真空脱附和变压吸附处理挥发性有机气体的实验研究及其过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变压吸附为目前处理回收挥发性有机化合物的主要方法之一。本文针对其中的真空变压吸附进行了研究,侧重于以往研究中常简化处理的难点——真空脱附阶段。研究内容主要有两部分:建立脱附传热传质的数学模型,分析其中传热传质的耦合作用,对丙酮活性炭上真空脱附过程中的传质过程进行数值模拟;真空变压吸附多组分有机气体的实验研究和数值模拟。
     首先,为探讨脱附过程中传热传质耦合影响规律,采用线性驱动力和Langmiur吸附平衡模型,通过质量和能量守恒原理建立脱附的传热传质模型,从理论上分析脱附脱附过程中传热与传质之间的影响,发现在脱附过程中由于其温度变化较小,因此传热对传质的影响不大。脱附真空度越大,脱附初始吸附容量越大,但脱附速率相应变小;由于吸附剂微孔内的毛细管现象作用和脱附过程中的传热传质耦合影响,脱附浓度曲线表现出真空浓缩区、快速衰减区和缓慢衰减区三个阶段。由于温度的变化对传质系数影响不大,耦合影响的传质系数主要受吸附量相对于浓度变化率影响。通过对吸附等温线的分析发现吸附量对浓度的变化率在低浓度区和高浓度区虽然相差较大但分别近似线形。因此在模拟过程中分段求取传质系数和轴向扩散系数可以使数值计算结果很好的与实验数据吻合;对于同一初始吸附容量,脱附时丙酮分压越大其传质系数k越大;轴向扩散系数在真空脱附时不宜省略。
     其次,实验研究了两床真空变压吸附甲苯和丙酮混合蒸气过程的传热和传质情况,讨论了平衡状态时浓度和温度随时间和床层方向的变化规律,实验发现在吸附床的后半部分浓度随时间的变化不是单调递减,有可能随着脱附时间的增加而有所维持甚至反弹。采用的传热传质耦合模型对吸附床的前半段模拟结果较好,模拟分析了稳定状态时浓度的变化规律及在床层中的分布。采用该模型对变压吸附的操作时间进行了优化:21.5℃下,丙酮和甲苯的吸附进气浓度分别为58.478g/m~3和18.014g/m~3,均压升和均压降时间各为5s,吹扫时间为10s时,当吸附时长为300s,最佳脱附时间为155s,此时丙酮的C_(脱附)/C_(吸附进气)为5.53,C_(净化)/C_(吸附进气)为0.10;甲苯的C_(脱附)/C_(吸附进气)为2.58;当脱附时间为60s,最佳吸附时间为165s,此时丙酮的C_(脱附)/C_(吸附进气)为4.93,C_(净化)/C_(吸附进气)为0.10;甲苯的C_(脱附)/C_(吸附进气)为2.98。
The pressure swing adsorption (PSA) is one of the primary methods of treating and recycling volatile organic compound (VOC). The paper researched on the mass and heat transfer of vacuum pressure swing adsorption (VPSA), focusing on the vacuum desorption process which is a difficult point and often simplified as the inverse process of adsorption in the previous documents. The study included two parts. One was building the model coupled with heat and mass transfer to analyze the interreaction of heat and mass transfer and simulating the mass transfer process of acetone desorption from activated carbon. The other one was the experimental research and simulation of VPSA process of multi-component VOC.
