脱氢枞胺衍生物的合成及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松香是多种树脂酸和少量脂肪酸、中性物质的混合物,其中树脂酸是主要成分,约占其总量的90%以上。松香是我国重要林产资源,产量居世界第一位。松香的深加工产品不仅可以用于造纸、油漆、肥皂、油墨等传统工业领域,还可以用于生物医药领域。
     脱氢枞胺是一种具有三环菲结构的松香改性产品,它也是歧化松香胺的主要成分。将脱氢枞胺与(取代)苯甲酰氯反应,合成一系列酰胺类衍生物,并在其B环和C环上通过氧化、硝化、成肟、还原等方法引入羰基、硝基、肟基及羟基等官能团。对脱氢枞胺的氨基进行改造,引入了羧甲基。用IR、~1H NMR、~(13)C NMR、MS及HRMS等对所合成的新型脱氢枞胺衍生物进行了结构表征。对脱氢枞胺衍生物进行了抗癌、雄激素受体(AR)结合活性、α1A肾上腺素受体拮抗/激动活性、细胞分裂周期磷酸酯酶Cdc25B抑制活性、血管内皮生长因子受体(KDR)抑制活性、抗菌活性的测试,并对构效关系进行了研究和总结。采用饱和溶液法制备了脱氢枞胺(4-羟基)水杨醛Schiff碱β-环糊精包合物,并对包合物进行了结构鉴定和抗癌活性测试。通过对数据的整理归纳,现得到如下结论:
     (1)以歧化松香胺为原料,与对甲苯磺酸反应,采用成盐法提纯制备了脱氢枞胺,产率为63.7%。脱氢枞胺与(取代)苯甲酰氯的反应,合成了N-苯甲酰基-脱氢枞胺及其类似物(2a~2d),产率为68.4~72.8%。
     (2)采用硝酸铜-乙酸酐体系对脱氢枞胺衍生物的C环进行硝化,在12位引入硝基,得到N-苯甲酰基-12-硝基脱氢枞胺及其类似物(3a~3d),产率为69.6~74.8%。相对于传统的浓硫酸-浓硝酸的混酸体系,本实验中使用硝酸铜-乙酸酐体系进行硝化,具有反应较为缓和、选择性好等特点。
     (3)利用100~200目的粗孔硅胶作载体,负载三氧化铬制备了一种CrO_3/SiO_2固载氧化试剂,研究了CrO_3/SiO_2对N-苯甲酰基-脱氢枞胺(2a)定向氧化制备N-苯甲酰基-脱氢枞胺-7-酮(4a)的反应,考察了溶剂种类、溶剂量、反应温度、负载量及氧化剂用量对产率的影响。结果表明,采用负载量为2.0mmol/g的CrO_3/SiO_2固载氧化剂,氧化剂用量为N-苯甲酰基-脱氢枞胺及其类似物(2a~2d,3a)的2倍摩尔量,以50mL环己烷为溶剂,回流温度下搅拌反应8h,对2.57mmol的N-苯甲酰基-脱氢枞胺及其类似物(2a~2d,3a)进行氧化,可在B环的7号位引入羰基,得到N-苯甲酰基-脱氢枞胺-7-酮及其类似物(4a~4e),产率为53.0~60.2%。相对于传统的CrO_3/CH_3COOH液相体系,使用CrO_3/SiO_2固载氧化试剂的产物后处理过程更为简单快捷。CrO_3/SiO_2固载氧化试剂的制备及产物分离提纯过程均不产生铬废液,具有一定的环保意义。
     (4)使用盐酸羟胺将脱氢枞胺衍生物B环7号位羰基成肟,得N-苯甲酰基-脱氢枞胺-7-肟及其类似物(5a~5d),产率为80.6~85.3%;使用硼氢化钠将B环7号位羰基还原成羟基,得N-苯甲酰基-脱氢枞胺-7-醇(6a)和N-(2-氯苯甲酰基)-脱氢枞胺-7-醇(6c),产率分别为84.3%和83.2%。
     (5)以脱氢枞胺和氯乙酸为原料,在碱性条件下,制备了N,N-二羧甲基脱氢枞胺(7)和N-羧甲基脱氢枞胺(钾盐)(8),产率分别为58.3%和53.0%,反应体系pH值的调节为本实验的关键。
     (6)采用MTT法测试了脱氢枞胺衍生物(2a、2c、2d、3a、3c、3d、4a、4c和4d)对前列腺癌细胞PC-3和卵巢癌细胞Hey-1B的抗癌活性,化合物对PC-3的IC50为5.7~84.9μg/mL,对Hey-1B的IC50为11.3~129.8μg/mL。通过对构效关系的研究发现,脱氢枞胺衍生物B环的7号位和C环的12号位可能是十分重要的活性位点,对抗癌活性的影响较大。在B环的7号位引入羰基或在C环的12号位引入硝基,可增加部分化合物对PC-3和Hey-1B的抗癌活性。例如,B环7号位含有羰基的N-苯甲酰基-脱氢枞胺-7-酮(4a),对前列腺癌细胞株PC-3和卵巢癌细胞株Hey-1B的IC50只有其母体化合物N-苯甲酰基-脱氢枞胺(2a)的9.1%和26.0%;C环12号位含有硝基的N-苯甲酰基-12-硝基脱氢枞胺(3a),对前列腺癌细胞株PC-3和卵巢癌细胞株Hey-1B的IC50只有其母体化合物N-苯甲酰基-脱氢枞胺(2a)的13.1%和18.3%。
     (7)采用MTT法测试了部分脱氢枞胺衍生物对人肝癌细胞HepG2和正常肝细胞L02的毒性,结果表明,N-(4-硝基苯甲酰基)-12-硝基脱氢枞胺(3d)和N-苯甲酰基-脱氢枞胺-7-酮(4a)对人肝癌细胞HepG2具有较好的杀伤活性,而对正常肝细胞L02的毒性较小。
     (8)采用体外配体受体竞争结合实验测定了脱氢枞胺衍生物的雄激素受体(AR)结合活性,结果表明,在初始浓度为10μmol/L时,N-苯甲酰基-脱氢枞胺-7-酮(4a)与AR具有一定的结合活性,IC50为83.8nmol/L。
     (9)采用钙流筛选方法测试了化合物的α1A肾上腺素受体拮抗/激动活性,结果表明,在浓度为10μmol/L时,N-苯甲酰基-脱氢枞胺-7-肟(5a)在α1A肾上腺素受体上约有25%的拮抗作用;N-(2-氯苯甲酰基)-脱氢枞胺-7-酮(4c)、N-(4-硝基苯甲酰基)-脱氢枞胺-7-酮(4d)、N-苯甲酰基-12-硝基脱氢枞胺-7-酮的合成(4e)在α1A肾上腺素受体上约有45~50%的拮抗作用。
     (10)采用均相时间分辨荧光(HTRF)法研究化合物的血管内皮生长因子受体(KDR)抑制活性,结果表明,在浓度为4×10~-4mol/L时,所有测试的化合物均有一定的KDR抑制活性,抑制率38.27~99.34%。其中,N-苯甲酰基-脱氢枞胺-7-酮(4a)、N-(4-硝基苯甲酰基)-脱氢枞胺-7-酮(4d)、脱氢枞胺(3,4-二羟基)水杨醛Schiff碱(LIN110)、N-(2-羟基)-苄基-脱氢枞胺盐酸盐(LIN402)、N(-5-硝基-2-羟基)-苄基-脱氢枞胺盐酸盐(LIN404)、12,14-二硝基脱氢枞胺(4-羟基)苯甲醛Schiff碱(LIN609)以及12-硝基脱氢枞胺(5-硝基)水杨醛Schiff碱(LIN804)的抑制率较高,都大于90%;N-(4-硝基苯甲酰基)-脱氢枞胺(2d)、N-(4-硝基苯甲酰基)-12-硝基脱氢枞胺(3d)、12,14-二硝基脱氢枞胺-吲哚-3-甲醛Schiff碱(LIN608)以及4-羟基-水杨醛缩12-氨基乙酰脱氢枞胺Schiff碱(LIN702)的抑制率在80~90%之间。
     (11)采用滤纸片法测定了脱氢枞胺衍生物的抗菌活性,结果表明,N-(4-氯苯甲酰基)-脱氢枞胺-7-酮(4b)、N-(4-硝基苯甲酰基)-脱氢枞胺-7-酮(4d)和N-(4-氯苯甲酰基)-脱氢枞胺-7-肟(5b)对金黄色葡萄球菌、化合物5b对枯草芽孢杆菌、化合物4b和5b对大肠杆菌有较强的抑制作用。
     (12)将25个脱氢枞胺衍生物对卵巢癌细胞株Hey-1B的半数抑制浓度(IC50,μmol/L)作为对象,对其进行2D-QSAR研究,以预测如何对化合物进行结构改造可增加其抗癌活性。结果表明,增加化合物的脂溶性、或增加芳香环结构、或增加化合物的折射率均有利于增加化合物的抗卵巢癌Hey-1B活性。
     (13)采用饱和溶液法制备了脱氢枞胺(4-羟基)水杨醛Schiff碱β-环糊精包合物,采用红外光谱、差示扫描量热法(DSC)以及紫外光谱对包合物进行鉴定。研究了脱氢枞胺(4-羟基)水杨醛Schiff碱和其包合物的抗癌活性。结果表明:脱氢枞胺(4-羟基)水杨醛Schiff碱和环糊精可形成摩尔比为1:1的包合物;β-环糊精可以提高脱氢枞胺(4-羟基)水杨醛Schiff碱在混合溶剂(DMSO/H_2O=1/1,体积比)中的溶解度,増溶倍数为3.4;在浓度为10μg/mL时,脱氢枞胺(4-羟基)水杨醛Schiff碱和其包合物对卵巢癌细胞株Hey-1B的抑制率分别达到50.34%和41.65%。
