理论、算法与应用[M].清华大学出版社,2008.