     Firstly, the LDF model and Langmuir model were used to analyze the interreaction of heat and mass transfer coupled with heat and mass transfer and the principle of conservation of quantity and energy. It was found that heat transfer had little influence on mass transfer because of the little change of temperature. The higher desorption vacuum degree and the larger initial adsorption quantity of desorption led to the smaller desorption rate, which was attributed to the affect of capillarity of micropore in the adsorbent and the interreaction of the heat and mass transfer in the process of desorption. The changing process of the desorption concentration contained three phases: vacuum concentration, rapid attenuation and slow attenuation. Because of the little influence caused by the temperature changing, the mass transfer coefficient of LDF was mainly affected by the change rate of adsorption quantity through concentration. The adsorption isotherm showed that the change rate of adsorption quantity through concentration was much different in low concentration and high concentration, but it was nearly linear in low concentration and high concentration respectively. The influence of the coefficient of mass transfer on concentration was various in different phases of desorption, so it made the calculated value of simulation fit the experimental data well by selecting different coefficient of mass transfer or coefficient of axial diffusion. For the same initial adsorption quantity, the greater the partial pressure of acetone led to the larger the coefficient k of mass transfer, and the omission of the coefficient of axial diffusion of desorption was not suitable. Secondly, the dynamic and energetic characteristics of the organic gases of toluene and acetone were analyzed by experimental study and the concentration distribution of the equilibrium state was discussed. It was found that the concentration in the latter half of adsorption bed was not monotonely decreasing, and it was likely to maintain and even increase as desorption time increasing. The results of simulation fit the experimental data of the first half of adsoption bed better than which of the second half. Then the change of the concentration distribution in the bed in steady state was simulated and analyzed. The optimal operation timing of VPSA was obtained by the model. The fixed operating parameters were 21.5℃, the adsorption feed concentration of acetone(58.478g/m~3) and toluene (18.014 g/m~3), two 5s pressure equalizing time and 10s blowdown time. For 300s adsorption time, the optimal desorption time was 155s. And then for acetone, C_(desorption)/C_o was 5.53 and C_(purify)/C_o为0.10. For toluene, C_(desorption)/C_o was 2.58. For 60s desorption time, the optimal adsorption time was 165s. And then for acetone, C_(desorption)/C_o was 4.93 and C_(purify)/C_o为0.10. For toluene, C_(desorption)/C_o was 2.98.
引文
[1] 李辰,梁冰,师彦平等.室内空气中挥发性有机化合物污染及检测方法[J].分析测试技术与仪器,2005,11(1):40-44.
    [2] 冯春杨,赵君科.电晕法处理挥发性有机化合物技术研究现状[J].四川环境,2003,22(2):2-5.
    [3] Daisey, J.M.Hodgson, A.T, et al. Volatile Organic Compounds in Twelve Califonia Office Building: Classes, Concentrations and Sources[J].Atoms Environ, 1994,28(21):3557-3562.
    [4] Ekberg, L.E. Volatile Organic Compounds in Office Buildings[J]. Atoms Environ, 1994,28(21):3571-3575.
    [5] 德利克·埃尔森.烟雾警报——城市空气质量管理[M].北京:科学出版社,1999:5-25
    [6] 张济宇.世界各国对排放VOCs浓度的规定[J].石油化工环境保护,2000,13(3):64.
    [7] 国家环境保护局.大气污染物综合排放标准详解[M].北京:中国环境科学出版社,1997:1-13.
    [8] Faisal I. Khan, Aloke Kr. Ghoshal. Removal of Volatile Organic Compounds from polluted air[J]. Journal of Loss Prevention in th Process Industries, 2000,13(6):527-545.
    [9] 吴永文,李忠,奚红霞等.VOCs污染控制技术与吸附催化材料[J].离子交换与吸附,2003,19(1):88-95.
    [10] 闫勇.有机废气中VOCs的回收方法[J].化工环保,1997,(17,):332-336.
    [11] 张宇峰,邵春燕,张雪英等.挥发性有机化合物的污染控制技术[J].南京工业大学学报,2003,25(3):89-93.
    [12] Ruddy E. N., Carroll L. A.. Select the best VOCs control strategy[J].Chemical Engineering Progress, 1993,89(7):28-34.
    [13] 李坚,马广大.电晕法处理易挥发性有机物(VOCs)的实验研究[J].环境工程,1996,17(3):30-33.
    [14] Cunningham J., Wang Leeu, Schneider T, et al. Isotopeeffect evidence for hydroxyl sensitized by TiO_2 in aqueous suspensions[J]. Journal of Photochemistry Photobiol A: Chemistry, 1998,43(5):329-345.
    [15] W.Skarstrom. To Esso Research and Engineering Company[P]. U.S.A.:US 3142547,1964:2-10.