Rosin is a mixture of various resin acids, small quantity of fatty acids and neutral substances.The main components of rosin are resin acids, which account to over90%of the total. Rosin isan important forestry resource of our country, and the output occupies the first place in the world.Deep-processing products of rosin were used not only in traditional industrial areas such aspapermaking, painting, soap, printing ink, but also in biomedicine field.
     Dehydroabietylamine which has three-ring phenanthrene skeleton in molecule is one ofimportant modified products of rosin, and it is also main components of disproportionated rosinamine. In this paper, a series of amide derivatives was synthesized through reaction ofdehydroabietylamine and (substituted) benzoyl chlorides. Functional groups such as carbonylgroup, nitro group, oximido group, hydroxyl group, etc. were introduced on B ring and C ringthrough oxidation, nitration, oximation and reduction. Carboxymethyl was introduced intodehydroabietylamine by modification of amino group. The novel dehydroabietylaminederivatives were characterized by IR,1H NMR,13C NMR, MS, and HRMS. Anticancer activities,androgen receptor(AR) binding activities, blocking/agitating activities to α1A-adrenoceptor,inhibitory activities on Cdc25B phosphatase, inhibitory activities against KDR and antibacterialactivities of dehydroabietylamine derivatives were tested. The structure-activity relationship werestudied and summarized. Dehydroabietylamine4-hydroxysalicylidene Schiff base complexesenwrapped with β-cyclodextrin were prepared by saturation solution method. Structure andanticancer activity of the inclusion complexes were studied. Through induction-arrangement ofdata, the conclusions were drawn as followings:
     (1) Dehydroabietylamine was purified by salt forming method, through reaction ofdisproportionated rosin amine and p-toluene sulphonic acid with yield of63.7%. Analogues ofN-benzoyl-dehydroabietylamine (2a~2d) were synthesized through reaction ofdehydroabietylamine and (substituted) benzoyl chlorides with yield of68.4~72.8%.
     (2) Nitro group was introduced in the12th position and analogues of N-benzoyl-12-nitrodehydroabietylamine (3a~3d) were obtained through nitration on ring C ofdehydroabietylamine derivatives using copper nitrate-acetic anhydride system with yield of69.6~74.8%. Copper nitrate-acetic anhydride system used in this experiment has characteristicsof moderate reaction and good selectivity, compared with the traditional HNO_3-H_2SO_4mixedacid system.
     (3) Chromic anhydride absorbed on100~200mesh macroporous silicon gel was prepared asa CrO_3/SiO_2solid-supported oxidizing reagent. Synthesis of N-benzoyl-dehydroabietylamine-7-one (4a) via selective oxidation of N-benzoyl-dehydroabietylamine (2a) by CrO_3/SiO_2solid-supported oxidizing reagent was studied. Effect of solvent species, solvent quantity,reaction temperature, loading amount and oxidant dosage on the yield was investigated. Experimental results indicated that analogues of N-benzoyl-dehydroabietylamine-7-one(4a~4e) can be obtained with yield of53.0~60.2%through introduction of carbonyl group in the7th position of ring B by oxidation of2.57mmol analogues of N-benzoyl-dehydroabietylamine(2a~2d,3a) in the present of2equimolar amount of CrO_3/SiO_2(loading amount2.0mmol/g) in50mL cyclohexane under the reflux temperature for8h. Compared with the traditionalCrO_3/CH3COOH liquid system, post-treatment process of products is more simple usingCrO_3/SiO_2solid-supported oxidizing reagent. It has a certain significance in environmentalprotection that these is not production of chromium waste liquid during the preparation ofCrO_3/SiO_2solid-supported oxidizing reagent and separation and purification of products.