    [16] Guerin de Montgareuil, D. Domine. To Societe L, Air Liquide, Paris[P]. USA: US3155468, 1964:3-12.
    [17] Borgor G G, Listener U, Schuile.M.Ubersichtsbeitra ge Luftreinhaltung, Partikelab Scheidung[J].Chemic lngenieur Technik,1994,66(11):1486-1490.
    [18] Reikowakasugi, Akio Kodama, Motonobu Goto, et al.Recovery of volatile organic compounds as condensate by pressure swing adsorption with enriching refulx[J].J Chem. Eng. Japan, 2004,37(2):374-377
    [19] Olajossy A, GawdZik A, Budner Z, et al. Methane separation from coal mine methane gas by vacuum Pressure swing adsorption[J].Chem. Eng. Res. Dcs,2003,81(4):474-482.
    [20] Do D D, Do H D. Surface diffusion of hydrocarbons in activated carbon: Comparison between constant molar flow, diferential permeation and differential adsorption bed methods[J]. AdsorPtion, 2001,7(3): 189-209.
    [21] 部豫川,赵俊田.变压吸附气体分离技术的新应用[J].化工进展,2005,24(1):76-79.
    [22] Chiang Hung Lung,Chiang P C,Huang C P.Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylk etone and benzene[J].Chemosphere,2002,47(3):267-27.
    [23] 黄正宏,康飞宇,吴慧等.湿氧化改性多孔炭对低浓度苯和丁酮蒸汽的吸附[J].清华大学学报,2000,40(10):111-115.
    [24] Ki-Joong Kima, Chan-Soon Kanga, Young-Jae Youa, et al. Adsorption-desorption characteristics of modified activated carbons for volatile organic compounds [J]. Studies in Surface Science and Catalysis,2006,159(4):457-460.
    [25] James M H, Saratoga C. System for increasing efficiency of vapor phase pollutant removal with on-site regeneration and pollution recovery[P]. USA:US5281257,1994:4-13
    [26] 沈江南,吴礼光,陈欢林等.丙烯酰胺-马来酸酐共聚合物膜及其对CO_2、CH_4吸附性能研究[J].高校化学工程学报,2005,19(3):292-296.
    [27] 朱正双,李立清,郜豫川等.多组分有机气体吸附性能与吸附剂选择性分析[J].天然气化工,2008,33(2):47-51.
    [28] Gales L,Mendes A, Costa C. Recovery of acetone,ethyl acetate and ethanol by thermal pressure swing and adsorption[J]. Chem Eng Sci,2003,58(23-24): 5279-5289.
    [29] Chuang C L, Chiang P C, Chang E E. Modeling VOCs adsorption onto activated carbon[J].Chemosphere,2003,53(1):17-27.
    [30] 金一中,徐颧,谢裕坛.活性炭吸附苯、甲苯废气的研究[J].高校化学工程学报,2004,18(2):258-264
    [31] Yun Jeong Ho,Choi Dae Ki, Moon Hee. Benzene adsorption and hot purge regeneration in activated carbon beds[J].Chem Eng Sci, 2000, 55(23): 5857-5872.
    [32] Jeong-Ho Yun, Dae-Ki Choi, Hee Moon. Benzene adsorption and hot purge regeneration in activated carbon beds[J]. Chemical Engineering Science, 2000,55(6):5857-5872.
    [33] 高瑞英,陈秋燕,李忠军.活性炭吸附vOC苯系物的影响因素研究[J].广东轻工职业技术学院学报,2005,4(4):16-19.
    [34] Chiang Yu Chun, Chiang Penchi,Huang Chinpa.Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon,2001,39(4): 523-534.
    [35] 罗宏慧,朱质彬,申永浩.活性炭共吸附现象对有机蒸气穿透容量的影响[J].哈尔滨工业大学报,1997,29(5):101-104.
    [36] Marcus Franz, Hassan A A, Neville G P. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activatedcarbon[J].Carbon,2000,38(13): 1807-1819.
    [37] Perry J C, George A S, Spyridon P P,et al.Effect of influent oxygen concentration on the GAC adsorption of VOCs in the presence of BOM[J].WaterRes, 1995,29(2):409-419.