     (4) Analogues of N-benzoyl-dehydroabietylamine-7-oxime (5a~5d) were obtainedthrough oximation of carbonyl group in the7th position of ring B using hydroxylaminehydrochloride with yield of80.6~85.3%. N-benzoyl-dehydroabietylamine-7-ol (6a) and N-(2-chlorobenzoyl)-dehydroabietylamine-7-ol (6c) were obtained through reduction of carbonylgroup in the7th position of ring B using sodium borohydride with yield of84.3%and83.2%respectively..
     (5) N, N-dicarboxymethyl dehydroabietylamine (7) and N-carboxymethyldehydroabietylamine (potassium salt)(8) were obtained with yield of58.3%and53.0%respectively under alkaline conditions, using dehydroabietylamine and chloroacetic acid as rawmaterials. Regulation of pH value is the key technique in this experiment.
     (6) Antitumor activities of dehydroabietylamine derivatives (2a,2c,2d,3a,3c,3d,4a,4cand4d) against PC-3(human prostate carcinoma cell line) and Hey-1B (human ovariancarcinoma cell line) cells by the MTT assay were investigated. IC50values of compounds onPC-3and Hey-1B cell lines were5.7~84.9μg/mL and11.3~129.8μg/mL respectively. The7thposition on ring B and the12th position on ring C of dehydroabietylamine derivatives might bevery important active sites, which have great influence on antitumor activities by structureactivity relationship study. Antitumor activities of some compounds against PC-3and Hey-1Bcell lines were enhanced through the introduction of carbonyl group in the7th position of ring Band nitro group in the12th position of ring C. For instance, IC50values on PC-3and Hey-1B ofN-benzoyl-dehydroabietylamine-7-one (4a) which has a carbonyl group in the7th position onring B are only9.1%and26.0%of its parent compound N-benzoyl-dehydroabietylamine (2a).IC50values on PC-3and Hey-1B of N-benzoyl-12-nitrodehydroabietylamine (3a) which has anitro group in the12th position on ring C are only13.1%and18.3%of its parent compound2a.
     (7) Cytotoxicity of some dehydroabietylamine derivatives against HepG2(humanhepatocarcinoma cell line) and L02(human hepatocyte cell line) cells were tested by the MTTassay. The results showed that, N-(4-nitrobenzoyl)-12-nitrodehydroabietylamine (3d) and N-benzoyl-dehydroabietylamine-7-one (4a) show high cytotoxicity on HepG2cells, but show lowcytotoxicity on L02.
     (8) Androgen receptor (AR) binding activities of dehydroabietylamine derivatives weretested by ligand-receptor competitive binding assay in vitro. It has been found that N-benzoyl-dehydroabietylamine-7-one (4a) present a certain binding activity with AR with IC50value of83.8nmol/L at an initial concentration of10μmol/L.
     (9) Blocking/agitating activities to α1A-adrenoceptor of compounds were tested usingCalcium mobilization assays. The results showed that N-benzoyl-dehydroabietylamine-7-oxime (5a) has25%antagonistic effect on α1A-adrenoceptor, and N-(2-chlorobenzoyl)-dehydroabietylamine-7-one (4c), N-(4-nitrobenzoyl)-dehydroabietylamine-7-one (4d) andN-benzoyl-12-nitrodehydroabietylamine-7-one (4e) have45~50%antagonistic effect onα1A-adrenoceptor at the concentration of10μmol/L.
     (10) Inhibitory activity of compounds against kinase insert domain containing receptor(KDR) was studied using homogeneous time resolved fluorescence (HTRF) technology. It hasbeen found that the tested compounds present a certain inhibitory activity against KDR with theinhibition rates of38.27~99.34%at the concentration of4×10-4mol/L. Among these compounds,N-benzoyl-dehydroabietylamine-7-one (4a), N-(4-nitrobenzoyl)-dehydroabietylamine-7-one (4d), dehydroabietylamine3,4-dihydroxy-salicylidene Schiff base (LIN110), N-(2-hydroxy)-benzyl-dehydroabietylamine hydrochloride (LIN402), N-(5-nitro-2-hydroxy)-benzyl-dehydroabietylamine hydrochloride (LIN404),12,14-dinitro dehydroabietylamine4-hydroxy-benzaldehyde Schiff base (LIN609) and12-nitro-dehydroabietylamine5-nitro-salicylaldehyde Schiff base (LIN804) show relatively high inhibition rates that are more than90%. The inhibition rates of N-(4-nitrobenzoyl)-dehydroabietylamine (2d), N-(4-nitrobenzoyl)-12-nitrodehydroabietylamine (3d),12,14-dinitro dehydroabietylamine-indole-3-carboxaldehyde Schiff base (LIN608) and4-hydroxy-salicylidene-12-amino-acetyl-dehydroabietylamine Schiff base (LIN702) were80~90%.
     (11) Antibacterial activities of dehydroabietylamine derivatives were studied by filter papermethod. The results showed that N-(4-chlorobenzoyl)-dehydroabietylamine-7-one (4b), N-(4-nitrobenzoyl)-dehydroabietylamine-7-one (4d) and N-(4-chlorobenzoyl)-dehydroabietylamine-7-oxime (5b) have strong inhibition effect on the growth ofStaphylococcus aureus, compound5b has strong inhibition effect on the growth of Bacillussubtilis, compound4b and5b have strong inhibition effect on the growth of Escherichia coli.
     (12)2D-QSAR was studied using IC50values of25dehydroabietylamine derivatives onHey-1B in order to predict the structure reformation method for high antitumor activity. Theresults showed that increase of lipid solubility, aromatic ring structure or refractive index ofcompounds were beneficial to activity enhancement of compounds against Hey-1B cells.
     (13) Dehydroabietylamine4-hydroxy-salicylidene Schiff base complexes enwrapped withβ-cyclodextrin were prepared by saturation solution method. The inclusion complexes wereidentified by infrared spectrum, differential scanning calorimetry (DSC) and ultraviolet spectrum.The antitumor activities of the dehydroabietylamine4-hydroxy-salicylidene Schiff base and the inclusion complexes were studied. The results showed that, An1:1molar ratiodehydroabietylamine4-hydroxy-salicylidene Schiff base complexes enwrapped withβ-cyclodextrin could be formed. The solubility of dehydroabietylamine4-hydroxy-salicylideneSchiff base in mixture solvent (DMSO/H_2O=1/1, volume ratio) was increased in3.4folds bythe formation of inclusion complex with β-cyclodextrin. The inhibitory ratio of thedehydroabietylamine4-hydroxy-salicylidene Schiff base and the inclusion complexes onHey-1B (human ovarian carcinoma cell line) were50.34%and41.65%at the concentration of10μg/mL.
引文
[1]宋湛谦.松香的精细化工利用()-松香的组成与性质[J].林产化工通讯,2002,36(4):29-33.
    [2]谢建武.松香基衍生物的合成及其在农药和手性分离的应用研究[D].桂林:广西师范大学,2004.
    [3]李齐贤.松脂加工工艺[M].北京:中国林业出版社,1988:63.
    [4]任天瑞,李永红.松香化学及其应用[M].北京:化学工业出版社,2006:28.
    [5]陈素文.松香松节油深度加工技术与利用[M].北京:中国林业出版社,1997:12-16.
    [6] Kupchan S M, Karim A, Marcks C. Taxodione and taxodone, two novel diterpenoidquinone methide tumor inhibitors from Taxodium distichum [J]. Journal of the AmericanChemical Society,1968,90(21):5923-5924.
    [7] Kupchan S M, Karim A, Marcks C. Tumor inhibitors. XLVIII. Taxodione and taxodone,two novel diterpenoid quinone methide tumor inhibitors from Taxodium distichum[J].The Journal of Organic Chemistry,1969,34(12):3912-3918.
    [8] Gunasekera S P, Cordell G A, Farasiiorth N R. Potential anticancer agents. XIV. Isolationof spruceanol and montanin from Cusuria spruceasa (Euphorbiaceae)[J]. Journal ofNatural Products,1979,42(6):658-662.
    [9] Comte G, Allais D P, Simon A, et al. Crystal structure of sandaracopimaric acid, alipoxygenase inhibitor from Junzperus phoenzcea [J]. Journal of Natural Products,1995,58(2):239-243.
    [10] Chang L C, Song L L, Park E J, et al. Bioactive constituents of Thuja occidentalis [J].Journal of Natural Products,2000,63(9):1235-1238.
    [11] Kinouchi Y, Ohtsu H, Tokuda H, et al. Potential antitumor-promoting diterpenoids fromthe stem bark of Picea glehni [J]. Journal of Natural Products,2000,63(6):817-820.
    [12] Iwamoto M, Ohtsu H, Tokuda H, et al. Anti-tumor promoting diterpenes from the stembark of Thuja standishii (Cupressaceae)[J]. Bioorganic&Medicinal Chemistry,2001,9(7):1911-1921.
    [13] Costa-Lotufo L V, Cunha G M A, Farias P A M, et al. The cytotoxic and embryotoxiceffects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin [J].Toxicon,2002,40(8):1231-1234.
    [14] Ukiya M, Akihisa T, Tokuda H, et al. Inhibition of tumor-promoting effects by poricoicacids g and h and other lanostane-type triterpenes and cytotoxic activity of poricoic acidsA and G from Poria cocos [J]. Journal of Natural Products,2002,65(4):462-465.
    [15] Minami T, Wada S, Tokuda H, et al. Potential antitumor-promoting diterpenes from thecones of Pinus luchuensis [J]. Journal of Natural Products,2002,65(12):1921-1923.
    [16] Kofujita H, Ota M, Takahashi K, et al. A diterpene quinone from the bark of Cryptomeriajaponica [J]. Phytochemistry,2002,61(8):895-898.
    [17] Gigante B, Santos C, Silva A M, et al. Catechols from abietic acid: synthesis andevaluation as bioactive compounds [J]. Bioorganic&Medicinal Chemistry,2003,11(8):1631-1638.
    [18] Valente C, Pedro M, Duarte A, et al. Bioactive diterpenoids, a new jatrophane and twoent-abietanes, and other constituents from Euphorbia pubescens [J]. Journal of NaturalProducts,2004,67(5):902-904.
    [19] Pettit G R, Tan R, Northen J S, et al. Antineoplastic agents.529. Isolation and structure ofnootkastatins1and2from the Alaskan Yellow Cedar Chamaecyparis nootkatensis [J].Journal of Natural Products,2004,67(9):1476-1482.
    [20] Son K H, Oh H M, Choi S K, et al. Anti-tumor abietane diterpenes from the cones ofSequoia sempervirens [J]. Bioorganic&Medicinal Chemistry Letters,2005,15(8):2019-2021.
    [21] Xiong Y, Wang K, Pan Y, et al. Isolation, synthesis, and anti-tumor activities of a novelclass of podocarpic diterpenes [J]. Bioorganic&Medicinal Chemistry Letters,2006,16(4):786-789.
    [22]熊轶,王奎武,潘远江,等.一系列新型三环二萜的合成与抗肿瘤活性研究[J].高等学校化学学报,2006,27(11):2101-2105.
    [23] Bang S D, Johnson S K, Park J C S. Composition and method for treating tumors [P]. US5248696,1993-09-28.
    [24] Aeschbach R, Philippossian G. Carnosic acid obtention and uses [P] US5256700,1993-10-26.
    [25] Lin C H, Chuang H S. Use of abietic acid and derivatives thereof for inhibiting cancer [P].US7015248B2,2006-03-21.
    [26] Palladino M, Theodorakis E A. Interleukin-1and tumor necrosis factor-α modulators,synthesis of said modulators and methods of using modulators [P]. US6365768B1,2002-04-02.
    [27] Palladino M, Theodorakis E A. Novel interleukin-1and tumor necrosis factor-alphamodulators, syntheses of said modulators and methods of using said modulators [P]. US20030040640A1,2003-02-27.
    [28] Palladino M, Theodorakis E A. Novel interleukin-1and tumor necrosis factor-alphamodulators, synthesis of said and their enantimoners and methods of using saidmodulators [P]. US20030050338A1,2003-03-13.