    [38] J.F. Nastaj, B.Ambrozek, J.Rudnicka. Simulation studies of a vacuum and temperature swing adsorption process for the removal of VOC from waste air streams[J]. International Communications in Heat and Mass Transfer,2006, 33(3):80-86
    [39] 冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000:12-35.
    [40] Sanjay Kumar, Yashwant Singh. Surface adsorption and the collapse transition of a linear polymer chain: Some exact results on fractal lattices[J]. Phys. 1993,Rev,48(2):734-742.
    [41] R.T.杨.吸附法气体分离[M].北京:化学工业出版社,1991:23-40.
    [42] Leavitt F.W. Non-isothermal Adsorption in Large Fixed Beds[J]. Chemical Engineering Progress, 1962,58(1):54-65.
    [43] Meyer O A., Weber TV. Nonisothermal Adsorption in Fixed Beds[J]. AlChE.J,1976,13(3):457-465
    [44] Nagel G, Kluge G, Flock W. Modeling of Non-isothermal Multicomponent Adsorption in Adiabatic Fixed Beds-1. The Numerical Solution of the Parallel Difusion Model[J].Chem.Eng. Sci.,1987, 42 (1): 143-153.
    [45] Chihara K., Suzuki M. Simulation of Nonisothermal Pressure Swing Adsorption[J].J. Chem. Eng. Japan, 1983,16(1):53-61.
    [46] Yang R.T, Doong S.J. Gas Separation by Pressure Swing Adsorption: A Pore-difusion Model for Bulk Separation[J].A IChEJ, 1985,31(11): 1829-1842.
    [47] Farooq S, Hassan M.M, Ruthven D.M. Heat Efects in Preessure Swing Adsorption S ystems[J]. Chem. Eng. Sci., 1988, 43 (5):1017-1031.
    [48] Shendalman L.H, Mitchell J.E. A Study of Heatless Adsorption in the Model System CO_2 in He: part1[J]. Chem. Eng. Sci., 1972,27(7): 1449-1458.
    [49] Chan Y., H ill F. B., Wong Y. W. Equilibrium Theory of a Pressure Swing Adsorption Process[J]. Chem. Eng. Sci., 1981,36(2):243-251.
    [50] Flores Ferandes G., Kenny C.N. Modeling of the Pressure Swing Air Separation[J].Chem. Eng. Sci, 1983,38(6):827-834.
    [51] Knaebel K. S, Hill F. B. Pressure Swing Adsorption: Development of an Equilibrium Theory for Gas Separation[J]. C hem, Eng. Sci, 1985,40 (12):2351-2360.
    [52] Raghavan N.S, Hassan M.M., Ruthven D.M. Numerical Simulation of a PSA System-I. Isothermal Trace Component System with Linear Equilibrium and Finite MassT ransfer Resistance[J]. AIChEJ., 1985,31(3):385-392.
    [53] Ruthven D.M, Principles of Adsorption and Adsorption Processes[M]. New York: Wiley, 1984:11-23.
    [54] Glueckauf E., Coates J. I. Theory of Chromatography: V. The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and an Efectiveness of Separation[J]. Journal of Chemical Society, 1947,36(2):1315-132.
    [55] Nakao S., Suzuki M. Mass Transfer Coefficient in Cycle Adsorption and Desorption[J]. J. Chem. Eng. Japan, 1983,16 (1):114-119.
    [56] Raghavan N.S, Ruthven D.M, Hassan M. M. Numerical Simulation of a PSA System Using a Pore Difusion Model[J]. Chem.Eng. Sci.,1986, 41(11): 2787-2793.
    [57] Farooq S., Ruthven D. M. Numerical Simulation of a kinetically Controlled Pressure Swing Adsorption Bulk Separation Process Based on a Diffusion Model[J]. Chem.Eng. Sci., 1991,46 (9):2213-2224.
    [58] Alpay E., Scott D. M. The Linear Driving Force Model for Fast-cyclic A dsorption and Desorption ina Spherical Pa rticle[J]. Chem.Eng. Sci., 1992, 47(2):499-502.