    [29] Palladino M, Theodorakis E A. Interleukin-1and tumor necrosis factor-α modulators,synthesis of said modulators and their enantiomers and methods of using said modulators[P]. US7119223B2,2006-10-10.
    [30] Palladino M, Theodorakis E A. Novel interleukin-1and tumor necrosis factor-alphamodulators, synthesis of said modulators and their enantiomers and methods of usingsaid modulators [P]. US20060252832A1,2006-11-09.
    [31] Pari A, trukelj B, Renko M, et al. Inhibitory effect of carnosolic acid on HIV-1proteasein cell-free assays [J]. Journal of Natural Products,1993,56(8):1426-1430.
    [32] Selwood D L, Challand S R, Champness J N, et al. Isosteres of the DNA polymeraseinhibitor aphidicolin as potential antiviral agents against human herpes viruses [J].Journal of Medicinal Chemistry,1993,36(23):3503-3510.
    [33] Fonseca T, Gigante B, Marques M M, et al. Synthesis and antiviral evaluation ofbenzimidazoles, quinoxalines and indoles from dehydroabietic acid [J]. Bioorganic&Medicinal Chemistry,2004,12(1):103-112.
    [34] Hornback W J, Mauldin S C, Munroe J E. Anti-viral compounds [P]. US6096917,2000-08-01.
    [35] Mauldin S C, Munroe J E. Anti-viral compounds [P]. US6100426,2000-08-08.
    [36] Hornback W J, Munroe J E. Anti-viral compounds [P]. US6103922,2000-08-15.
    [37] Mauldin S C, Munroe J E. Anti-viral compounds [P]. US6103923,2000-08-15.
    [38] Mauldin S C, Munroe J E. Anti-viral compounds [P], US6124494,2000-09-26.
    [39] Colacino J M, Hornback W J, Mauldin S C, et al. Anti-viral method [P]. US6127422,2000-10-03.
    [40] Hornback W J, Mauldin S C, Munroe J E. Anti-viral compounds [P]. US6156924,2000-12-05.
    [41] Mauldin S C, Munroe J E. Anti-viral compounds [P]. US6175034B1,2001-01-16.
    [42] Mauldin S C, Munroe J E. Anti-viral compounds [P]. US6180815B1,2001-01-30.
    [43] Mauldin S C, Munroe J E. Anti-viral compounds [P]. US6180816B1,2001-01-30.
    [44] Kubo I, Muroi H, Himejima M. Antibacterial activity of totarol and its potentiation [J].Journal of Natural Products,1992,55(10):1436-1440.
    [45] Kubo I, Muroi H, Kubo A. Antibacterial activity of long-chain alcohols againstStreptococcus mutans [J]. Journal of Agricultural and Food Chemistry,1993,41(12):2447-2450.
    [46] Micales J A, Han J S, Davis J L, et al. Chemical composition and fungitoxic activities ofpine cone extractives [C]. Proceedings of4th meeting of the Pan AmericanBiodeterioration Society. New York,1994:317-332.
    [47]张广友,张晋康,黄希坝. N-(3-去氢枞酰氧-2-羟)丙基-N, N, N-三甲基氯化铵的合成及其性质[J].林产化学与工业,1994,14(S1):12-16.
    [48] Batista O, Duarte A, Nascimento J, et al. Structure and antimicrobial activity of diterpenesfrom the roots of Plectranthus hereroensis [J]. Journal of Natural Products,1994,57(6):858-861.
    [49] Spessard G O, Matthews D R, Nelson M D, et al. Phytoalexin-like activity of abietic acidand its derivatives [J]. Journal of Agricultural and Food Chemistry,1995,43(6):1690-1694.
    [50]王延,宋湛谦. N-脱氢枞基氨基酸类两性表面活性剂合成及其结构与性质关系研究[J].林产化学与工业,1996,16(3):1-6.
    [51] Tapia A A, Vallejo M D, Gouiric S C, et al. Hydroxylation of dehydroabietic acid byFusarium species [J]. Phytochemtstry,1997,46(1):131-133.
    [52]王延,杨成根,周永红,等.新型脱氢松香基季胺盐类抗菌剂的合成、结构表征及抗菌活性研究[J].天然产物研究与开发,1998,10(4):59-63.
    [53] Goodson B, Ehrhardt A, Ng S, et al. Characterization of novel ntimicrobial peptoids [J].Antimicrobial Agents and Chemotherapy,1999,43(6):1429-1434.
    [54]梁梦兰,叶建峰.松香衍生物的季铵盐阳离子表面活性剂的合成与性能测定[J].化学世界:2000,41(3):138-141.
    [55] Evans G B, Furneaux R H. The synthesis and antibacterial activity of totarol derivatives.Part2: modifications at C-12and O-13[J]. Bioorganic&Medicinal Chemistry,2000,8(7):1653-1662.
    [56] Evans G B, Furneaux R H. Gainsford G J, et al. The synthesis and antibacterial activity oftotarol derivatives. Part3: modification of Ring-B [J]. Bioorganic&MedicinalChemistry,2000,8(7):1663-1675.
    [57] Yang Z, Kitano Y, Chiba K, et al. Synthesis of variously oxidized abietane diterpenes andtheir antibacterial activities against MRSA and VRE [J]. Bioorganic&MedicinalChemistry,2001,9(2):347-356.
    [58] Ulubelen A, ksüz S, Topcu G, et al. Antibacterial diterpenes from the roots of Salviablepharochlaena [J]. Journal of Natural Products,2001,64(4):549-551.
    [59] Xiao D, Kuroyanagi M, Itani T, et al. Studies on constituents from Chamaecyparis pisiferaand antibacterial activity of diterpenes [J]. Chemical&Pharmaceutical Bulletin,2001,49(11):1479-1481.
    [60] Woldemichael G M, W chter G, Singh M P, et al. Antibacterial diterpenes fromCalceolaria pinifolia [J]. Journal of Natural Products,2003,66(2):242-246.
    [61] Gouiric S C, Feresin G E, Tapia A A, et al.1β,7β-dihydroxydehydroabietic acid, a newbiotransformation product of dehydroabietic acid by Aspergillus niger [J]. World Journalof Microbiology&Biotechnology,2004,20(3):281-284.
    [62] Gil F, Iglesia R D, Mendoza L, et al. Soil bacteria are differentially affected by the resin ofthe medicinal plant Pseudognaphalium vira vira and its main component kaurenoic acid[J]. Microbial Ecology,2006,52(1):10-18.