    [59] Carta G. The Linear Driving Force Approximation for Cyclic Mass Transforin Spherical Particles[J]. Chem. Engsci.,1988,43(10)2877—2883.
    [60] Carta G. Exact Solution and Linear Driving Force Approximationfor Cyclic Mass Transfer in a Bidisperse sorbent[J]. Chem. Eng. Sci., 1993,48(9):1613-1615.
    [61] CHOONG T. S. Y., Scot D. M. The linear driving force model for cyclic adsorption and desorption: the effect of external fluid-film mass transfer [J].Chemical engineering science, 1998,53(4):847-851.
    [62] Hassan M. M., Raghavan N.s., Ruthven D.M. Boniface H.A. Pressureswing Adsorption, part II :Experimental Study of a nonlinear Trace Component Isothermal System[J]. AJChEJ, 1985,31(12):2008-2016.
    [63] Serbezov A., Sotirchos S. V. On the Formulation of Linear Driving Force Approximations for Adsorption and Desorption of Multi-component Gaseous Mixtures in Sorbent particles[J]. Separation and purification Technology,2001, 24(1-2):343-367.
    [64] Ruthven D.M., Farooq S., Knaebel K.S. Pressure Swing Adsorption[M]. New York:VCH Publishers, 1994:25-31.
    [65] Sircar S., Hufton J. R. Why Does the Linear D riving Force Model for Adsorption Kinetics Works[J]? Adsorption, 2000,6(2): 137-147.
    [66] Yang R.T, Doong S. J.. Gas Separation by Pressure Swing Adsorption: A Pore-difusion Model for Bulk Separation[J]. A IChEJ, 1985, 31(11): 1829-184 .
    [67] Liaw C. H., Wang J. S. P., Greenkorn R. A. ,Chao K.C.. Kinetics of Fixed-bed AdsorPtion: A New Solution[J]. AIChE J., 1979,25(2):376-381.
    [68] Serbezov A., Sotirchos S. V. Mathematical Mdeling of the Adsorptive S eparation of Multicomponent Gaseous Mixtures[J]. Chem. Eng. Sci, 1997,52 (1):79-91.
    [69] Adélio M .M., Carlos A .V., Alirio E.,R. PSA Simulation Using Particle C omplex Models[J]. Se parathion and Purification Technology, 2001,24(1):1-11.
    [70] Chen Y. D., RitterJ. A.,Yang R.T. Nonideal Adsorption from Multicomponent Gas Mixtures at Elevated Pressures on 5A Molecular Sieve[J]. Chem. Eng.Sci., 1990,45(9):2877-2894.
    [71] Kapoor A., Yang R.T. Kinetic Separation of Methane-Carbon Dioxide Mixtures by Adsorption on Molecular Sieve Carbon[J]. Chem.Eng.Sci, 1989,44(8):1723-1733.
    [72] Ackley M. W., Yang R.T. Kinetic Separation by Pressure Swing Adsorption Method of Characteristics model[J]. AIChEJ.,1990,36 (8):1229-1238.
    [73] Farooq S., Ruthven D.M., Boniface H.A. Numerical Simulation of a Pressure Swing Adsorption Oxygen Unit[J]. Chem.Eng.Sci, 1989,44 (12):2809-2816.
    [74] Hassan M. M.,Ruthven D. M., Raghavan N. S.. Air Separation of Pressure Swing Adsorption on Molecular Sieve[J]. Ch em.Eng.Sci.,1986,41(5): 1333-1343.
    [75] Hassan M.M., Raghavan N.S., Ruthven D.M. Pressure Swing Adsorption Air Separation on a Carbon Molecular Sieve- Ⅱ. Investigation of a Modified Cycle with Pressure Equalization and No Purge[J]. Ch em.Eng.Sci, 1987, 42(8):2037-2043.
    [76] SUOEBACH. Druckwechsel adsorption von organischen Dampfen[D]. Germany: Ruhr-Universitaet Bochum, 2002:54-61.
    [77] 李立清.吸附与变压吸附处理有机蒸汽的实验与理论研究[D].长沙:湖南大学,2004:135-146.
    [78] Ruthven D M. Principles of Adsorption and Adsorption Prosses[M]. New York: John Wiley Sons, 1984:16-23.
    [79] KAST W. Adsorption Aus Der Gasphase[M]. Berlin: Weinheim Verlag, 1988:64-78.
    [80] LEE S W, PARK H J, LEE M G. Comparison of adsorption characteristics according to polarity difference of acetone vapor and toluene vapor on silica-alumina fixed-bed reactor[J]. Journal of Industrial and Engieering Chemistry, 2008, 14(1):10-17.
    [81] SONG Lijuan, SUN Zhaolin, DUAN Linhai, GUI Jianzhou, MCDOUGALL G S. Adsorption and diffusion properties of hydrocarbons in zeolites[J]. Microporous and Mesoporous Materials,2007,104(1-3): 115-128.
    [82] SANKARRAO B, GUPTA S K. Modeling and simulation of fixed bed adsorbers(FBAs) for multi-component gaseous separations[J].Computers and Chemical Engineering,2007,31(10): 1282-1295.
    [83] 李立清,朱正双,秦映心,宋剑飞,刘小燕.两组分有机气体等温吸附模拟与传热传质分析[J].中国电机工程学报,2008,28(26):16-52.
    [84] SIWAILY K. Experimented und modellgestiitzte Untersuchungen der Ad-/Desorption von VOC's durch nanoporose Feststoffe[D]. Germany:Ruhr-Universitat Bochum, 2006:124-156.
    [85] BREAULT R W. A review of gas-solid dispersion and mass transfer coefficient correlations in circulating fluidized beds[J]. Powder Technology, 2006,163(1-2): 9-17.
    [86] DELAGE F, PRE P, Pierrelecloirec. Mass Transfer and Warming during Adsorption of High Concentrations of VOCs on an Activated Carbon Bed: Experimental and Theoretical Analysis[J]. Environmental Science & Technology,2000,34(22):4816-4821.
    [87] Hwang K S, Lee W K. The adsorption and desorption breakthrough behavior of carbon monoxide and carbon dioxide on activated carbon. Effects of total pressure and pressure-dependent mass transfer coefficients[J]. Separation science and technology, 1994,29(14): 1857-1891
    [88] Ruthven D M.Diffusion of oxygen and nitrogen in carbon molecular sieves[J]. Chemical Engineering Science, 1992,47(17-18): 4305-4308
    [89] 唐琳.吸附及变压吸附分离回收丙酮蒸气的数学模拟[D].长沙:湖南大学,2007:34-36.
    [90] DELGADA J A, RODRIGUES A E. Analysis of the boundary conditions for the simulation of the pressure equalization step in PSA cycles[J]. Chemical Engineering Science,2008,63(18):4452-4463
    [91] BUDNER, Z DULA J, PODSTAWA W, GAWDZIK A. Study and modeling of the vacuum swing adsorption(VSA) process employed in the production of oxygen[J]. Trans IChemE, 1999,77(Part A).
    [92] LEINEKUGEL-LE-COCQ D,TAYAKOUT-FAYOLLE M, LE GORRECY,JALLUT C. A double linear driving force approximation for non-isothermal mass transfer modeling through bi-disperse adsorbents[J]. Chemical Engineering Science,2007,62(2): 4040-4053
    [93] HWANG K S, JUN J H, LEE W K. Fixed-bed adsorption for bulk component system. Non-equilibrium, non-isothermal and non-adiabatic model[J]. Chemical Engineering Science, 1995, 50(5):813-825.
    [94] SIRCAR S. Gas sorption kinetics by differential closed-loop recycle method:Effect of heat of adsorption[J].Adsorption,2006,12(1):259-266.
    [95] NASTAI J F, AMBROZEK B, RUDNICKA J. Simulation studies of vacuum and temperature swing adsorption process for the removal of VOC from waste air streams[J]. Intemation Communications in Heat and Mass Transfer, 2006,33(1):80-86.
    [96] DO D D, DO H D. Non-isothermal effects on adsorption kinetics of hydrocarbon mixtures in activated carbon[J]. Separation and Purification Technology ,2000,20(1):49-65.