    [63] Kofujita H, Fujino Y, Ota M, et al. Antifungal diterpenes from the bark of Cryptomeriajaponica D. Don [J]. Holzforschung,2006,60(1):20-23.
    [64] S derberg T, Holm S, Hallmans G. Means having microbial effect and little or completelyabolished tendency to develop contact allergic reactions or toxic effects and use thereofin E.G. skin and wound treatment products [P]. US5415865,1995-05-16.
    [65] Esteves M A, Narender N, Marcelo-Curto M J, et al. Synthetic derivatives of abietic acidwith radical scavenging activity [J]. Journal of Natural Products,2001,64(6):761-766.
    [66] Miura K, Kikuzaki H, Nakatani N. Antioxidant activity of chemical components from sage(Salvia officinalis L.) And thyme (Thymus vulgaris L.) Measured by the oil stabilityindex method [J]. Journal of Agricultural and Food Chemistry,2002,50(7):1845-1851.
    [67] Justino G C, Correia C F, Mira L, et al. Antioxidant activity of a catechol derived fromabietic acid [J]. Journal of Agricultural and Food Chemistry,2006,54(2):342-348.
    [68] Kabouche A, Kabouche Z, ztürk M, et al. Antioxidant abietane diterpenoids from Salviabarrelieri [J]. Food Chemistry,2007,102(4):1281-1287.
    [69] Tan N, Kaloga M, Radtke O A, et al. Abietane diterpenoids and triterpenoic acids fromSalvia cilicica and their antileishmanial activities [J]. Phytochemistry,2002,61(8):881-884.
    [70]朱海云,李广泽,廉应江,等.砂地柏果实中2种二萜类杀虫活性成分的分离[J].西北农林科技大学学报(自然科学版),2005,33(2):79-82.
    [71] Takahashi N, Kawada T, Goto T, et al. Abietic acid activates peroxisomeproliferator-activated receptor-γ (PPARγ) in RAW264.7macrophages and3T3-L1adipocytes to regulategene expression involved in inflammation and lipid metabolism [J].FEBS Letters,2003,550(1-3):190-194.
    [72] Shen T Y, Jones H.1,2,10-tricarboxy phenanthrene compounds [P]. US3869506,1975-03-04.
    [73] Murai H, Fujita Y, Mori T, et al. Pharmaceutically active deltab-dihydropimaramidederivatives [P]. US4117159,1978-09-26.
    [74] Suh Y G, Choi Y H, Lee H K, et al. Diterpene derivatives and anti-inflammatory analgesicagents comprising the same [P]. US6593363B1,2003-07-15.
    [75] Zanella E F. Effect of PH on the acute toxicity of dehydroabietic acid and chlorinateddehydroabietic acid to daphnia and fish. Appleton [R]. Wisconsin: The institute of paperchemistry,1982.
    [76] Zheng J, Nicholson R A. Influence of two naturally occurring abietane monocarboxylicacids (resin acids) and a chlorinated derivative on release of the inhibitoryneurotransmitter γ-aminobutyric acid from trout brain synaptosomes [J]. Bulletin ofEnvironment Contamination and Toxicology,1996,56(1):114-120.
    [77] F hr us-Van R G E, Payne I J F. Enzyme cytochemical responses of mussels (Mytilusedulis) to resin acid constituents of pulp mill effluents [J]. Bulletin of EnvironmentContamination and Toxicology,1999,63(4):430-437.
    [78] Peng G, Roberts J C. Solubility and toxicity of resin acids [J]. Water Research,2000,34(10):2779-2785.
    [79] Gravato C, Santos M A. Juvenile sea bass liver biotransformation induction anderythrocytic genotoxic responses to resin acids [J]. Ecotoxicology and EnvironmentSafety,2002,52(3):238-247.
    [80] Pacheco M, Santos M A. Biotransformation, genotoxic, and histopathological effects ofenvironmental contaminants in European eel (Anguilla anguilla L.)[J]. Ecotoxicologyand Environment Safety,2002,53(3):331-347.
    [81] Maria V L, Correia A C, Santos M A. Anguilla anguilla L. genotoxic and liverbiotransformation responses to abietic acid exposure [J]. Ecotoxicology and EnvironmentSafety,2004,58(2):202-210.
    [82] Sepúlveda B, Astudillo L, Rodríguez J A, et al. Gastroprotective and cytotoxic effect ofdehydroabietic acid derivatives [J]. Pharmacological Research,2005,52(5):429-437.
    [83] Kamaya Y, Tokita N, Suzuki K. Effects of dehydroabietic acid and abietic acid on survival,reproduction, and growth of the crustacean Daphnia magna [J]. Ecotoxicology andEnvironment Safety,2005,61(1):83-88.
    [84] Gravato C, Oliveira M, Santos M A. Oxidative stress and genotoxic responses to resinacids in Mediterranean mussels [J]. Ecotoxicology and Environment Safety,2005,61(2):221-229.
    [85] Prinz S, Müllner U, Heilmann J, et al. Oxidation products of abietic acid and its methylester [J]. Journal of Natural Products,2002,65(11):1530-1534.
    [86] Schmeda-Hirschmann G, Aranda C, Kurina M, et al. Biotransformations of imbricatolicacid by Aspergillus niger and Rhizopus nigricans cultures [J]. Molecules,2007,12(5):1092-1100.
    [87] Sekido H, Takezawa J, Motoki G, et al. Inhibitory effect of abietic acid against (Na++K+)-and (H++K+)-ATPases [J]. Agricultural Biology and Chemistry,1990,54(2):287-290.
    [88] Schultz C, Bossolani M P, Torres L M B, et al. Inhibition of the gastric H+, K+-ATPase byplectrinone A, a diterpenoid isolated from Plectranthus barbatus Andrews [J]. Journal ofEthnopharmacology,2007,111(1):1-7.
    [89] Ohwada T, Nonomura T, Maki K, et al. Dehydroabietic acid derivatives as a novel scaffoldfor large-conductance calcium-activated K+channel openers [J]. Bioorganic&MedicinalChemistry Letters,2003,13(22):3971-3974.
    [90] Imaizumi Y, Ohwada T. Potassium channel opener [P]. US2006235072A1,2006-10-19.
    [91] Steck E A. Topical prophylaxis against schistosomiasis [P]. US4282253,1981-08-04.
    [92] Shao L P, G fvert E, Nilsson U, et al.15-hydroperoxydehydroabietic acid-a contactallergen in colophony from Pinus species [J]. Phytochemistry,1995,38(4):853-857.
    [93] Moreira R R D, Carlos I Z, Vilegas W. Release of intermediate reactive hydrogen peroxideby macrophage cells activated by natural products [J]. Biological and PharmaceuticalBulletin,2001,24(2):201-204.
    [94] Schweizer R A S, Atanasov A G, Frey B M, et al. A rapid screening assay for inhibitors of11β-hydroxysteroid dehydrogenases (11β-HSD): flavanone selectively inhibits11β-HSD1reductase activity [J]. Molecular and Cellular Endocrinology,2003,212(1-2):41-49.
    [95] Saxena G, Tudan C R, Merzouk A, et al. Tricyclic rantes receptor ligands [P]. US6831101B2,2004-12-14.
    [96]王恒山,谢建武,潘英明,等.松香马来酸酐衍生物的制备及生物活性[J].农药,2005,44(11):506-508.
    [97] Talevi A, Cravero M S, Castro E A, et al. Discovery of anticonvulsant activity of abieticacid through application of linear discriminant analysis [J]. Bioorganic&MedicinalChemistry Letters,2007,17(6):1684-1690.
    [98]饶小平,宋湛谦,高宏.脱氢枞胺及其衍生物的研究与应用进展[J].化学通报,2006,69(3):168-172.
    [99] Cheney L C, Penicillin salts of amines derived from rosin [P]. US2585436,1952-02-12.
    [100] Kaiser A, Scheer M, H usermann W, et al. Process for the preparation of l-dopa [P]. US3969397,1976-07-13.
    [101]弗里茨·里福,翰斯·鲁多尔夫·马勒,阿尔弗里德·赫丁格,等.外消旋半酯分拆工艺[P].CN85106365,1985-08-24.
    [102] Schmeling B V, Kulka M. Systemic Fungicidal Activity of1,4-Oxathiin Derivatives [J].Science,1966,152(29):659-660.
    [103]周玉新,党永红,刘建飞,等. N-(4-乙氧苯基)苯甲酰胺类化合物的合成及抗炎、抗变态反应活性研究[M].中国药物化学杂志,1996,6(3):200-202.
    [104]刘翔,陈国良. N-(4-乙氧苯基)苯甲酰胺衍生物的合成与抗炎抗变态反应生物活性[J].沈阳药科大学学报,2006,23(6):353-372.
    [105]吴亚平,许禄,周玉新,等.苯甲酰胺类化合物的结构/活性的定量构效关系研究[J].高等学校化学学报,1998,19(5):694-698.
    [106]黄明智,罗晓艳,任叶果,等. N-(4,6-二取代嘧啶-2-基)苯甲酰胺类化合物的合成与杀菌活性[J].农药学学报,2007,9(1):76-79.
    [107]黄青春.羧酰胺类杀菌剂的活性及其机理研究进展[J].世界农药,2004,26(4):23-27.
    [108]何镭,徐德胜,黄丽荣,等.2-[(吡啶-4-基)甲基氨基]-N-[4-(三氟甲基)苯基]苯甲酰胺的合成工艺研究[J].中国药物化学杂志,2007,17(6):377-379.
    [109]张应阔,钱万红,王天桃,等.邻氯-N, N-二乙基苯甲酰胺的合成及药效[J].中国媒介生物学及控制杂志,2000,11(6):442-444.
    [110]丁音琴,陈天明.驱蚊剂N, N-二乙基间甲基苯甲酰胺的合成条件[J].福州大学学报(自然科学版),1999,27(2):102-103.
    [111]何欣,林紫云,朱莉亚,等.苯甲酰胺类衍生物的合成及扩血管活性[J].药学学报,1998,33(9):666-674.
    [112]彭浩,宁丽红,涂海洋,等.3-(2-氯-4-三氟甲基苯氧基)-N-杂环基苯甲酰胺的合成与植物生长调节活性[J].应用化学,2003,20(7):643-646.
    [113](美)21世纪化学科学的挑战委员会.超越分子前沿-化学与化学工程面临的挑战[M],陈尔强等译,北京:科学出版社,2004,91.
    [114]王道林,牛之猛,刘华东.光学活性拆分剂脱氢枞胺的制备性纯化及其表征[J].北京理工大学学报,2004,24(4):357-359.
    [115]范旭.水溶性C(60)-脱氢枞胺衍生物的合成及其生物活性研究[D].南京:南京林业大学,2008.
    [116]杨东海.松香再加工及利用[M].北京:中国林业出版社,1984:62-83.
    [117] Mckinnie B G. Resolution of acylated D, L-alkyl substituted alkanoic acids[P]. US4294775,1981-10-13.
    [118]丁霞.松香衍生物的合成、结构表征及生物活性研究[D].南京:南京林业大学,2006.
    [119]刁开盛,尹显洪,王海军.脱氢枞胺的分子结构和性质[J].福建林业科技,2009,36(3):8-14.
    [120] Cambie R C, Franich R A. Chemistry of the podocarpaceae. XXVII. Ring-Cmodifications of methyl abieta-8,11,13-trien-18-oate [J]. Australian Journal ofChemistry,1971,24(1):117-134.
    [121]林则群,郑燚,缪程平.芳香烃硝化反应的研究[J].嘉兴学院学报,2005,17(S2):32-34
    [122]李谦和,陈亮,尹笃林,等. CrⅥ载体氧化试剂的制备和应用研究-微波促进三氧化铬/硅胶氧化试剂的制备[J].湖南师范大学自然科学学报,2004,27(4):55-58.
    [123]史黎薇.铬化合物对健康影响的研究进展[J].卫生研究,2003,32(4):410-412.
    [124]王代芝.铬渣和含铬废水的处理综述[J].辽宁化工,2004,33(10):615-616.
    [125]颜家保,王光辉,王敬,等.用亚硫酸钠处理硅钢含铬废水的实验研究[J].北方环境,2005,30(2):21-23.
    [126]张楠,薛改凤,张垒,等.钢铁厂含铬废水处理技术研究进展[J].工业用水与废水,2010,41(5):6-8.
    [127]周建国,李海明,陈培丽.绿色有机合成研究进展[J].天津化工,2009,23(6):1-4.
    [128]李春,司伊康.烯丙位氧化的几种方法[J].有机化学,2003,23(6):518-525.
    [129]李谦和,匡玲玲,彭沙,等. CrⅥ载体氧化试剂的制备和应用研究-紫苏醇选择氧化合成紫苏醛[J].湖南师范大学自然科学学报2007,30(3):64-79.
    [130] Monteiro M C S, Silvestre J D, Silva M S, et al. Synthesis and structural characterisationof ring B oxidised derivatives of dehydroabietic acid [J]. New Journal of Chemistry,2001,25(8):1091-1097.
    [131]白银娟,路军,马怀让.硼氢化钠在有机合成中的研究进展[J].应用化学,2002,19(5):409-415.
    [132]吕布,王松涛,王守柱.氢化铝锂的合成和应用[J].安徽化工,1999,25(4):18-20.
    [133]蒋达荣.关于氢化铝锂和硼氢化钠还原醛酮成醇的反应式[J].大学化学,1997,12(4):53-54.
    [134]杜灿屏,刘鲁生,张恒.21世纪有机化学发展战略[M].北京:化学工业出版社,2002:275.
    [135]牟凌云,王明伟.雄激素和雌激素受体药物筛选方法的研究进展[J].生命科学,2004,16(5):305-311.
    [136]王荣海,杨明山.雄激素受体在前列腺增生和前列腺癌组织中的表达[J].山东大学学报:医学版,2008,46(5):506-509.
    [137] Oeveren A V, Motamedi M, Martinborough E, et al. Novel selective androgen receptormodulators: SAR studies on6-bisalkylamino-2-quinolinones [J]. Bioorganic&MedicinalChemistry Letters,2007,17(6):1527-1531.
    [138] Higuchi R I, Thompson A W, Chen J H, et al. Potent, nonsteroidal selective androgenreceptor modulators (SARMs) based on8H-[1,4] oxazino[2,3-f] quinolin-8-ones [J].Bioorganic&Medicinal Chemistry Letters,2007,17(19):5442-5446.
    [139] Marwah P, Marwah A, Lardy H A, et al. C19-Steroids as androgen receptor modulators:Design, discovery, and structure-activity relationship of new steroidal androgen receptorantagonists [J]. Bioorganic&Medicinal Chemistry Letters,2006,14(17):5933-5947.
    [140]张柯萍,潘雪英. α1肾上腺素受体拮抗剂的研究进展[J].海峡药学,2008,20(5):4-5.
    [141]习保民,江振洲,王涛,等.2,4-二甲氧基苯乙胺类α1-肾上腺素受体拮抗剂的合成、生物活性研究[J].中国药物化学杂志,2008,18(6):401-405.
    [142]成静,付强,伍钢. CDC25B与恶性肿瘤研究进展[J].中华肿瘤防治杂志,2007,14(11):872-875.
    [143]孔波,石欣. CDC25B与肿瘤相关的研究进展[J].东南大学学报:医学版,2007(2):145-148.
    [144]刘冰婉,刘默,刘登科,等.血管内皮生长因子受体及其小分子抑制剂的研究进展[J].现代药物与临床,2011,26(4):245-250.
    [145]吕林,邓慧敏,林中祥. ESI-MS法研究N-苯甲酰基-脱氢枞胺衍生物与血管紧张肽Ⅲ的相互作用[J].高等学校化学学报,2011,32(4):863-867.
    [146]王秉,胡智文,郑海玲,等. β-环糊精-Cu(Ⅱ)配合物催化氧化邻苯二酚及其反应动力学[J].化工学报,2009,60(6):1459-1465.
    [147] Chao J B, Zhang B T. Preparation and study on the solid inclusion complex of cloxacillinsodium with β-cyclodextrin [J]. Spectrochimica Acta Part A,2007,68(1):108-112.
    [148] Xu P, Song L, Wang H. Study on thermal decomposition behavior of survivedβ-cyclodextrin in its inclusion complex of clove oil by nonisothermal thermogravimetryand gas chromatography coupled to time-of-flight mass spectrometry analyses [J].Thermochimica Acta,2008,469(1):36-42.
    [149]饶小平.松香树脂酸衍生物的合成、表征及生物活性研究[D].南京:中国林业科学研究院,2007.
    [150]刘明,邓慧敏,林中祥.脱氢枞胺(4-羟基)水杨醛Schiff碱与环糊精包合物的紫外光谱及电喷雾质谱研究[C].广东省质谱学会第9次年会论文集.广东,2008:8-11.
    [151]石东坡,纪红兵,胡晓芳,等. β-环糊精促进环己酮肟水解脱保护生成环己酮[J].化工学报,2008,59(9):2241-2246.
    [152] Pinto L M, Fraceto L F, Santana M H A, et al. Physico-chemical characterization ofbenzocaine-β-cyclodextrin inclusion complexes [J]. Journal of Pharmaceutical andBiomedical Analysis,2005,39(5):956-963.
    [153]李元波,殷辉安,周琳,等.当归挥发油的提取与β-环糊精包合工艺研究[J].天然产物研究与开发,2006,18(5):836-840.
    [154]续浩,陈亮.环糊精包结物包结比的测定[J].分析测试技术与仪器,2001,7(3):152-155.
    [155]张瑜,刁国旺,郭荣. β-环糊精-四氯苯醌包合物的合成及其表征[J].扬州大学学报(自然科学版),2002,5(3):32-47.
    [156] Yuan C, Jin Z Y, Xu X M. Preparation and stability of the inclusion complex ofastaxanthin with hydroxypropyl-β-cyclodextrin [J]. Food Chemistry,2008,109(2):264-268.
    [157] Wang J H, Cai Z S. Investigation of inclusion complex of miconazole nitrate withβ-cyclodextrin [J]. Carbohydrate Polymers,2008,72(2):255-260.
    [158] Shen Y L, Yang S H, Wu L M, et al. Study on structure and characterization of inclusioncomplex of gossypol/beta cyclodextrin [J]. Spectrochimica Acta Part A,2005,61(6):1025-1028.
    [159] Liu L X, Zhu S Y. A study on the supramolecular structure of inclusion complex ofβ-cyclodextrin with prazosin hydrochloride [J]. Carbohydrate Polymers,2007,68(3):472-476.
    [160] Karathanos V T, Mourtzinos I, Yannakopoulou K, et al. Study of the solubility,antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin [J].Food Chemistry2007,101(2):652-658.
    [161]朱素燕. β-环糊精及其衍生物包合对难溶性药物的增溶作用研究[D].杭州:浙江大学,2006.
    [162]陈泳,林中祥.树脂酸及其衍生物的抗肿瘤和抗微生物活性研究新进展[J].林产化学与工业,2008,28(5):113-119.
    [163]陈泳,林中祥.树脂酸及其衍生物的生物活性[J].天然产物研究与开发,2009,21(4):712-718.